Midterm Review

CS 212 Winter 2024

Admin

e When?
o Monday, Feb 12, 1:30 - 2:50 pm (in class)
e What resources are allowed?

o Open note, printing lecture slides is ok
o No internet, textbook, or electronics

e What material is covered?
o All lecture material up to (and including) Wednesday

e How does it count towards my grade?
o 50% of overall grade is: max(midterm > o ? final : 0, (midterm + final)/2)

Content

Processes and Threads
Scheduling

Virtual Memory (HW/OS)
Concurrency
Synchronization

Linking

Themes

Memory Models

o Sequential Consistency
Data Races

o Implementing locks

o Producer/Consumer
Design Tradeoffs

o Complexity, using past to

predict future, hardware
support

Processes and Threads

Processes

Process

(@)
(@)

An instance of a program running
Has its own view of the machine: address space, open files

Process control block (PCB)

(@)

(@)

Stores information about the process, including:
m State (running, ready, waiting)
m Registers
m Virtual memory mappings
m Open files
struct thread in pintos

Why use processes?

(@)
(@)

Higher throughput
Lower latency

Process state

Process ID

Userid, etc.

Program counter

Registers

Address space
(VM data structs)

Open files

PCB

Threads

Schedulable execution context
Why use threads?
o Concurrency
o Multi-core execution
e Kernel threads
o More scheduling control
o Heavy weight
o Everything must go through
kernel
User threads
o Lightweight and flexible
o Less control

1 user thread : 1 kernel thread

n user threads :

4— user thread

<«— karnel thread

1 kernel thread

;-— user thread

<«— kemel thread

n user threads : m kernel threads

process P, operating system process P,
Context Switches g || T
1B | save state into PCB, |
2 idle
e Context switch [eioad siate Fom PGB]
o Change which process is running
P H OW? ridle interrupt or system call executing
o Save registers of current thread IR R ¥]
o Restore registers of next thread .

o Return into next thread
e When?
o State change
m Blocking call

. scheduler
m Device Interrupt admitted dispatch
o Can preempt when kernel gets control

m Traps: system call, page fault, illegal running
instruction /

m Periodic timer interr i) i
€ Od C t € te upt |/O or event “ l|/0 or event wait
completion waiting /

terminated

Scheduling

Scheduling

Given a list of processes, which do we run?

Throughput (number of process that complete per unit time)
Turnaround time (time for each process to complete)

CPU Utilization (fraction of time CPU doing productive work)

Problem

O

Goals

O

O

o Response time
O

o Waiting time

Context switch costs

(@)

(@)

CPU time in kernel
Indirect costs

grep

matrix
multiply

wait for
disk

wait for
disk

wait for
disk

I

\ wait for CPU ‘/

Scheduling Algorithms

e First Come, First Serve (FCFS)

o CPU-bound vs I0-bound jobs
e Shortest job first

o Preemptive or non-preemptive

o Can lead to unfairness and starvation
e Round-robin

o Struggles with same-sized jobs
e Priority Scheduling

o Must handle priority inversion

o You’ve implemented this in pintos!
e MLFWS (multilevel feedback queues)

Py

P

P

24

2T

30

P3

P

30

P

Multiprocessor Scheduling

e Which CPUs do we run our process on?
e Considerations
o Load balancing
o Minimize direct/indirect costs
e Approaches
o Affinity scheduling
m Keep processes on same CPU
o Gang scheduling
m Schedule related processes/threads
together

Pa> Psg
P3> P33 P34
P22 Pa3

P12 Py3 P14

Virtual Memory

Virtual Memory Hardware

Problem
Want multiple processes to co-exist

O
O

How should processes interface with memory?

Issues with using physical addresses

o Protection
o Transparency
o Resource exhaustion
Solution
o Give each program its own virtual address space
o Memory Management Unit (MMU)

Translates between physical and virtual
addresses

virtual address
0x30408

load

St €

A~

No: to fault handler

virtual address
0x30408

Is address
legal?

= Yes: phys.
addr 0x92408

Is address
legal?

