Course topics

e Networking background

e Local storage

- File systems, database consistency, crash recovery

e Distributed file systems

- Scalability, security, availability, consistency

e Storage Architectures

- Virtualizing storage, RAID, Storage-area networks

e Other storage systems

- Untrusted storage, OO databases, peer-to-peer systems

Class overview

e Readings & class discussion

e Solo labs:

Asynchronous programming: multifinger

Network programming: TCP proxy

Encrypting file system

File server

e Final project (in groups)

e Midterm and final quizes

System calls

e Problem: How to access resources other than CPU
- Disk, network, terminal, other processes
- CPU prohibits instructions that would access devices

- Only privileged OS “kernel” can access devices
e Applications request I/O operations from kernel

e Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

e Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

I/O through the file system

e Applications “open” files/devices by name

- 1/0O happens through open files

e int open(char *path, int flags, ...);

flags: 0_RDONLY, 0_WRONLY, 0_RDWR

0_CREAT: create the file if non-existent

0_EXCL: (w. 0_CREAT) create if file exists already
0_TRUNC: Truncate the file

0_APPEND: Start writing from end of file

mode: final argument with 0_CREAT

e Returns file descriptor—used for all I/O to file

Error returns

e What if open fails? Returns -1 (invalid fd)

e Most system calls return -1 on failure

- Specitic kind of error in global int errno

e #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

e perror, strerror print human-readable messages
P s
- perror ("initfile");

- printf ("initfile: %s\n", strerror (errno));

— “initfile: No such file or directory”

Operations on file descriptors

int read (int fd, void *buf, int nbytes);
- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

int write (int fd, void *buf, int nbytes);

- Returns number of bytes read, -1 on error

off t lseek (int fd, off_t pos, int whence);

- whence: 0 —start, 1 — current, 2 — end
- Returns previous file offset, or -1 on error

int close (int fd);

int fsync (int fd);

- Guarantee that file contents is stably on disk

Other system calls on pathnames

int chdir (const char *dir);

- Change working directory (what cd command does)
int mkdir (const char *dir);

int rmdir (const char *dir);

- Make and remove direcories

int unlink (const char *path);

- Delete pathname specified by path

int link (const char *pl, const char *pl);

- Creates p2; p1 & p2 identical directory entries

int symlink (const char *pl, const char *p2);

- Creates p2; p2 is an alias for name p1

The rename system call

e int symlink (const char *pl, const char *p2);
- Changes name p2 to reference file p1

- Removes file name p1

e Guarantees that p2 will exist despite any crashes
- p2 may still be old file
- pl and p2 may both be new file

- but p2 will always be old or new file

e fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#
- Calls fsync on file descriptor

- rename (".#file#", "file");

File descriptor numbers

e File descriptors are inherited by processes

- When one process spawns another, same fds by default

e Descriptors 0, 1, and 2 have special meaning
0 — “standard input” (stdin in ANSI C)
1 — “standard output” (stdout, printf in ANSIC)

2 — “standard error” (stderr, perror in ANSI C)

Normally all three attached to terminal

Manipulating file descriptors

e int dup2 (int oldfd, int newfd);
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(1seek on one will affect both)

e int fcntl (int fd, F_SETFD, int val)
- Sets close on exec flag if val =1, clears if val =0

- Makes file descriptor non-inheritable by spawned programs

Pipes

e int pipe (int fds[2]);

Returns two file descriptors in fds [0] and fds [1]
Writes to fds[1] will be read on fds [0]
When last copy of £ds[1] closed, £ds [0] will return EOF

Returns 0 on success, -1 on error

e Operations on pipes
- read/write/close — as with files
- When fds[1] closed, read (£ds [0]) returns O bytes

- When £ds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE

Sockets: Communication between machines

e Datagram sockets: Unreliable message delivery
- On Internet: User Datagram Protocol (UDP)
- Send atomic messages, which may be reordered or lost

