Review: Thread package API

® tid thread_create (void (*fn) (void *), void *arg);

- Create a new thread that calls £n with arg
® yvoid thread_exit ();
® void thread_join (tid thread);
* The execution of multiple threads is interleaved

e Can have non-preemptive threads:
- One thread executes exclusively until it makes a blocking call

e Or preemptive threads (what we usually mean in this class):
- May switch to another thread between any two instructions.
¢ Using multiple CPUs is inherently preemptive

- Even if you don’t take CPU, away from thread T, another thread on
CPU, can execute “between” any two instructions of T

1/44

int flagl = 0, flag2 = 0;

void pl (void *ignored) {

flagl = 1;

if (1flag2) { critical_section_1 (); }
}

void p2 (void *ignored) {

flag2 = 1;

if (!'flagl) { critical_section_2 (); %}
}

int main O {
tid id = thread_create (pl, NULL);
p2 O;
thread_join (id);

}

Q: Can both critical sections run?

2/44

int data = 0;
int ready = O;

void pl (void *ignored) {
data = 2000;

ready = 1;
X

void p2 (void *ignored) {
while (!ready)

use (data);

}

int main) { ... }

Q: Can use be called with value 0?

3/44

int a = 0;

int b = 0;

void pl (void *ignored) {
a=1;

3

void p2 (void *ignored) {
if (a == 1)
b=1,;
}

void p3 (void *ignored) {
if (b == 1)
use (a);

Q: If p1-3 run concurrently, can use be called with value 0?

4/44

Correct answers

[git push slides to web site now]

5/44

Correct answers

* Program A: I don’t know

5/44

Correct answers

* Program A: I don’t know
* Program B: | don’t know

5/44

Correct answers

Program A: 1 don’t know

Program B: | don’t know

Program C: | don’t know

Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

* Note: Examples, other content from [Adve & Gharachorloo]

* Another great reference: Why Memory Barriers

5/44

https://www.scs.stanford.edu/24wi-cs212/sched/readings/shmem-tut.pdf
https://www.scs.stanford.edu/24wi-cs212/sched/readings/why-memory-barriers.pdf

@ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

6/44

Sequential Consistency

Definition

Sequential consistency: The result of execution is as if all operations
were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.

- Lamport

* Boils down to two requirements on loads and stores:
1. Maintaining program order of each individual processor
2. Ensuring write atomicity

* Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads

- Result may not correspond to any instruction interleaving on 1 CPU

* Why doesn’t all hardware support sequential consistency?

7/44

https://www.scs.stanford.edu/24wi-cs212/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

Complicates write buffers
- E.g., read flagn before flag(3 — n) written through in Program A

Can’tre-order overlapping write operations

- Concurrent writes to different memory modules
- Coalescing writes to same cache line

Complicates non-blocking reads
- E.g., speculatively prefetch data in Program B

Makes cache coherence more expensive

- Must delay write completion until invalidation/update (Program B)
- Can’t allow overlapping updates if no globally visible order
(Program C)

8/44

SC thwarts compiler optimizations

Code motion

Caching value in register
- Collapse multiple loads/stores of same address into one operation

* Common subexpression elimination
- Could cause memory location to be read fewer times

Loop blocking
- Re-arrange loops for better cache performance

Software pipelining

- Move instructions across iterations of a loop to overlap instruction
latency with branch cost

9/44

x86 consistency [intel 3a, §8.2]

* x86 supports multiple consistency/caching models
- Memory Type Range Registers (MTRR) specify consistency for
ranges of physical memory (e.g., frame buffer)
- Page Attribute Table (PAT) allows control for each 4K page

e Choicesinclude:

WB: Write-back caching (the default)
WT: Write-through caching (all writes go to memory)
UC: Uncacheable (for device memory)

WC: Write-combining - weak consistency & no caching
(used for frame buffers, when sending a lot of data to GPU)

* Some instructions have weaker consistency

- String instructions (written cache-lines can be re-ordered)

- Special “non-temporal” store instructions (movnt*) that bypass
cache and can be re-ordered with respect to other writes

10/44

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

x86 WB consistency

* Old x86s (e.g, 486, Pentium 1) had almost SC

- Exception: A read could finish before an earlier write to a different
location

- Which of Programs A, B, C might be affected?
* Reminder:
- Program A: flagl = 1; if (!flag2) critical_section_1();
- Program B:while (!ready); use(data);
- Program C: P2if (a == 1) b = 1;andP3if (b == 1) use(a);

11/44

x86 WB consistency

* Old x86s (e.g, 486, Pentium 1) had almost SC

- Exception: A read could finish before an earlier write to a different
location

- Which of Programs A, B, C might be affected? JustA
* Newer x86s also let a CPU read its own writes early

volatile int flagil; volatile int flag2;
int pl (void) int p2 (void)
{ {
register int f, g; register int f, g;
flagl = 1; flag2 = 1;
f = flagl; f = flag2;
g = flag2; g = flagl;
return 2*f + g; return 2*f + g;
X X

- E.g., both p1 and p2 can return 2:
- Older CPUs would waitat “f = ...” until store complete

11/44

x86 atomicity

* lock prefix makes a memory instruction atomic

Historically locked bus for duration of instruction (expensive!)

