
Persistent 〈key, value〉 storage

• In programs, often use hash tables
- E.g., Buckets are an array of pointers, collision chaining

• For persistant data, minimize # disk accesses
- Traversing linked lists is particularly bad

• Thus, aggregate 〈key, value〉 pairs into blocks
- Should find data in expected O(1) block reads



Linear hashing

• Store 〈K, V 〉 pairs in blocks
- When a block is full, split into two blocks

• Bitmap records which blocks have been split
- If block 0 not split, just look in block 0

- If block 0 not split, consider first bit of hashed key

- Continue down key until you find an usplit block

- If n bits considered & K 32 bits, data in block K >> (32−n)

• Note: Makes use of sparse files



Extendible hashing

• Idea: Use flat directory to index blocks
- E.g., 00 → Blk00, 01 → Blk01, 10 → Blk1, 11 → Blk1,

- In example, Keys w. prefix 10 and 11 go to same block

• Advantages:
- Does not use sparse files (so can copy DB efficiently)

- Reuses space better if one blocks frees up and other fils

- If directory fits in memory, fast table lookup

• Disadvantages:
- Much bigger directory structure (2n full block pointers

where n is longest split prefix)



Dealing with large keys

• What happens if key doesn’t fit in block?

• Solution: Overflow blocks
- Can link from main block to overflow block

- Might allocate overflow blocks from a different file

• “Buddy-in-waiting” scheme uses same file
- In linear hashing, allocate overflow blocks at end of

generation (“split points”)

- Record how many overflow blocks allocated in file header



Buddy-in-waiting

2/32/22/11/21/1

Overflow Addresses

Overflow PagesBuckets

3210

Overflow Pages

Split Points



B-trees

t
r

p
t
r

p
t
r

p
t
r

K
V

K
V

K
V

p
t
r

p
t
r

p
t
r

p
t
r

K
V

K
V

K
V

p
t
r

p
t
r

p
t
r

p
t
r

K
V

K
V

K
V

p

• Indexed data structure stores Keys & Values
- Keys must have an ordering defined on them

• Data is stored in blocks
- Each block (except possibly root) has [t − 1, 2t − 1] keys

- Non-leaf block with n keys has n + 1 pointers to child nodes

- All leaf blocks are at the same depth



B-tree insertion

• Straw man: Search for appropriate leaf & insert
- If leaf is full (2t − 1 keys), split into two nodes

• Problem: When splitting, what if parent is full?
- Can’t insert new divider key in parent

• Solution: Pre-split nodes as you decend tree
- If you traverse internal node w. 2t − 1 keys, split into two

nodes of t − 1 keys.

- Insert median key of split node into parent

- If root had 2t − 1 nodes, add new level to the tree

• Thus, insert requires O(log n) time for n keys



B-tree deletion
• If key is in leaf, delete it

• If key in internal node
- Suck up last key of previous child or first of next child

- If both children have t − 1 keys join them into one node

• Problem: May leave node with < t − 1 keys

• Solution: Pre-join as you traverse
- Ensures all parents have at least t keys

• Thus, delete has O(log n) time

• Note, sometimes people do lazy delete
- Sacrifice worst case behavior

- But better in common case tree doesn’t get much smaller



B-tree refinement

• B+-tree – increase branching factor
- All values stored at leaf nodes

- Linked list at leaf nodes so next constant time

• B*-tree – like B+ but keep nodes 2/3 full

• Prefix compression
- If keys alphabetically ordered, many will share prefix

• String B-trees – for good worst-case behavior
- Can handle humongous keys that don’t fit in blocks

- Patricia trie data structure in nodes allows only necessary
bits of keys to be compared



[AFS discussion]



Basic network security threats

• Packet sniffing

• Packet forgery (spoofed from address)

• DNS spoofing – wrong IP address for hostname

• Assume “bad guy” controls network
- Can read all your packets

- Can tamper with your packets

- Can inject arbitrary new packets



Old authentication systems

• Send password
- Ethernet sniffer collects everyone’s password

• Use IP address (.rhosts, NFS)
- Assume traffic from “privileged port” is root on host

- Attacker can still forge packets

• Use host name
- Worse than IP address (DNS insecurity)