- Special system calls to read /write: send/recv

e Stream sockets: Bi-directional pipes
- On Internet: Transmission Control Protocol (TCP)
- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

Socket naming

e Every Internet host has a unique 32-bit IP address
- Often written in “dotted-quad” notation: 204.168.181.201
- DNS protocol maps names (www.nyu.edu) to IP> addresses

- Network routes packets based on IP address

e 16-bit port number demultiplexes TCP traffic

- Well-known services “listen” on standard ports: finger—79,
HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

- A connection consists of five components: Protocol (TCP),
local IP, local port, remote IP, remote port

e All Internet traffic routed as small packets

- Each packet contains address information in header

IP header

0 1 2 3
01234567390123456789012345678901
vers |hdrlen TOS Total Length
Identification 0 %1}7/[Fragment offset
TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

IP header details

e Routing is based on destination address

e TTL (time to live) decremented at each hop (avoids
loops)

e Fragmentation used for large packets
- Fragmented in network if links crossed with smaller MTU
- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

e Almost always want to avoid fragmentation

- When fragment is lost, whole packet must be retransmitted

e Following IP header is “payload” data
- Typically beginning with TCP or UDP header

TCP header

0 1 2 3
01234567890123456739012345678901

source port destination port

sequence number

acknowledgment number

data UA|PR|S|F .
offset | reserved RICIS|S|Y|I Window
GK[H|TNN
checksum urgent pointer
options padding

data

TCP fields

e Ports

e Seq no. — segment position in byte stream

e Ack no. — seq no. sender expects to receive next
e Data offset — # of 4-byte header & option words
e Window - willing to receive (flow control)

e Checksum

e Urgent pointer

TCP Flags

e URG - urgent data present

e ACK - ack no. valid (all but first segment)

e PSH - push data up to application immediately
e RST - reset connection

e SYN - “synchronize” establishes connection

e FIN - close connection

A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384
essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376
orchard.48150 > essex.discard: . ack 1 win 17376
orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376
essex.discard orchard.48150: . ack 2 win 17376
orchard.48150: F 1:1(0) ack 2 win 17376

essex.discard: . ack 2 win 17375

essex.discard
orchard.48150

Connection establishment

e Three-way handshake:
- C'— S:SYN, seq S¢
- S — (C:SYN, seq Sg, ack S¢ + 1
-(C — S:ack Sg+1

e If no program listening: server sends RST
o If server backlog exceeded: ignore SYN
e If no SYN-ACK received: retry, timeout

Connection termination

e FIN bit says no more data to send
- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

e Typical close:

A — B: FIN, seq Sa, ack Sp

B — A:ack S4+1

B — A: FIN, seq Sp,ack 54 +1
- A— B:ackSg+1

e Can also have simultaneous close

o After last message, can A and B forget about
closed socket?

TIME WAIT

e Problems with closed socket
- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new
connection? (Old packets might still be floating around.)

e Solution: “active” closer goes into TIME_WAIT
- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL
(twice the “maximum segment lifetime”)

e Can pose problems with servers
- OS has too many sockets in TIME_WALIT, slows things down

- Hack: Can send RST and delete socket, set SO_LINGER
socket option to time 0 (useful for benchmark programs)

Sending data

e Data sent in MSS-sized segments
- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)
- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

e Sender’s OS can delay sends to get full segments

- Nagle algorithm: Only one unacknowledged short segment
- TCP_NODELAY option avoids this behavior

e Segments may arrive out of order

- Sequence number used to reassemble in order

e Window achieves flow control

- If window 0 and sender’s buffer full, write will block or
return EAGAIN

A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384
essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376
orchard.38497 > essex.echo: . ack 1 win 17376
orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376
essex.echo > orchard.38497: . ack 4 win 17376
essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376
orchard.38497 > essex.echo: . ack 4 win 17376
orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376
essex.echo > orchard.38497: . ack 5 win 17376
essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376
orchard.38497 > essex.echo: . ack 5 win 17375

Delayed ACKs

e Goal: Piggy-back ACKs on data

Echo server just echoes, why send separate ack first?

