
Course topics

• Networking background

• Local storage
- File systems, database consistency, crash recovery

• Distributed file systems
- Scalability, security, availability, consistency

• Storage Architectures
- Virtualizing storage, RAID, Storage-area networks

• Other storage systems
- Untrusted storage, OO databases, peer-to-peer systems

Class overview

• Readings & class discussion

• Solo labs:
- Asynchronous programming: multifinger

- Network programming: TCP proxy

- Encrypting file system

- File server

• Final project (in groups)

• Midterm and final quizes

System calls

• Problem: How to access resources other than CPU
- Disk, network, terminal, other processes

- CPU prohibits instructions that would access devices

- Only privileged OS “kernel” can access devices

• Applications request I/O operations from kernel

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, gets, etc. all user-level code

I/O through the file system

• Applications “open” files/devices by name
- I/O happens through open files

• int open(char *path, int flags, ...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file

Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure
- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror, strerror print human-readable messages
- perror ("initfile");

- printf ("initfile: %s\n", strerror (errno));

→ “initfile: No such file or directory”

Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes read, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
- Returns previous file offset, or -1 on error

• int close (int fd);

• int fsync (int fd);

- Guarantee that file contents is stably on disk

Other system calls on pathnames
• int chdir (const char *dir);

- Change working directory (what cd command does)

• int mkdir (const char *dir);

• int rmdir (const char *dir);

- Make and remove direcories

• int unlink (const char *path);

- Delete pathname specified by path

• int link (const char *p1, const char *p1);

- Creates p2; p1 & p2 identical directory entries

• int symlink (const char *p1, const char *p2);

- Creates p2; p2 is an alias for name p1

The rename system call

• int symlink (const char *p1, const char *p2);

- Changes name p2 to reference file p1

- Removes file name p1

• Guarantees that p2 will exist despite any crashes
- p2 may still be old file

- p1 and p2 may both be new file

- but p2 will always be old or new file

• fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#

- Calls fsync on file descriptor

- rename (".#file#", "file");

File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor

- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(lseek on one will affect both)

• int fcntl (int fd, F SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0

- Makes file descriptor non-inheritable by spawned programs

Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]

- Writes to fds[1] will be read on fds[0]

- When last copy of fds[1] closed, fds[0] will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files

- When fds[1] closed, read(fds[0]) returns 0 bytes

- When fds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE

Sockets: Communication between machines

• Datagram sockets: Unreliable message delivery
- On Internet: User Datagram Protocol (UDP)

- Send atomic messages, which may be reordered or lost

- Special system calls to read/write: send/recv

• Stream sockets: Bi-directional pipes
- On Internet: Transmission Control Protocol (TCP)

- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

Socket naming

• Every Internet host has a unique 32-bit IP address
- Often written in “dotted-quad” notation: 204.168.181.201

- DNS protocol maps names (www.nyu.edu) to IP addresses

- Network routes packets based on IP address

• 16-bit port number demultiplexes TCP traffic
- Well-known services “listen” on standard ports: finger—79,

HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

- A connection consists of five components: Protocol (TCP),
local IP, local port, remote IP, remote port

• All Internet traffic routed as small packets
- Each packet contains address information in header

IP header

F

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

hdr lenvers TOS Total Length

Identification Fragment offsetDM

TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

F0

IP header details

• Routing is based on destination address

• TTL (time to live) decremented at each hop (avoids
loops)

• Fragmentation used for large packets
- Fragmented in network if links crossed with smaller MTU

- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

• Almost always want to avoid fragmentation
- When fragment is lost, whole packet must be retransmitted

• Following IP header is “payload” data
- Typically beginning with TCP or UDP header

TCP header

padding

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

source port destination port

sequence number

acknowledgment number

reserved
U
R

data

G

A P R S F
C
K

S
H

S
T

Y
N

I
N

Windowdata
offset

checksum urgent pointer

options

TCP fields

• Ports

• Seq no. – segment position in byte stream

• Ack no. – seq no. sender expects to receive next

• Data offset – # of 4-byte header & option words

• Window – willing to receive (flow control)

• Checksum

• Urgent pointer

TCP Flags

• URG – urgent data present

• ACK – ack no. valid (all but first segment)

• PSH – push data up to application immediately

• RST – reset connection

• SYN – “synchronize” establishes connection

• FIN – close connection

A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384

essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376

orchard.48150 > essex.discard: . ack 1 win 17376

orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376

essex.discard > orchard.48150: . ack 2 win 17376

essex.discard > orchard.48150: F 1:1(0) ack 2 win 17376

orchard.48150 > essex.discard: . ack 2 win 17375

Connection establishment

• Three-way handshake:
- C → S: SYN, seq SC

- S → C: SYN, seq SS , ack SC + 1

- C → S: ack SS + 1

• If no program listening: server sends RST

• If server backlog exceeded: ignore SYN

• If no SYN-ACK received: retry, timeout

Connection termination

• FIN bit says no more data to send
- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

• Typical close:
- A → B: FIN, seq SA, ack SB

- B → A: ack SA + 1

- B → A: FIN, seq SB , ack SA + 1

- A → B: ack SB + 1

• Can also have simultaneous close

• After last message, can A and B forget about
closed socket?