• One-time passwords
- Attacker can hijack TCP connection

- If OTP derived from password, attacker can guess off-line



Keeping communications secret

• Encryption guarantees secrecy
- Block ciphers (like AES)

- Stream ciphers – block stream XORed with plaintext

- Attacker cannot recover plaintext from ciphertext w/o K

• Problem: Attacker can tamper with messages
- Stream ciphers – flip any bit

- Block ciphers in CBC mode – corrupt a block, flip bit in next



Message authentication codes

• Message authentication codes (MACs)
- Sender & receiver share secret key K

- On message m, MAC(K, m) → v

- Attacker cannot produce valid 〈m, v〉 without K

• To send message securely, append MAC
- Send {m, MAC(K, m)}, or encrypt {m, MAC(K, m)}K′

- Receiver of {m, v} checks v
?
= MAC(K, m)}

• Problem: Replay – don’t believe previous {m, v}



The Kerberos authentication system

• Goal: Authentication in “open environment”
- Not all hardware under centralized control

(e.g., users have “root” on their workstations)

- Users require services from many different computers
(mail, printing, file service, etc.)

• Model: Central authority manages all resources
- Effectivaly manages human-readable names

- User names: dm, waldman, . . .

- Machine names: class1, class2, . . .

- Must be assigned a name to use the system



Kerberos principals

• Principal: Any entity that can make a statement
- Users and servers sending messages on network

- “Services” that might run on multiple servers

• Every kerberos principal has a key (password)

• Central key distribution server (KDC) knows all
keys

- Coordinates authentication between other principals



Kerberos protocol

• Goal: Mutually authenticated communication
- Two principals wish to communicate

- Principals know each other by KDC-assigned name

- Kerberos establishes shared secret between the two

- Can use shared secret to encrypt or MAC communication
(but most services don’t encrypt, none MAC)

• Approach: Leverage keys shared with KDC
- KDC has keys to communicate with any principal



Protocol detail

• To talk to server s, client c needs key & ticket:
- Session key: Ks,c (randomly generated key KDC)

- Ticket: T = {s, c, addr, expire, Ks,c}Ks

(KS is key s shares with KDC)

- Only server can decrypt T

• Given ticket, client creates authenticator:
- Authenticator: T, {c, addr, time}Ks,c

- Client must know Ks,c to create authenticator

- T convinces server that Ks,c was given to c

• “Kerberized” protocols begin with authenticator
- Replaces passwords, etc.



Getting tickets in Kerberos

• Upon login, user fetches “ticket-granting ticket”
- c → t: c, t (t is name of TG service)

- t → c: {Kc,t, Tc,t = {s, t, addr, expire, Ks,c}Kt
}Kc

- Client decrypts with password (Kc = SHA-1(pwd))

• To fetch ticket for server s

- c → t: s, Tc,t, {c, addr, time}Kc,t

- t → c: {Ts,c, Ks,c}Kc,t

• To achieve mutual authentication with server:
- c → s: Ts,c, {c, addr, time}Ks,c

- s → c: {time + 1}Ks,c



Authentication in AFS

• User logs in, fetches kerberos ticket for AFS server

• Hands ticket and session key to file system

• Requests/replies accompanied by an authenticator
- Authenticator includes CRC checksum of packets

- Note: CRC is not a valid MAC!

• What about anonymous access to AFS servers?
- User w/o account may want universe-readable files



AFS permissions

• Each directory has ACL for all its files
- Precludes cross-directory links

• ACL lists principals and permissions
- Both “positive” and “negative” access lists

• Principals: Just kerberos names
- Extra principles, system:anyuser, system:authuser

• Permissions: rwlidak
- read, write, lookup, insert, delete, administer, lock



Kerberos inconvenience

• Large (e.g., university-wide) administrative realms
- University-wide administrators often on the critical path

- Departments can’t add users or set up new servers

- Can’t develop new services without central admins

- Can’t upgrade software/protocols without central admins

- Central admins have monopoly servers/services
(Can’t set up your own without a principal)

• Crossing administrative realms a pain

• Ticket expirations
- Must renew tickets every 12–23 hours

- Hard to have long-running backround jobs



Security issues with kerberos

• Spoofing local login

• KDC vulnerability

• Kinit could act as oracle

• Replay attacks

• Off-line password guessing

• Can’t securely change compromised password