Now requires exclusively caching memory, synchronizing with
other memory operations

All lock instructions totally ordered
Other memory instructions cannot be re-ordered with locked ones

* xchg instruction is always locked (even without prefix)

* Special barrier (or “fence”) instructions can prevent
re-ordering
- 1fence - can’t be reordered with reads (or later writes)

- sfence - can’t be reordered with writes
(e.g., use after non-temporal stores, before setting a ready flag)

- mfence - can’t be reordered with reads or writes

12/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

13/44

Assuming sequential consistency

* Often we reason about concurrent code assuming SC
¢ But for low-level code, either know your memory model or
program for worst-case relaxed consistency (~DEC alpha)
- May need to sprinkle barrier/fence instructions into your source
- Or may need compiler barriers to restrict optimization
* For most code, avoid depending on memory model
- Idea: If you obey certain rules (discussed later)
...system behavior should be indistinguishable from SC
* Let’s for now say we have sequential consistency

e Example concurrent code: Producer/Consumer
- buffer stores BUFFER_SIZE items
- count is number of used slots
- out is next empty buffer slot to fill (if any)
- inis oldest filled slot to consume (if any)

14/ 44

void producer (void *ignored) {
for (;;) {
item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)
/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

count++;
}
¥
void consumer (void *ignored) {
for (;5;) A{
while (count == 0)

/* do nothing */;
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed) ;

}
Q: What can go wrong in above threads (even with SC)?

15/44

* count may have wrong value

¢ Possible implementation of count++ and count--

register<—count register<—count
register«register + 1 register«register — 1
count«register count«register

* Possible execution (count one less than correct):

register<—count
register<register + 1
register<—count
register<register — 1
count«register
count«register

16/44

Data races (continued)

* What about a single-instruction add?

- E.g.,i386 allows single instruction add1l $1,_count
- So implement count++/-- with one instruction
- Now are we safe?

17/44

Data races (continued)

* What about a single-instruction add?
- E.g.,i386 allows single instruction add1 $1,_count
- So implement count++/-- with one instruction
- Now are we safe? Not on multiprocessors!
* Asingle instruction may encode a load and a store operation
- S.C. doesn’t make such read-modify-write instructions atomic
- So on multiprocessor, suffer same race as 3-instruction version
e Can make x86 instruction atomic with 1ock prefix
- But lock potentially very expensive
- Compiler assumes you don’t want penalty, doesn’t emit it
* Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

17/44

Desired properties of solution

* Mutual Exclusion
- Only one thread can be in critical section at a time

* Progress

- Say no process currently in critical section (C.S.)

- One of the processes trying to enter will eventually get in
* Bounded waiting

- Once a thread T starts trying to enter the critical section, there is a
bound on the number of times other threads get in

* Note progress vs. bounded waiting

- If no thread can enter C.S., don’t have progress

- If thread A waiting to enter C.S. while B repeatedly leaves and
re-enters C.S. ad infinitum, don’t have bounded waiting

18/44

Peterson’s solution

« Still assuming sequential consistency
¢ Assume two threads, T; and T;

¢ Variables

- int not_turn; //notthisthread’sturnto enterC.S.
- bool wants[2]; //wants[i] indicates if T; wants to enter C.S.

e Code:

for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();

19/44

Does Peterson’s solution work?

for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();

}
e Mutual exclusion - can’t both be in C.S.
- Would mean wants[0] == wants[1] == true,

so not_turn would have blocked one thread from C.S.

* Progress - given demand, one thread can always enter C.S.
- If T,_;doesn’t want C.S., wants[1-i] == false, S0 T; won’t loop
- If both threads want in, one thread is not the not_turn thread

* Bounded waiting - similar argument to progress

- If T; wants lock and T, _; tries to re-enter, T;_; will set
not_turn = 1 - i,allowingT;in
20/44

€ Memory consistency

@ The critical section problem

©® Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

21/44

* Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

e Must adapt to machine memory model if not SC
- If you need machine-specific barriers anyway, might as well take
advantage of other instructions helpful for synchronization

* Want to insulate programmer from implementing
synchronization primitives

* Thread packages typically provide mutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acquires m at a time, others wait

22/44

Thread API contract

¢ All global data should be protected by a mutex!

