Public key encryption

e Three randomized algorithms:
- Generate — G(1¥) — K, K1
- Encrypt - E(K,m) — {m}x
- Decrypt - D(K ', {m}g) — m

e Provides secrecy, like conventional encryption

- Can’t derive m from {m} i without knowing K —*

e Encryption key K can be made public
- Can’t derive K~ ! from K

- Everyone can use the same public key to encrypt messages
for one recipient.

Digital signatures

e Three (randomized) algorithms:
- Generate — G(1%) — K, K1
- Sign—-S (K~Y,m) — {m}x—
- Verify -V (K,{m}g-1,m) — {true, false}

e Provides integrity, like a MAC

- Cannot produce valid (m, {m} x-1) pair without K !

e Many keys support both signing & encryption
- But Encrypt/Decrypt and Sign/ Verify different algorithms!

Cost of cryptographic operations

Operation | msec
Encrypt 1.11
Decrypt 39.62
Sign 40.56
Verity 0.10

[1,280-bit Rabin-Williams keys on 550 MHz K6]

e Cost of public key algorithms significant
- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

e In contrast, symmetric algorithms must cheaper
- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN

Hybrid schemes

e Use public key to encrypt symmetric key

- Send message symmetrically encrypted: {msg} k., {Ks} ki,

e Use PK to negotiate secret session key
- E.g., Client sends server { K1, Ko, K3, K4} i,
- Client sends server: {m1, MAC(K5, m1)}k,
- Server sends client: {mqy, MAC(Ky4, m2)} k.,

e Often want mutual authentication (client & server)

- Or more complex, user(s), client, & server

Case study of successful system: SSH

e Before 1995: No secure remote login over Internet
- Cleartext passwords: sniffed on Ethernet
- s/key: TCP hijacking, snitfing & off-line password cracking
- IP-address-based .rhosts authentication: spoofable

- Kerberos: implementation vulnerable to spoofing, weak crypto,
no MAC, off-line password cracking, limited deployment

e Today: Widespread deployment of SSH
- Not perfect, but far more secure than what came before
- Supplanted old tools in many OS distributions

- Significant and widespread impact on security

How does SSH work?

e Similar interface to existing tools (like rlogin/rsh)

% ssh server -1 user

e Client & server exchange public session keys:
- § — C: {Kg (server pubkey), K; (temporary pubkey)}
- C — S: {{K_; (session key)} x, } ks

e Client checks K if it has talked to server before

e Subsequent traffic encrypted with i

Why did SSH succeed?

e Provided better functionality than alternatives

- 8-bit clean, sets DISPLAY, accepts passwords (unlike rsh)

e Had properties conducive to deployment

Simple to install and use

Peacefully coexisted with other remote login tools

Any client can connect to any server

Intuitive to understand given the notion of public keys

e Provided a highly composable abstraction
- Encrypted pipes usuful to applications
- Developers eagerly exploit SSH (CVS, rsync, rdist, .. .)

Limitations of SSH

e Doesn’t solve the file system security problem
- Many people require network file systems for their work

- Common protocols cannot easily be composed with SSH

e Fundamentally provides server authentication
- We also need content authenticatoin

- E.g., software distribution and upgrade: OS distributions
typically mirrored on untrusted servers

e Vulnerable to man-in-the-middle attacks

Man-in-the-middle attacks

[Client

[Attacker J

o Can’t trust K¢ received first time you talk to server
- Attacker might substitute his own key K 4
- Client connects to attacker (thinking it is server)
- Attacker connects to Server, passes traffic through

- E.g., terrible if sending credit card #s to merchant

SFS: A secure global file system

[File Server} Debian [FileServer} MIT

/[File Server} NYU

File Server} Home

NYU {F”e Sés]tem Internet

e Goals: Secure, easy to deploy (like SSH)

e A access any file system from anywhere

The security problem

e Secure client-server communications

- Solution: Use cryptographically secure channel

e Authenticate users to servers
- Servers know what classes of users to expect in advance

- Solution: Store users’ passwords or public keys

e Authenticate servers to clients
- Clients don’t know about servers in advance
- A user can potentially access any server in the world

- Solution: ?

Implications of man-in-the-middle attacks

FileSysem | _ -
[Client >[Flle Server}

Attacker J

e Attacker substitutes modified data for file

e User writes sensitive file to fake server

Server authentication

e Can be solved if you have server’s public key

- E.g., SSH secure once you have server’s Kg

e Issue boils down to key management
- How to get server’s public key?
- How to know the key is really server’s?

- How to give server key to file system?

e Problem: Key management has ever scaled to the
size of the Internet

Possible approaches to key management

e Put public keys in the phone book
- How do you know you have the real phone book?

