Persistent (key, value) storage

e In programs, often use hash tables

- E.g., Buckets are an array of pointers, collision chaining

e For persistant data, minimize # disk accesses

- Traversing linked lists is particularly bad

e Thus, aggregate (key, value) pairs into blocks
- Should find data in expected O(1) block reads



Linear hashing

e Store (K, V) pairs in blocks
- When a block is full, split into two blocks

e Bitmap records which blocks have been split
If block 0 not split, just look in block 0
If block 0 not split, consider first bit of hashed key

Continue down key until you find an usplit block

If n bits considered & K 32 bits, data in block K >> (32 — n)

e Note: Makes use of sparse files



Extendible hashing

e Idea: Use flat directory to index blocks
- E.g., 00 — Blk00, 01 — BI1k01, 10 — Blk1, 11 — Bk,

- In example, Keys w. prefix 10 and 11 go to same block

e Advantages:
- Does not use sparse files (so can copy DB efficiently)
- Reuses space better if one blocks frees up and other fils

- If directory fits in memory, fast table lookup

e Disadvantages:

- Much bigger directory structure (2" full block pointers
where n is longest split prefix)



Dealing with large keys

e What happens if key doesn’t fit in block?

e Solution: Overflow blocks
- Can link from main block to overflow block

- Might allocate overflow blocks from a different file

o “Buddy-in-waiting” scheme uses same file

- In linear hashing, allocate overflow blocks at end of
generation (“split points”)

- Record how many overflow blocks allocated in file header



Buddy-in-waiting

Split Points
0 1 2 3
Overflow Pages
1 1/2 2/1 2/2 2/3
Overflow Addresses
Buckets Overflow Pages




PlkPIKPIK[P
thJthJth It
/VlﬂQ\\\\A\

PkPKPKP| PKPKPKP &~ -

thJthJth It thJthJthAT

I‘VI‘VI'VI' I'VI'VI'VI'

e Indexed data structure stores Keys & Values

- Keys must have an ordering defined on them

e Data is stored in blocks
- Each block (except possibly root) has [t — 1,2t — 1] keys
- Non-leaf block with n keys has n + 1 pointers to child nodes
- All leaf blocks are at the same depth



B-tree insertion

e Straw man: Search for appropriate leaf & insert

- If leaf is full (2¢ — 1 keys), split into two nodes

e Problem: When splitting, what if parent is full?

- Can’t insert new divider key in parent

e Solution: Pre-split nodes as you decend tree

- If you traverse internal node w. 2t — 1 keys, split into two
nodes of t — 1 keys.

- Insert median key of split node into parent

- If root had 2¢ — 1 nodes, add new level to the tree

e Thus, insert requires O(logn) time for n keys



B-tree deletion
o If key is in leaf, delete it

o If key in internal node
- Suck up last key of previous child or first of next child

- If both children have ¢t — 1 keys join them into one node
e Problem: May leave node with < ¢ — 1 keys

e Solution: Pre-join as you traverse

- Ensures all parents have at least ¢ keys

e Thus, delete has O(logn) time

o Note, sometimes people do lazy delete
- Sacrifice worst case behavior

- But better in common case tree doesn’t get much smaller



B-tree refinement

e B+-tree — increase branching factor
- All values stored at leaf nodes

- Linked list at leaf nodes so next constant time

e B*-tree — like B+ but keep nodes 2/3 full

e Prefix compression

- If keys alphabetically ordered, many will share prefix

e String B-trees — for good worst-case behavior
- Can handle humongous keys that don’t fit in blocks

- Patricia trie data structure in nodes allows only necessary
bits of keys to be compared



[AFS discussion]



Basic network security threats

e Packet sniffing
e Packet forgery (spoofed from address)
e DNS spoofing — wrong IP address for hostname

e Assume “bad guy” controls network
- Can read all your packets
- Can tamper with your packets

- Can inject arbitrary new packets



Old authentication systems

e Send password

- Ethernet sniffer collects everyone’s password

e Use IP address (.rhosts, NFS)

