
Public key encryption

• Three randomized algorithms:
- Generate – G(1k) → K, K−1

- Encrypt – E(K, m) → {m}K

- Decrypt – D(K−1, {m}K) → m

• Provides secrecy, like conventional encryption
- Can’t derive m from {m}K without knowing K−1

• Encryption key K can be made public
- Can’t derive K−1 from K

- Everyone can use the same public key to encrypt messages
for one recipient.

Digital signatures

• Three (randomized) algorithms:
- Generate – G(1k) → K, K−1

- Sign – S
(
K−1, m

)
→ {m}K−1

- Verify – V (K, {m}K−1 , m) → {true, false}

• Provides integrity, like a MAC
- Cannot produce valid 〈m, {m}K−1〉 pair without K−1

• Many keys support both signing & encryption
- But Encrypt/Decrypt and Sign/Verify different algorithms!

Cost of cryptographic operations

Operation msec

Encrypt 1.11

Decrypt 39.62

Sign 40.56

Verify 0.10

[1,280-bit Rabin-Williams keys on 550 MHz K6]

• Cost of public key algorithms significant
- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

• In contrast, symmetric algorithms must cheaper
- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN

Hybrid schemes

• Use public key to encrypt symmetric key
- Send message symmetrically encrypted: {msg}KS

, {KS}KP

• Use PK to negotiate secret session key
- E.g., Client sends server {K1, K2, K3, K4}KP

- Client sends server: {m1, MAC(K2, m1)}K1

- Server sends client: {m2, MAC(K4, m2)}K3

• Often want mutual authentication (client & server)
- Or more complex, user(s), client, & server

Case study of successful system: SSH

• Before 1995: No secure remote login over Internet
- Cleartext passwords: sniffed on Ethernet

- s/key: TCP hijacking, sniffing & off-line password cracking

- IP-address-based .rhosts authentication: spoofable

- Kerberos: implementation vulnerable to spoofing, weak crypto,
no MAC, off-line password cracking, limited deployment

• Today: Widespread deployment of SSH
- Not perfect, but far more secure than what came before

- Supplanted old tools in many OS distributions

- Significant and widespread impact on security

How does SSH work?

• Similar interface to existing tools (like rlogin/rsh)
% ssh server -l user

• Client & server exchange public session keys:
- S → C: {KS (server pubkey), Kt (temporary pubkey)}

- C → S: {{Kcs (session key)}Kt
}KS

• Client checks KS if it has talked to server before

• Subsequent traffic encrypted with Kcs

Why did SSH succeed?

• Provided better functionality than alternatives
- 8-bit clean, sets DISPLAY, accepts passwords (unlike rsh)

• Had properties conducive to deployment
- Simple to install and use

- Peacefully coexisted with other remote login tools

- Any client can connect to any server

- Intuitive to understand given the notion of public keys

• Provided a highly composable abstraction
- Encrypted pipes usuful to applications

- Developers eagerly exploit SSH (CVS, rsync, rdist, . . .)

Limitations of SSH

• Doesn’t solve the file system security problem
- Many people require network file systems for their work

- Common protocols cannot easily be composed with SSH

• Fundamentally provides server authentication
- We also need content authenticatoin

- E.g., software distribution and upgrade: OS distributions
typically mirrored on untrusted servers

• Vulnerable to man-in-the-middle attacks

Man-in-the-middle attacks

Attacker

Client Server

• Can’t trust KS received first time you talk to server
- Attacker might substitute his own key KA

- Client connects to attacker (thinking it is server)

- Attacker connects to Server, passes traffic through

- E.g., terrible if sending credit card #s to merchant

SFS: A secure global file system

Client
File System

File ServerFile Server

File Server

File Server

MIT

Home

Internet

Debian

NYU

NYU

• Goals: Secure, easy to deploy (like SSH)

• A access any file system from anywhere

The security problem

• Secure client–server communications
- Solution: Use cryptographically secure channel

• Authenticate users to servers
- Servers know what classes of users to expect in advance

- Solution: Store users’ passwords or public keys

• Authenticate servers to clients
- Clients don’t know about servers in advance

- A user can potentially access any server in the world

- Solution: ?

Implications of man-in-the-middle attacks

Client
File System File Server

Attacker

• Attacker substitutes modified data for file

• User writes sensitive file to fake server

Server authentication

• Can be solved if you have server’s public key
- E.g., SSH secure once you have server’s KS

• Issue boils down to key management
- How to get server’s public key?