- Global = accessed by more than one thread, at least one write
- Exception is initialization, before exposed to other threads
- This is the responsibility of the application writer

¢ If you use mutexes properly, behavior should be
indistinguishable from Sequential Consistency

- This is the responsibility of the threads package (& compiler)
- Mutex is broken if you use properly and don’t see SC

¢ OS kernels also need synchronization
- Some mechanisms look like mutexes
- Butinterrupts complicate things (incompatible w. mutexes)

23/44

Same concept, many names

* Most popular application-level thread API: Pthreads

- Function names in this lecture all based on Pthreads
- Just add pthread_ prefix
- E.g., pthread_mutex_t, pthread_mutex_lock,...

e Cl1lusesmtx_instead of mutex_, C++11 uses methods on mutex

* Pintos uses struct lock for mutexes:
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);

¢ Extra Pintos feature:

- Release checks that lock was acquired by same thread
- bool lock_held_by_current_thread (struct lock *lock);

24/44

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html#tag_13_35_07
http://port70.net/~nsz/c/c11/n1570.html#7.26.4
https://en.cppreference.com/w/c/thread
https://en.cppreference.com/w/cpp/thread/mutex
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC103

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (53) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex) ;

¥

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

25/44

Improved consumer

void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

consume_item (nextConsumed) ;

26 /44

Condition variables

* Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

» Better to inform scheduler of which threads can run
» Typically done with condition variables
® struct cond_t; (pthread_cond_t OF condition in Pintos)

® yoid cond_init (cond_t *, ...);

® yvoid cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing
® void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

- Wake one/all threads waiting on c

27/44

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC104

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (53) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

28 /44

Improved consumer

void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed) ;

29/44

Re-check conditions

* Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);
¢ Otherwise, breaks with spurious wakeup or two consumers

- Start where Consumer 1 has mutex but buffer empty, then:

Consumer1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);
count++;
cond_signal (...);
mutex_lock (...); mutex_unlock (...);

if (count == 0)

use buffer[out] ...
count--;
mutex_unlock (...);
use buffer[out] ... +— Noitemsin buffer
30/44

Condition variables (continued)

* Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

by

31/44

Condition variables (continued)

* Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
* Can end up stuck waiting when bad interleaving

Producer Consumer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);
mutex_lock (&mutex);
count--;
cond_signal (&nonfull);
cond_wait (&nonfull);

* Problem: cond_wait & cond_signal do not commute
31/44

Other thread package features

Alerts - cause exception in a thread

Timedwait - timeout on condition variable

Shared locks - concurrent read accesses to data

Thread priorities - control scheduling policy

- Mutex attributes allow various forms of priority donation
(will be familiar concept after lab 1)

Thread-specific global data
- Need for things like errno

Different synchronization primitives (later in lecture)

32/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

33/44

* Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked;
thread_id_t owner;
thread_list_t waiters;

/* true if locked */
/* thread holding lock, if locked */
/* threads waiting for lock */

} mutex_t;

34/44

Implementing synchronization

* Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked; /* true if locked */

thread_id_t owner; /* thread holding lock, if locked */

thread_list_t waiters; /* threads waiting for lock */
lower_level_lock_t 1lk; /* Protect above fields */
} mutex_t;

- Fine, so long as we avoid data races on the mutex itself

* Need lower-level lock 1k for mutual exclusion

- Internally, mutex_x functions bracket code with
lock(&mutex->1k) ... unlock (&mutex->1k)

- Otherwise, data races! (E.g., two threads manipulating waiters)
* How to implement lower_level_lock_t?

- Could use Peterson’s algorithm, but typically a bad idea
(too slow and don’t know maximum number of threads)

34/44

Approach #1: Disable interrupts

e Only for apps with n : 1 threads (1 kthread)
- Cannot take advantage of multiprocessors
- But sometimes most efficient solution for uniprocessors

* Typical setup: periodic timer signal caught by thread
scheduler

* Have per-thread “do not interrupt” (DNI) bit
® lock (1k): setsthread’s DNI bit

¢ If timer interrupt arrives

- Check interrupted thread’s DNI bit

- If DNI clear, preempt current thread

- If DNI set, set “interrupted” (l) bit & resume current thread
* unlock (1k): clears DNI bit and checks I bit

- If I bitis set, immediately yields the CPU

35/44

Approach #2: Spinlocks

* Most CPUs support atomic read-[modify-]write

Example: int test_and_set (int *lockp);
- Atomically sets *lockp = 1 and returns old value

- Special instruction - no way to implement in portable C99
(C11 supports with explicit atomic_flag_tet_and_set function)

Use this instruction to implement spinlocks:

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = O

Spinlocks implement mutex’s lower_level_lock_t

¢ Can you use spinlocks instead of mutexes?
- Wastes CPU, especially if thread holding lock not running
- Mutex functions have short C.S., less likely to be preempted
- On multiprocessor, sometimes good to spin for a bit, then yield

36/44

https://port70.net/~nsz/c/c11/n1570.html#7.17.8
https://en.cppreference.com/w/c/atomic/atomic_flag

Synchronization on x86

Test-and-set only one possible atomic instruction

x86 xchg instruction, exchanges reg with mem
- Can use to implement test-and-set

_test_and_set:

movl 4(%esp), hedx # Jedx = lockp

movl $1, Yeax # Y%eax = 1

xchgl Y%eax, (%edx) # swap (%eax, *lockp)
ret

CPU locks memory system around read and write

- Recall xchgl always acts like it has implicit 1ock prefix
- Prevents other uses of the bus (e.g., DMA)

Usually runs at memory bus speed, not CPU speed
- Much slower than cached read/buffered write

37/44

Synchronization on alpha

® 1d1_1 - load locked
st1l_c - store conditional (reg«0 if not atomic w. 1d1_1)

_test_and_set:
1dg_1 v0, 0(a0) # vO = *lockp (LOCKED)
bne v0, 1f # if (v0O) return
addq zero, 1, vO # v0 =1
stq_c v0, 0(a0) # xlockp = vO (CONDITIONAL)
beq v0, _test_and_set # if (failed) try again

mb

addq zero, zero, vO0 # return O
1:

ret zero, (ra), 1

* Note: Alpha memory consistency weaker than x86

- Want all CPUs to think memory accesses in C.S. happened after
acquiring lock, before releasing

- Memory barrier instruction mb ensures this (c.f. mfence on x86)
- See Why Memory Barriers for why alpha still worth understanding

38/44

https://www.scs.stanford.edu/24wi-cs212/sched/readings/alphahb.pdf
https://www.scs.stanford.edu/24wi-cs212/sched/readings/why-memory-barriers.pdf

Kernel Synchronization

e Should kernel use locks or disable interrupts?

* Old UNIX had 1 CPU, non-preemptive threads, no mutexes
- Interface designed for single CPU, so count++ etc. not data race
- ...Unless memory shared with an interrupt handler
int x = splhigh (); /* Disable interrupts */

/* touch data shared with interrupt handler ... */
splx (x); /* Restore previous state */

- C.f, intr_disable /intr_set_level in Pintos, and
preempt_disable / preempt_enable in linux

* Used arbitrary pointers like condition variables

- int [t]lsleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (~cond_wait)
- int wakeup (void *ident);

wake up all threads sleeping on ident (~cond_broadcast)

39/44

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC101
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/preempt-locking.txt

* Nowadays, should design for multiprocessors

- Evenif first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads

- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

e Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

¢ If kernel has locks, should it ever disable interrupts?

40/44

* Nowadays, should design for multiprocessors
- Evenif first version of OS is for uniprocessor

- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

e Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs
¢ If kernel has locks, should it ever disable interrupts?

- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So even modern OSes have support for disabling interrupts

- Often uses DNI trick when cheaper than masking interrupts in
hardware

40/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

41/44

Semaphores [Dijkstra]

A Semaphore is initialized with an integer N

Provides two functions:

- sem_wait (S) (originally called P, called sema_down in Pintos)
- sem_signal (S) (originally called V, called sema_up in Pintos)

Guarantees sem_wait will return only N more times than
sem_signal called

- Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

Semaphores give elegant solutions to some problems
- Unlike condition variables, wait & signal commute
Linux primarily uses semaphores for sleeping locks

- sema_init, down_interruptible,up,...

- Also weird reader-writer semaphores, rw_semaphore [Love]

42/44

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC102
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC102
http://www.linuxjournal.com/article/5833

Semaphore producer/consumer

¢ Initialize full to 0 (block consumer when buffer empty)
* Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (5;) {
item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

¥
}
void consumer (void *ignored) {
for (5;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);
}
}

43/44

Various synchronization mechanisms

* Other more esoteric primitives you might encounter

- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

* Many synchronization mechanisms equally expressive
- Pintos implements locks, condition vars using semaphores
- Could have been vice versa
- Can even implement condition variables in terms of mutexes

* Why base everything around semaphore implementation?

- High-level answer: no particularly good reason

- If you want only one mechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Because sem_wait and sem_signal commute, eliminates problem
of condition variables w/o mutexes

44/44

http://doc.cat-v.org/plan_9/4th_edition/papers/sleep

	Memory consistency
	The critical section problem
	Mutexes and condition variables
	Implementing synchronization
	Alternate synchronization abstractions