- How is a program supposed to use phone book
www.phonebook.com? (are you talking to real web server)

e Exchange keys with people in person

o “Web of trust” — get keys from friends you trust

Hierarchy with local trust

e All machines in CS department know key for
central cs.nyu.edu server

e To get from cs.nyu.edu to mit.edu:
- cs.nyu.edu knows key for nyu.edu
- nyu.edu knows key for edu/root

- root knows key for mit.edu

e To get within cs.nyu.edu:

- No need to trust outside authorities

Limitations of previous systems

e Presume hypothetical cooperation of third parties

- Echo would have required Internic to manage keys

e Lack security across administrative boundaries

- AFS provides no security to unknown users

e Penalize the creation of new administrative realms

- Kerberos and AFS lead to inconveniently large realms

e Provide inappropriate security procedures or
guarantees

- SSL takes “one size fits all” approach to key management

SSL approach in detail

Certification
Authority

[1. PubK ey, $$$

2. Certificate

N 3. Connection request

Server

{ Client

J< 4. PubKey, Certificate

e Everybody trusts some certification authority
e Trade-off between ease of certification and security

e Precludes other models (passwords, Kerberos, ...)

Solution: Self-certifying File System

o Idea: Make file system security independent of
key management

e Specify server keys in self-certifying pathnames:
/sfs/@sfs.mit.edu,bzccbhder7cuc86kf6qswyx6yuemnw69/dm/

- File name itself certifies server’s public key

e Push key management out of the file system

- Problem reduces to finding correct file name

New approach to key management

e SFS provides security without key management
e Let multiple key management schemes coexist

e Make it easy to implement new schemes

Self-certifying pathnames managed with standard file utilities

SFS Agents let external programs manage keys

Secure symbolic links like web links but secure

SFS itself allows secure sharing key management data

User’s view of SFS

e New directory /sfs contains global files

e Subdirectories of /sfs are self-certifying
/sfs/Qsfs.mit.edu,bzccbhder7cuc86kf6gswyx6yuemnw69/

¢ Human-readable aliases give names to public keys
/sfs/nyu — /sfs/@sfs.nyu.edu,bzcc: - - nw69

e Ordinary naming under self-certifying pathnames
/sfs/@sfs.nyu.edu,bzcc: - nw69/usr/dm/mbox

System’s view of SFS

SFS server J

[SFS dlient J Secure Channedl

NFS

Kernel

e Client appears to system as NFS server for /sfs
e Interprets requests for self-certifying pathnames

o Agents interpret non-self-certifying pathnames

Self-certifying pathnames

o File systems lie under /sfs/QLocation,HostID
HostID = SHA-1 (Kg,...)

Location is DNS name or IP address

K g is the server’s public key

HostID is 20 bytes regardless of key length

Finding collisions of SHA-1 considered intractable

o HostID effectively equivalent to public key
- Client can ask server for key and check against HostID

- HostID suffices to connect securely to server

Self-certifying pathname details

HostID (specities public key)

sfs/@Qsfs.fs.net,eudcvvbwcnzscer98yndqgjpinn9ivepi / sfswww/index.html
yn=qjpJ p

"~ ~~

Location path on remote server

e Pathnames transparently created when referenced
- Anyone can create a server

- New servers instantly accessible from any client
o Client requires server to have HostID'’s private key

e Pathname implies nothing about name of server
- e.g., server may not actually be the real sfs.fs.net

- Need key management to produce the correct file name

Key management through symbolic links

e Symbolic links assign additional names to paths
- link — dest makes link another name for dest

- Always interpreted locally on a file system client
e Link human-readable to self-certifying pathnames

e Example: manual key distribution

- Install central server’s path in root directory of all clients:

/nyu — /sfs/@sfs.nyu.edu,bzccbhder7cuc86kfbqswyx6yuemnw69

- /nyu/README designates the pathname:

/sfs/@sfs.nyu.edu,bzccbhder7cuc86kf6qswyx6yuemnw69/README

“The file README on the server my administrator calls /nyu”

So how to do server key management?

o SES separates key management from FS security
- Effectively redefines “security” to avoid problem
- Traditional systems guarantee: “you are talking to server X”

- With SFS, you are talking to server with pubkey 0x42379. ..

e SES is clearly useful sometimes

- E.g., when you already have the key (in a symlink)

e But goal was for any client to talk to any server

- Still need a way to arrive at server public key (pathname)
starting from a human’s idea of the server

- This is why other systems all have key menagement built-in

Ways of getting server public keys

e Global certification authorities certify keys (SSL)
+ Works for on-line shopping, banking, etc.