- How to know the key is really server’s?

- How to give server key to file system?

• Problem: Key management has ever scaled to the
size of the Internet

Possible approaches to key management

• Put public keys in the phone book
- How do you know you have the real phone book?

- How is a program supposed to use phone book
www.phonebook.com? (are you talking to real web server)

• Exchange keys with people in person

• “Web of trust” – get keys from friends you trust

Hierarchy with local trust

• All machines in CS department know key for
central cs.nyu.edu server

• To get from cs.nyu.edu to mit.edu:
- cs.nyu.edu knows key for nyu.edu

- nyu.edu knows key for edu/root

- root knows key for mit.edu

• To get within cs.nyu.edu:
- No need to trust outside authorities

Limitations of previous systems

• Presume hypothetical cooperation of third parties
- Echo would have required Internic to manage keys

• Lack security across administrative boundaries
- AFS provides no security to unknown users

• Penalize the creation of new administrative realms
- Kerberos and AFS lead to inconveniently large realms

• Provide inappropriate security procedures or
guarantees

- SSL takes “one size fits all” approach to key management

SSL approach in detail

1. PubKey, $$$

4. PubKey, Certificate

3. Connection request

2. Certificate

Client

Certification
Authority

Server

• Everybody trusts some certification authority

• Trade-off between ease of certification and security

• Precludes other models (passwords, Kerberos, . . .)

Solution: Self-certifying File System

• Idea: Make file system security independent of
key management

• Specify server keys in self-certifying pathnames:
/sfs/@sfs.mit.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69/dm/

- File name itself certifies server’s public key

• Push key management out of the file system
- Problem reduces to finding correct file name

New approach to key management

• SFS provides security without key management

• Let multiple key management schemes coexist

• Make it easy to implement new schemes
- Self-certifying pathnames managed with standard file utilities

- SFS Agents let external programs manage keys

- Secure symbolic links like web links but secure

- SFS itself allows secure sharing key management data

User’s view of SFS

• New directory /sfs contains global files

• Subdirectories of /sfs are self-certifying
/sfs/@sfs.mit.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69/

• Human-readable aliases give names to public keys
/sfs/nyu→ /sfs/@sfs.nyu.edu,bzcc · · · nw69

• Ordinary naming under self-certifying pathnames
/sfs/@sfs.nyu.edu,bzcc · · · nw69/usr/dm/mbox

System’s view of SFS

Kernel

SFS server

agent
agentuser

Secure Channel

NFS

SFS client

• Client appears to system as NFS server for /sfs

• Interprets requests for self-certifying pathnames

• Agents interpret non-self-certifying pathnames

Self-certifying pathnames

• File systems lie under /sfs/@Location,HostID

HostID = SHA-1 (KS, . . .)

- Location is DNS name or IP address

- KS is the server’s public key

- HostID is 20 bytes regardless of key length

- Finding collisions of SHA-1 considered intractable

• HostID effectively equivalent to public key
- Client can ask server for key and check against HostID

- HostID suffices to connect securely to server

Self-certifying pathname details

/sfs/@ sfs.fs.net
︸ ︷︷ ︸

Location

,

HostID (specifies public key)
︷ ︸︸ ︷

eu4cvv6wcnzscer98yn4qjpjnn9iv6pi / sfswww/index.html
︸ ︷︷ ︸

path on remote server

• Pathnames transparently created when referenced
- Anyone can create a server

- New servers instantly accessible from any client

• Client requires server to have HostID’s private key

• Pathname implies nothing about name of server
- e.g., server may not actually be the real sfs.fs.net

- Need key management to produce the correct file name

Key management through symbolic links

• Symbolic links assign additional names to paths
- link → dest makes link another name for dest

- Always interpreted locally on a file system client

• Link human-readable to self-certifying pathnames

• Example: manual key distribution
- Install central server’s path in root directory of all clients:
/nyu → /sfs/@sfs.nyu.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69

- /nyu/README designates the pathname:
/sfs/@sfs.nyu.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69/README

“The file README on the server my administrator calls /nyu”

So how to do server key management?

• SFS separates key management from FS security
- Effectively redefines “security” to avoid problem

- Traditional systems guarantee: “you are talking to server X”

- With SFS, you are talking to server with pubkey 0x42379. . .

• SFS is clearly useful sometimes
- E.g., when you already have the key (in a symlink)

• But goal was for any client to talk to any server
- Still need a way to arrive at server public key (pathname)

starting from a human’s idea of the server

- This is why other systems all have key menagement built-in

Ways of getting server public keys

• Global certification authorities certify keys (SSL)
+ Works for on-line shopping, banking, etc.