- Assume traffic from “privileged port” is root on host

- Attacker can still forge packets

e Use host name
- Worse than IP address (DNS insecurity)

e One-time passwords
- Attacker can hijack TCP connection

- If OTP derived from password, attacker can guess off-line



Keeping communications secret

e Encryption guarantees secrecy
- Block ciphers (like AES)
- Stream ciphers — block stream XORed with plaintext

- Attacker cannot recover plaintext from ciphertext w/o K

e Problem: Attacker can tamper with messages
- Stream ciphers — flip any bit
- Block ciphers in CBC mode - corrupt a block, flip bit in next



Message authentication codes

e Message authentication codes (MACs)
- Sender & receiver share secret key K
- On message m, MAC(K, m) — v

- Attacker cannot produce valid (m, v) without K

e To send message securely, append MAC
- Send {m, MAC(K,m)}, or encrypt {m, MAC(K, m)} k-
- Receiver of {m, v} checks v = MAC(K,m)}

e Problem: Replay — don’t believe previous {m, v}



The Kerberos authentication system

e Goal: Authentication in “open environment”

- Not all hardware under centralized control
(e.g., users have “root” on their workstations)

- Users require services from many different computers
(mail, printing, file service, etc.)

e Model: Central authority manages all resources

Effectivaly manages human-readable names

User names: dm, waldman, ...

Machine names: classl, class2, ...

Must be assigned a name to use the system



Kerberos principals

e Principal: Any entity that can make a statement
- Users and servers sending messages on network

- “Services” that might run on multiple servers
e Every kerberos principal has a key (password)

e Central key distribution server (KDC) knows all
keys

- Coordinates authentication between other principals



Kerberos protocol

e Goal: Mutually authenticated communication
- Two principals wish to communicate
- Principals know each other by KDC-assigned name
- Kerberos establishes shared secret between the two

- Can use shared secret to encrypt or MAC communication
(but most services don’t encrypt, none MAC)

e Approach: Leverage keys shared with KDC

- KDC has keys to communicate with any principal



Protocol detail

e To talk to server s, client c needs key & ticket:
- Session key: K . (randomly generated key KDC)

- Ticket: T' = {s, ¢, addr, expire, K; . } k.
(K is key s shares with KDC)

- Only server can decrypt T°

e Given ticket, client creates authenticator:
- Authenticator: T, {c, addr, time} x_
- Client must know K . to create authenticator

- T convinces server that K . was given to ¢

o “Kerberized” protocols begin with authenticator

- Replaces passwords, etc.



Getting tickets in Kerberos

e Upon login, user fetches “ticket-granting ticket”
-c—tiet (t is name of TG service)
-t —c{Kc.t,Ter = {s,t,addr, expire, K, .}k, } .
- Client decrypts with password (K. = SHA-1(pwd))

e To fetch ticket for server s
- ¢ —t:8,T.4,{c,addr, time} g _,

- t — C. {TS,C7 KS,C}Kc,t

e To achieve mutual authentication with server:
- ¢ — 8: T o, {c,addr, time} g,

- s —c {time + 1} g



Authentication in AFS

e User logs in, fetches kerberos ticket for AFS server
e Hands ticket and session key to file system

e Requests/replies accompanied by an authenticator

- Authenticator includes CRC checksum of packets
- Note: CRC is not a valid MAC!

e What about anonymous access to AFS servers?

- User w/o0 account may want universe-readable files



AFS permissions

e Each directory has ACL for all its files

- Precludes cross-directory links

e ACL lists principals and permissions

- Both “positive” and “negative” access lists

e Principals: Just kerberos names

- Extra principles, system:anyuser, system:authuser

e Permissions: rwlidak

- read, write, lookup, insert, delete, administer, lock



Kerberos inconvenience

e Large (e.g., university-wide) administrative realms
- University-wide administrators often on the critical path
- Departments can’t add users or set up new servers
- Can’t develop new services without central admins
- Can’t upgrade software/protocols without central admins

- Central admins have monopoly servers/services
(Can’t set up your own without a principal)

e Crossing administrative realms a pain

e Ticket expirations
- Must renew tickets every 12-23 hours

- Hard to have long-running backround jobs



Security issues with kerberos

e Spoofing local login

e KDC vulnerability

e Kinit could act as oracle

e Replay attacks

o Off-line password guessing

e Can’t securely change compromised password