— No authority/certification procedure suitable for everyone

e Realm administrators exchange keys (Kerberos)
+ Good for sharing files between large organizations

— Need an account/administrative relationship to get security

e Let individual users manage keys (SSH)
+ Anyone can run a server
+ Any client can connect to any server

— Attackers can impersonate servers

e Right answer: All of the above and more

Example: Certification authorities

Are simply SFS file systems

- Can be named by local symbolic links:

/verisign — /sfs/@sfs.verisign.com,r6ui9gwucpkz85uvb95cq9hdhpfbz4pe

- Name other file systems with symbolic links, e.g.

/verisign/NYU — /sfs/@sfs.nyu.edu,bzccbhder7cuc86kf6qswyx6yuemnw69

Have no special privileges or status

- Servers reachable from /verisign can name other servers
/verisign/NYU/cs might name server for cs.nyu.edu

Pathnames reflect trust relationships:

/verisign/NYU/README — “File README on the server Verisign calls NYU”

Read-only protocol keeps private key off-line

Example: Server knows password?

e SRP [Wu98] derives session key from a password

e Server proves its identity to user with password

- User then securely downloads pathname from server

/<2rsfskey add dm@scs.cs.nyu.edu \\\\

Passphrase for dm@scs.cs.nyu.edu/1280:

% ls -al /sfs/scs.cs.nyu.edu
lr--r--r-- 1 root sfs 512 May 28 04:16 /sfs/scs.cs.nyu.edu ->

\\gics.cs.nyu.edu,85xq6pznt4mgfvj4mb23x6b8adak55ue ,///

[sfskey also simultaneously handles user authentication.]

e Bootstrap security using links on scs.cs.nyu.edu

dactually some one-way function of password and server name

Why authenticate servers with passwords?

e The only practical solution for many situations
- I don’t remember my server’s public key or HostID
- No administrative relationship between client and NYU

- I'lack authority at NYU to buy certificates from Verisign

e Provides exactly the desired security guarantee
- The server at which I physically typed my password
- No need to trust any third parties

Dynamic server authentication

agent

Self—certifying
Pathname

.) :
Fil
[Flle SystenT Secure Chanmel { 1[Server}

e Each user runs an agent program to control /sfs

e Agents can create symbolic links in /sfs on-demand

- Agent maps names to self-certifying pathnames with
arbitrary external programs

Example: Getting HostIDs through SSL

Host . ssl

SSLeay)

Verisign—certified

Self-certifying SSL connection

Pathname

.) :
(Flle Systent Secure Channel >[Flle Serverj

e User references /sfs/Host.ssl

o Agent spawns SSL client to get HostID securely
o Agent links /sfs/Host.ss1l — Host:HostID

- User’s file access transparently redirected

Implementing key management is trivial!

e SSL example implemented in two lines
- Distribute pathnames from URL https://Host/sfspath.txt
- Map /sfs/Location .ssl to path retrieved with SSL:

[’A sfskey certprog -s ssl \ J

sh -c ’lynx -source https://$0/sfspath.txt’

e Don’t like SSL? How about Kerberos?
- Map /sfs/Location . krb to path retrieved with Kerberos:

% sfskey certprog -s krb \
sh -c ’rsh -x $0 sfskey hostid -’

- Similar command works for SSH

Certification paths

@ di rsearc@

g

[Flle System P, Secure Chanmd >[File Server}

e Combine multiple certification authorities

- Merge your own names with those assigned by third parties

e Make agent search multiple directories for links:
~/.sfs/known _hosts, /mit/links, /verisign, /thawte

e Dirsearch implementation easy given file system

Revocation

agent
Self—certifying Revocation [F”e Server}

Pathname Certificate

CFlesystem¥ ,[Attacker}

¢ Many links may exist to a compromised HostID

e Separate key revocation from key distribution

- Announce revocation with self-authenticating certificates

{“Path Revoke”, Location, Kg, ...} jo—1
S

- Let agents search for certificates on-the-fly

Distributing revocation certificates

e Use the file system!
- Publish revocation certificates as /verisign/revoked/HostID

- dirsearch fetches certificates, as with certification paths

e Benefits of separating revocation from certification:
- Revocation certificates require no out-of-band verification
- No authority necessary to submit a revocation certificate

- Revocation certificates as secure as best CA, not weakest

User authentication

| User
agent [authd]
I
|

Self-certifying |
Pathname \ :

\ /
.)
File-System Fil J
[! i Secure Channel >E lle Server

e Separate programs handle authentication

- User-authentication protocols opaque to file system proper

e Current authd has simple public-key protocol
- No penalty for accessing many administrative realms