Delay ACKs for 200 msec in case application sends data

If more data received, immediately ACK second segment

Note: Never delay duplicate ACKs (if segment out of order)

e Warning: Can interact badly with Nagle

- “My login has 200 msec delays”
- Set TCP_.NODELAY
- In 1ibasync library, call tcp nodelay (£fd);

Retransmission

e TCP dynamically estimates round trip time
o If segment goes unacknowledged, must retransmit

e Use exponential backoff (in case loss from
congestion)

- Optimization in case of single lost packet—just halve
sending rate

o After ~10 minutes, give up and reset connection

System calls for using TCP

Client Server

socket — make socket
bind — assign address
listen — listen for clients

socket — make socket

bind — assign address

connect — connect to listening socket

accept — accept connection

Example client

struct sockaddr_in {
short sin_family; /* = AF_INET x*/
u_short sin_port; /* = htons (PORT) */
struct 1n_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS) ;

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)
write (1, buf, n);

Example server

struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);
bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);
sin.sin_addr.s_addr = htonl (INADDR_ANY) ;
bind (s, (sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (5;5) {
socklen_t len = sizeof (sin);
int cfd = accept (s, (sockaddr *) &sin, &len);
/* do something with cfd */
close (cfd);

Concurrent connections

e Servers must handle multiple clients concurrently
- Read or write of a socket connected to slow client can block
- Overlap network latency with CPU, transmission, disk I/O

- Keep disk queues full when server accesses disk

e Can use one process per client: accept, fork, close

- High overhead, cannot share state between clients

e Can use threads for concurrency
- Data races and deadlock make programming tricky

- Must allocate one stack per request

e Use non-blocking read/write calls

- Unusual programming model

Non-blocking I/0

e fcntl sets 0_NONBLOCK flag on descriptor

- In libasync, can call make_async (fd);

e Non-blocking semantics of system calls:

read immediately returns -1 with errno EAGAIN if no data

write may not write all data, or may return EAGAIN

connect may “fail” with EINPROGRESS (or may succeed, or
may fail with real error like ECONNREFUSED)

accept may fail with EAGAIN if no pending connections

How do you know when to read/write?

struct timeval {
long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

+;

int select (int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO (&fdset) ;

Asynchronous programming model

e Many non-blocking file descriptors in one process
- Wait for pending I/O events on file many descriptors

- Each event triggers some callback function

e Lab: 1ibasync — supports event-driven model
- Register callbacks on file descriptors

- Call amain() — main select loop
- Add/delete callbacks from within callbacks

callback.h

e Problem: Need state from one callback to next

e wrap bundles a function with its arguments

callback<void, int>::ref errwrite = wrap (write, 2);
(¥errwrite) ("hello", 5); // writes "hello" to stderr

e void fdcb(int fd, selop op, cb_t cb);
registers callbacks on file descriptor f£d
- opis selread or selwrite

- cbis void callback (no arguments), or NULL to clear

libasync example server

void doaccept (int 1fd) A
sockaddr_in sin;
bzero (&sin, sizeof (sin));
socklen_t sinlen = sizeof (sin);
int cfd = accept (1fd, (sockaddr *) &sin, &sinlen);

if (cfd >=0) { /* ... */ }
+
int main (int argc, char **argv) {
/] ...
int 1fd = inetsocket (SOCK_STREAM, your_port, INADDR_ANY);
if (1fd < 0) fatal << "socket: " << strerror (errno) << "\n'";

if (listen (1fd, 5) < 0) fatal ("listen: %m\n");
fdcb (1fd, selread, wrap (doaccept, 1fd));

amain ();

Remote procedure call

e Abstract away network in distributed programs
- Idea: Distributed programming looks like function call

- Reality: Can’t abstract away everything (e.g., failure)

e Next class: Sun RPC

- XDR defines structures that can be transmitted on the wire

- RPC is simple layer that sends arg. structs and gets returns