− No authority/certification procedure suitable for everyone

• Realm administrators exchange keys (Kerberos)
+ Good for sharing files between large organizations

− Need an account/administrative relationship to get security

• Let individual users manage keys (SSH)
+ Anyone can run a server

+ Any client can connect to any server

− Attackers can impersonate servers

• Right answer: All of the above and more

Example: Certification authorities

• Are simply SFS file systems
- Can be named by local symbolic links:
/verisign → /sfs/@sfs.verisign.com,r6ui9gwucpkz85uvb95cq9hdhpfbz4pe

- Name other file systems with symbolic links, e.g.
/verisign/NYU → /sfs/@sfs.nyu.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69

• Have no special privileges or status
- Servers reachable from /verisign can name other servers
/verisign/NYU/cs might name server for cs.nyu.edu

• Pathnames reflect trust relationships:
/verisign/NYU/README – “File README on the server Verisign calls NYU”

• Read-only protocol keeps private key off-line

Example: Server knows passworda

• SRP [Wu98] derives session key from a password

• Server proves its identity to user with password
- User then securely downloads pathname from server'

&

$

%

% sfskey add dm@scs.cs.nyu.edu

Passphrase for dm@scs.cs.nyu.edu/1280:

% ls -al /sfs/scs.cs.nyu.edu

lr--r--r-- 1 root sfs 512 May 28 04:16 /sfs/scs.cs.nyu.edu ->

@scs.cs.nyu.edu,85xq6pznt4mgfvj4mb23x6b8adak55ue

[sfskey also simultaneously handles user authentication.]

• Bootstrap security using links on scs.cs.nyu.edu

aactually some one-way function of password and server name

Why authenticate servers with passwords?

• The only practical solution for many situations
- I don’t remember my server’s public key or HostID

- No administrative relationship between client and NYU

- I lack authority at NYU to buy certificates from Verisign

• Provides exactly the desired security guarantee
- The server at which I physically typed my password

- No need to trust any third parties

Dynamic server authentication

Secure Channel

Self−certifying
Pathname

Pathname

User

agent

File ServerFile System

• Each user runs an agent program to control /sfs

• Agents can create symbolic links in /sfs on-demand
- Agent maps names to self-certifying pathnames with

arbitrary external programs

Example: Getting HostIDs through SSL

Secure Channel
File System

Self−certifying
Pathname

SSLeay

Verisign−certified

User

agent

SSL connection

File Server

Host.ssl

• User references /sfs/Host.ssl

• Agent spawns SSL client to get HostID securely

• Agent links /sfs/Host.ssl→ Host:HostID
- User’s file access transparently redirected

Implementing key management is trivial!

• SSL example implemented in two lines
- Distribute pathnames from URL https://Host/sfspath.txt

- Map /sfs/Location.ssl to path retrieved with SSL:�

�
	% sfskey certprog -s ssl \

sh -c ’lynx -source https://$0/sfspath.txt’

• Don’t like SSL? How about Kerberos?
- Map /sfs/Location.krb to path retrieved with Kerberos:�

�
	% sfskey certprog -s krb \

sh -c ’rsh -x $0 sfskey hostid -’

- Similar command works for SSH

Certification paths

User

agent

Secure Channel

Name

File System

dirsearch

File Server

• Combine multiple certification authorities
- Merge your own names with those assigned by third parties

• Make agent search multiple directories for links:
~/.sfs/known hosts, /mit/links, /verisign, /thawte

• Dirsearch implementation easy given file system

Revocation

Revocation
CertificatePathname

User

Self−certifying

File System

File Server

Attacker

agent

• Many links may exist to a compromised HostID

• Separate key revocation from key distribution
- Announce revocation with self-authenticating certificates

{“Path Revoke”,Location, KS , . . .}
K
−1

S

- Let agents search for certificates on-the-fly

Distributing revocation certificates

• Use the file system!
- Publish revocation certificates as /verisign/revoked/HostID

- dirsearch fetches certificates, as with certification paths

• Benefits of separating revocation from certification:
- Revocation certificates require no out-of-band verification

- No authority necessary to submit a revocation certificate

- Revocation certificates as secure as best CA, not weakest

User authentication

Self−certifying

File Server

Pathname

File System

User

agent

Secure Channel

authd

• Separate programs handle authentication
- User-authentication protocols opaque to file system proper