- Use the file system to distribute user keys

Modular implementation

agent | authd |

File System 77z 7770 \
N riats) —>r SFS server
Z4% r;w ﬁ'_'efltT . Lor/w server |
— rloclient <. === -
| user) |
- SFSclient NFSL =
\ 1 - ’ Kernel AU
NFS “SFSserver |
Kerne (Ztiosenver

e Multiple file systems share SFS key management

e Solved many problems of user-level NFS servers
- Asynchronous 1/0O libraries for non-blocking applications

- New “automounter” techniques for mounting in place

Performance summary

e Goal: Performance comparable to NFS 3

e Three properties of SFS hurt performance
- Portable, user-level implementation
- Software encryption and authentication of session traffic

- Public key operations during session establishment

e Performance affected in three places
- Latency of RPCs to server increases
- Maximum data throughput decreases

- Mounting and user authentication require computation

e Better caching maintains application performance

Performance: Latency

800
600 —

@ 4004

—
Worse

200 —

NFS/U NFS/T SFS no crypt
Latency

e Hurt by user-level implementation, not crypto

e Mitigated by better protocol with fewer RPCs

Performance: Throughput

10

—_—
Better

MBytes / sec

NFS/U NFS/T SFS no crypt
Throughput

e Suffers mostly from cryptography

e Effects not visible on workloads with disk seeks

Performance: Application

200 —

Worse

50 —

0 -

Local NFS/U NFS/T SFS no crypt
Compile time for FreeBSD 3.3 GENERIC kernel
550 MHz Pentium III, 256 MBytes RAM, 100 Mbit ethernet

Performance: Mounting file systems

Operation | msec
Encrypt 1.11
Decrypt 39.62
Sign 40.56
Verity 0.10

Automounter msec
SFS mount 64
SES auth 49
SFS both 109
NFS amd 10-1,000

[1,280-bit Rabin-Williams keys]

(unfair)

¢ No one cares about mount times (amd suboptimal)

e Latency from public key protocols not noticable

Lessons learned

e Challenge of global security is key management

e Global public key management not the answer

- Even in a global system, key management often a local issue

e Don’t base system security on key management
...base key management on secure systems

e Strip clients of any notion of administrative realm

Conclusions

o SFS is first web-like system with global security
- Provides strong file system security

- Realistically deployable on a global scale
(anyone can create a server, any client can access any server)

e SES takes a new approach to key management
- Provide global security without any key management
- Let arbitrary key management schemes coexist externally

- Make it easy to implement new schemes

e New key management mechanisms

- Self-certifying pathnames, Agents, Secure links

e SES is its own key management infrastructure

Attacking SFS

e Inherent dangers of a global file system
- Attacker’s own files visible everywhere—facilitates exploits

- Symbolic links on bad servers can point to unexpected places

e SFS may further expose bugs in existing software
- Running NFS at all can cause security holes

- Bugs in NFS may let attackers crash machines (or worse)

e Attacks on SFS itself

- Cause resource exhaustion (e.g. use up all file descriptors)

- Cut network during non-idempotent operations

Connection protocol
/ sf s/ Location: HostID

AN

- ~ 1. Location, HostID, ... ™
o
SFS Client |2 1s. dialect, .. SFS Server
3. K¢
_ =\ J

Goal: A secure channel to the server for HostID
1. Client connects to server

2. Server returns its public key, Kg
- Client hashes K¢ and verifies it matches HostID

- Client passes connection to appropriate daemon for dialect

3. Client sends short-lived, anonymous public key, K

Session key negotiation

N 4 {zc, Yol k.
[SFS Cl entJ<5. (25, ys)} e ﬂSFS Server}
N
6. kcs = SHA-1(dialect, Kg, x5, Ko, zc,...)

ksc = SHA-1(dialect, Kg,ys, Ko, yc,---)

4. Client encrypts two random key halves with K
5. Server encrypts two random key halves with K
6. Client and server compute shared session keys

Important properties of protocol:
- Efficient: Minimizes server computation, overlaps with client

- Simple: No options, always secure

User authentication protocol

SessID = SHA—l(kcs, ksc, ..)
AuthID = SHA-1(SessID, Path, ...)

2. Ky, {SeqNo, AuthID} ;-

———————————
Self-Certifying

3. SeqNo,
Pathnime 1. SeqNo, SessID, Path, ... éutngt,. |
reaentiais
| B \
[S%u:um 7 Secure Channel >[SFS server}

1. Client notifies agent, assigns it SeqNo
2. Agent authorizes secure channel to represent user

3. authd informs file server of user’s credentials

