
Midterm Review
CS 212 Winter 2024



Admin

● When?
○ Monday, Feb 12, 1:30 - 2:50 pm (in class)

● What resources are allowed?
○ Open note, printing lecture slides is ok
○ No internet, textbook, or electronics

● What material is covered?
○ All lecture material up to (and including) Wednesday

● How does it count towards my grade?
○ 50% of overall grade is: max(midterm > 0 ? final : 0, (midterm + final)/2)



Content

● Processes and Threads
● Scheduling
● Virtual Memory (HW/OS)
● Concurrency
● Synchronization
● Linking

Themes

● Memory Models
○ Sequential Consistency

● Data Races
○ Implementing locks
○ Producer/Consumer

● Design Tradeoffs
○ Complexity, using past to 

predict future, hardware 
support



Processes and Threads



Processes

● Process
○ An instance of a program running
○ Has its own view of the machine: address space, open files

● Process control block (PCB)
○ Stores information about the process, including:

■ State (running, ready, waiting)
■ Registers
■ Virtual memory mappings
■ Open files

○ struct thread in pintos
● Why use processes?

○ Higher throughput
○ Lower latency



Threads

● Schedulable execution context
● Why use threads?

○ Concurrency
○ Multi-core execution

● Kernel threads
○ More scheduling control
○ Heavy weight
○ Everything must go through 

kernel
● User threads

○ Lightweight and flexible
○ Less control



Context Switches

● Context switch
○ Change which process is running

● How?
○ Save registers of current thread
○ Restore registers of next thread
○ Return into next thread 

● When?
○ State change

■ Blocking call
■ Device Interrupt

○ Can preempt when kernel gets control
■ Traps: system call, page fault, illegal 

instruction
■ Periodic timer interrupt



Scheduling



Scheduling

● Problem
○ Given a list of processes, which do we run?

● Goals
○ Throughput (number of process that complete per unit time)
○ Turnaround time (time for each process to complete)
○ Response time
○ CPU Utilization (fraction of time CPU doing productive work)
○ Waiting time

● Context switch costs
○ CPU time in kernel
○ Indirect costs



Scheduling Algorithms

● First Come, First Serve (FCFS)
○ CPU-bound vs IO-bound jobs

● Shortest job first
○ Preemptive or non-preemptive
○ Can lead to unfairness and starvation

● Round-robin
○ Struggles with same-sized jobs

● Priority Scheduling
○ Must handle priority inversion
○ You’ve implemented this in pintos!

● MLFWS (multilevel feedback queues)



Multiprocessor Scheduling

● Which CPUs do we run our process on?
● Considerations

○ Load balancing
○ Minimize direct/indirect costs

● Approaches
○ Affinity scheduling

■ Keep processes on same CPU
○ Gang scheduling

■ Schedule related processes/threads 
together



Virtual Memory



Virtual Memory Hardware

● Problem
○ Want multiple processes to co-exist
○ How should processes interface with memory?

● Issues with using physical addresses 
○ Protection
○ Transparency
○ Resource exhaustion

● Solution
○ Give each program its own virtual address space
○ Memory Management Unit (MMU)

■ Translates between physical and virtual 
addresses



Mapping Memory

● Base + bound
○ Physical address = virtual address + base

● Segmentation
○ Divide memory into segments

● Demand Paging
○ Divide memory into small, equal-sized pages
○ Each process has its own page table

■ Translation Lookaside Buffer (TLB) caches recently used translations
○ Idle pages are stored on disk, paged in on demand

● Paging algorithms
○ FIFO: Strawman algorithm, not used in practice
○ LRU: Use past to predict future
○ CLOCK (single or multi handed): like a second-chance FIFO



VM Considerations

● Fragmentation
○ Inability to use free memory
○ External fragmentation

■ Many small holes between memory segments
○ Internal fragmentation

■ Unused memory within allocated segments
● Speed

○ Disk much slower than memory
○ 80/20 rule

■ Hot 20 in memory = “working set”
● Local or global page allocation
● Thrashing



Concurrency & Synchronization



Memory System Properties

● Coherence
○ Concerns access to a single memory location

■ If A writes x=1 and B writes x=2, all processes should see the same ordering
● Consistency

○ Concerns ordering across multiple memory locations
■ If x=1,y=2, A reads x,y and B writes x=3,y=4, could A ever see x=1,y=4?

● Sequential consistency
○ Matches our intuition of consistency
○ As if all operations were executed in some sequential order
○ Downsides

■ Thwarts hardware/compiler optimizations (e.g. prefetching/reordering)
○ Requirements

■ Maintain program order on individual processors
■ Ensure write atomicity



Data Races

● There is no such thing as a benign data race
● Requirements to get Sequential Consistency in critical sections

○ Mutual exclusion
○ Progress
○ Bounded waiting

● How to meet requirements?
○ Synchronization primitives

■ Locks/mutexes
■ Semaphores
■ Condition variables

● What if sharing data with interrupt handler?
○ Uniprocessor: disable interrupts
○ Multiprocessor: disable interrupts + spinlock



Data Races (cont.)

● Amdahl’s law
○ Ultimate limit on parallel speedup if part of task must be sequential

● Necessary conditions for data race
○ Multiple threads access the same data
○ At least one of the accesses is a write

● Necessary conditions for deadlock
○ Limited access (mutual exclusion)
○ No preemption
○ Multiple independent requests (hold and wait)
○ Circularity in graph of requests

■ A holds mutex x, wants mutex y; B holds y, wants x



Memory Ordering and Fences

● What if we don’t need sequential consistency?
○ Weaker consistency models
○ Atomics, lock-free data structures

● X-Y fence
○ operations of type X sequenced before the fence happen before operations of type 

Y sequenced after the fence



Linking



Memory Layout

● Heap
○ Allocated and laid out at runtime by malloc

● Stack
○ Allocated at runtime, layout by compiler

● Global data/code
○ Allocated by compiler, layout by linker

● Mmapped regions
○ Managed by programmer or linker



Program Lifecycle

● Source code → program running
● Compiler/Assembler

○ Generates one object file for each source file 
(e.g. main.c → main.o)

○ References to other files are incomplete (e.g. 
printf is in stdio.o)

● Linker
○ Combines all object files into executable file

● OS Loader
○ Reads executables into memory



Linker

● Goal
○ Object files → executable

● How
○ Pass 1

■ Coalesce like segments
■ Construct global symbol table
■ Compute virtual address of each segment

○ Pass 2
■ Fix addresses of code and data using global symbol table

● Dynamic Linking
○ Linked at runtime
○ Helps with shared libraries
○ May lead to runtime failure
○ No type checking



Misc. Advice



Advice

● Old exams won’t necessarily cover the same material or have the same format 
● Understand core themes

○ Identify races in code
○ Identify pros/cons of new approaches
○ Given a workload, be able to select a good approach

● Notice what is/isn’t specified in a question (and state assumptions!)
○ Sequential consistency
○ Uniprocessor vs. multiprocessor

● Rely on notes for facts
○ Might be time-constrained
○ Create a cheat sheet instead of printing all lecture slides (or both?)

● Deep understanding of most material > cursory understanding of all



You’ve got this!