• Current authd has simple public-key protocol
- No penalty for accessing many administrative realms

- Use the file system to distribute user keys

Modular implementation

File System

Kernel

SFS server
r/w server

SFS server
r/o server

agent

NFS
user

SFS client

r/w client
r/o client

Kernel

authd

NFS

• Multiple file systems share SFS key management

• Solved many problems of user-level NFS servers
- Asynchronous I/O libraries for non-blocking applications

- New “automounter” techniques for mounting in place

Performance summary

• Goal: Performance comparable to NFS 3

• Three properties of SFS hurt performance
- Portable, user-level implementation

- Software encryption and authentication of session traffic

- Public key operations during session establishment

• Performance affected in three places
- Latency of RPCs to server increases

- Maximum data throughput decreases

- Mounting and user authentication require computation

• Better caching maintains application performance

Performance: Latency

NFS/U NFS/T SFS no crypt
0

200

400

600

800

µs
ec

Latency

W
or

se

• Hurt by user-level implementation, not crypto

• Mitigated by better protocol with fewer RPCs

Performance: Throughput

NFS/U NFS/T SFS no crypt
0

2

4

6

8

10

M
B

yt
es

 /
se

c

Throughput

B
et

te
r

• Suffers mostly from cryptography

• Effects not visible on workloads with disk seeks

Performance: Application

Local NFS/U NFS/T SFS no crypt
0

50

100

150

200

Se
co

nd
s

W
or

se

Compile time for FreeBSD 3.3 GENERIC kernel
550 MHz Pentium III, 256 MBytes RAM, 100 Mbit ethernet

Performance: Mounting file systems

Operation msec Automounter msec

Encrypt 1.11 SFS mount 64

Decrypt 39.62 SFS auth 49

Sign 40.56 SFS both 109

Verify 0.10 NFS amd 10–1,000 (unfair)

[1,280-bit Rabin-Williams keys]

• No one cares about mount times (amd suboptimal)

• Latency from public key protocols not noticable

Lessons learned

• Challenge of global security is key management

• Global public key management not the answer
- Even in a global system, key management often a local issue

• Don’t base system security on key management
. . . base key management on secure systems

• Strip clients of any notion of administrative realm

Conclusions

• SFS is first web-like system with global security
- Provides strong file system security

- Realistically deployable on a global scale
(anyone can create a server, any client can access any server)

• SFS takes a new approach to key management
- Provide global security without any key management

- Let arbitrary key management schemes coexist externally

- Make it easy to implement new schemes

• New key management mechanisms
- Self-certifying pathnames, Agents, Secure links

• SFS is its own key management infrastructure

Attacking SFS

• Inherent dangers of a global file system
- Attacker’s own files visible everywhere—facilitates exploits

- Symbolic links on bad servers can point to unexpected places

• SFS may further expose bugs in existing software
- Running NFS at all can cause security holes

- Bugs in NFS may let attackers crash machines (or worse)

• Attacks on SFS itself
- Cause resource exhaustion (e.g. use up all file descriptors)

- Cut network during non-idempotent operations

Connection protocol
/sfs/Location:HostID

SFS Client SFS Server

1. Location, HostID, . . .

3. KC

2. KS , dialect, . . .

Goal: A secure channel to the server for HostID

1. Client connects to server

2. Server returns its public key, KS

- Client hashes KS and verifies it matches HostID

- Client passes connection to appropriate daemon for dialect

3. Client sends short-lived, anonymous public key, KC

Session key negotiation

SFS Client SFS Server

4. {xC , yC}KS

5. {xS , yS}KC

6. kCS = SHA-1(dialect, KS , xS , KC , xC , . . .)

kSC = SHA-1(dialect, KS , yS , KC , yC , . . .)

4. Client encrypts two random key halves with KS

5. Server encrypts two random key halves with KC

6. Client and server compute shared session keys

Important properties of protocol:

- Efficient: Minimizes server computation, overlaps with client

- Simple: No options, always secure

User authentication protocol

SessID = SHA-1(kCS , kSC , . . .)

AuthID = SHA-1(SessID, Path, . . .)

SFS server

Pathname
Self−Certifying

agent

SFS client

authd

Secure Channel

2. KU , {SeqNo, AuthID}
K
−1

U

3. SeqNo,
AuthID,
Credentials

1. SeqNo, SessID, Path, . . .

1. Client notifies agent, assigns it SeqNo

2. Agent authorizes secure channel to represent user

3. authd informs file server of user’s credentials