TIME WAIT

• Problems with closed socket
- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new
connection? (Old packets might still be floating around.)

• Solution: “active” closer goes into TIME WAIT
- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL
(twice the “maximum segment lifetime”)

• Can pose problems with servers
- OS has too many sockets in TIME WAIT, slows things down

- Hack: Can send RST and delete socket, set SO LINGER
socket option to time 0 (useful for benchmark programs)

Sending data
• Data sent in MSS-sized segments

- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)

- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

• Sender’s OS can delay sends to get full segments
- Nagle algorithm: Only one unacknowledged short segment

- TCP NODELAY option avoids this behavior

• Segments may arrive out of order
- Sequence number used to reassemble in order

• Window achieves flow control
- If window 0 and sender’s buffer full, write will block or

return EAGAIN

A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384

essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376

orchard.38497 > essex.echo: . ack 1 win 17376

orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376

essex.echo > orchard.38497: . ack 4 win 17376

essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376

orchard.38497 > essex.echo: . ack 4 win 17376

orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376

essex.echo > orchard.38497: . ack 5 win 17376

essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376

orchard.38497 > essex.echo: . ack 5 win 17375

Delayed ACKs

• Goal: Piggy-back ACKs on data
- Echo server just echoes, why send separate ack first?

- Delay ACKs for 200 msec in case application sends data

- If more data received, immediately ACK second segment

- Note: Never delay duplicate ACKs (if segment out of order)

• Warning: Can interact badly with Nagle
- “My login has 200 msec delays”

- Set TCP NODELAY

- In libasync library, call tcp nodelay (fd);

Retransmission

• TCP dynamically estimates round trip time

• If segment goes unacknowledged, must retransmit

• Use exponential backoff (in case loss from
congestion)

- Optimization in case of single lost packet—just halve
sending rate

• After ∼10 minutes, give up and reset connection

System calls for using TCP

Client Server

socket – make socket

bind – assign address

listen – listen for clients

socket – make socket

bind – assign address

connect – connect to listening socket

accept – accept connection

Example client
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);

Example server
struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (sockaddr *) &sin, &len);

/* do something with cfd */

close (cfd);

}

Concurrent connections

• Servers must handle multiple clients concurrently
- Read or write of a socket connected to slow client can block

- Overlap network latency with CPU, transmission, disk I/O

- Keep disk queues full when server accesses disk

• Can use one process per client: accept, fork, close
- High overhead, cannot share state between clients

• Can use threads for concurrency
- Data races and deadlock make programming tricky

- Must allocate one stack per request

• Use non-blocking read/write calls
- Unusual programming model

Non-blocking I/O

• fcntl sets O NONBLOCK flag on descriptor
- In libasync, can call make async (fd);

• Non-blocking semantics of system calls:
- read immediately returns -1 with errno EAGAIN if no data

- write may not write all data, or may return EAGAIN

- connect may “fail” with EINPROGRESS (or may succeed, or
may fail with real error like ECONNREFUSED)

- accept may fail with EAGAIN if no pending connections

How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Asynchronous programming model

• Many non-blocking file descriptors in one process
- Wait for pending I/O events on file many descriptors

- Each event triggers some callback function

• Lab: libasync – supports event-driven model
- Register callbacks on file descriptors

- Call amain() – main select loop

- Add/delete callbacks from within callbacks

callback.h

• Problem: Need state from one callback to next

• wrap bundles a function with its arguments

callback<void, int>::ref errwrite = wrap (write, 2);

(*errwrite) ("hello", 5); // writes "hello" to stderr

• void fdcb(int fd, selop op, cb t cb);

registers callbacks on file descriptor fd
- op is selread or selwrite

- cb is void callback (no arguments), or NULL to clear

libasync example server
void doaccept (int lfd) {

sockaddr_in sin;

bzero (&sin, sizeof (sin));

socklen_t sinlen = sizeof (sin);

int cfd = accept (lfd, (sockaddr *) &sin, &sinlen);

if (cfd >= 0) { /* ... */ }

}

int main (int argc, char **argv) {

// ...

int lfd = inetsocket (SOCK_STREAM, your_port, INADDR_ANY);

if (lfd < 0) fatal << "socket: " << strerror (errno) << "\n";

if (listen (lfd, 5) < 0) fatal ("listen: %m\n");

fdcb (lfd, selread, wrap (doaccept, lfd));

amain ();

}

Remote procedure call

• Abstract away network in distributed programs
- Idea: Distributed programming looks like function call

- Reality: Can’t abstract away everything (e.g., failure)

• Next class: Sun RPC
- XDR defines structures that can be transmitted on the wire

- RPC is simple layer that sends arg. structs and gets returns