5 memory

memory

Mapping Memory

Base + bound
o Physical address = virtual address + base

e Segmentation
o Divide memory into segments
e Demand Paging
o Divide memory into small, equal-sized pages
o Each process has its own page table
m Translation Lookaside Buffer (TLB) caches recently used translations
o Idle pages are stored on disk, paged in on demand
e Paging algorithms

o FIFO: Strawman algorithm, not used in practice
o LRU: Use past to predict future
o CLOCK (single or multi handed): like a second-chance FIFO

R TR T

e Fragmentation [ctocsted memory
o Inability to use free memory [Jextemal tragmented memory
o External fragmentation [iniemal tragmented memory

m Many small holes between memory segments
o Internal fragmentation
m Unused memory within allocated segments
e Speed
o Disk much slower than memory
o 80/20rule
m Hot 20 in memory = “working set”
e Local or global page allocation
e Thrashing

Concurrency & Synchronization

Memory System Properties

e Coherence

O

Concerns access to a single memory location
m If A writes x=1 and B writes x=2, all processes should see the same ordering

e Consistency

@)

Concerns ordering across multiple memory locations
m Ifx=1,y=2, Areads x,y and B writes x=3,y=4, could A ever see x=1,y=4?

e Sequential consistency

@)
©)
©)

Matches our intuition of consistency
As if all operations were executed in some sequential order
Downsides
m Thwarts hardware/compiler optimizations (e.g. prefetching/reordering)
Requirements
m Maintain program order on individual processors
m Ensure write atomicity

Data Races

There is no such thing as a benign data race
e Requirements to get Sequential Consistency in critical sections
o Mutual exclusion

© Progress e, IﬁAm Devloper ‘:/-' —— \:‘ .
O Bounded Waiting W @iamdevioper
e How to meet requirements? Knock knock

Race condition
Who's there?

12:07 PM - 11 Nov 2013

o Synchronization primitives
m Locks/mutexes
m Semaphores
m Condition variables s 1l | 909900000
What if sharing data with interrupt handler? © = w2« © 1
o Uniprocessor: disable interrupts
o Multiprocessor: disable interrupts + spinlock

Data Races (cont.)

e Amdahl’s law

o Ultimate limit on parallel speedup if part of task must be sequential
e Necessary conditions for data race

o Multiple threads access the same data .‘

o At least one of the accesses is a write |: Explain us deadlock and we'll hire
e Necessary conditions for deadlock you

o Limited access (mutual exclusion)

o No preemption Me: Hire me and ['ll explain it to you

o Multiple independent requests (hold and wait)

o Circularity in graph of requests

m A holds mutex x, wants mutex y; B holds y, wants x

Memory Ordering and Fences

e What if we don’t need sequential consistency?
o Weaker consistency models
o Atomics, lock-free data structures
e X-Y fence
o operations of type X sequenced before the fence happen before operations of type

Y sequenced after the fence

Acquire fence
Acq_rel fence

-~

\HLoad-Load | Load-Store U

Store-Load l Store-Store } |

Release fence
Seq_cst fence

Linking

Memory Layout

e Heap kernel
o Allocated and laid out at runtime by malloc (| stack “
e Stack

))) «——_ mmapped
o Allocated at runtime, layout by compiler dynamicy —— regions

e Global data/code

heap
o Allocated. by compiler, layout by linker e s B
e Mmapped regions o initialized data
o Managed by programmer or linker N read-only data

code (text)

Program Lifecycle

Your code
e Source code — program running spits
e Compiler/Assembler out 3 errors
o Generates one object file for each source file
(e.g. main.c — main.o)
o References to other files are incomplete (e.g. You
printf is in stdio.o) fix them
e Linker
o Combines all object files into executable file
e OS Loader The linker
o Reads executables into memory is showing
you 7 errors

Linker

e Goal

o Object files — executable
e How

o Pass1

m Coalesce like segments
m Construct global symbol table
m Compute virtual address of each segment
o Pass2
m Fix addresses of code and data using global symbol table
e Dynamic Linking
o Linked at runtime
o Helps with shared libraries
o May lead to runtime failure
o No type checking

Misc. Advice

Advice

e Old exams won’t necessarily cover the same material or have the same format
e Understand core themes

o Identify races in code

o Identify pros/cons of new approaches

o Given a workload, be able to select a good approach
e Notice what is/isn’t specified in a question (and state assumptions!)

o Sequential consistency

o Uniprocessor vs. multiprocessor
e Rely on notes for facts

o Might be time-constrained

o Create a cheat sheet instead of printing all lecture slides (or both?)
e Deep understanding of most material > cursory understanding of all

You've got this!

