
Why disk arrays?

• CPUs improving faster than disks
- disks will increasingly be bottleneck

• New applications (audio/video) require big files
(motivation for XFS)

• Disk arrays - make one logical disk out of many
physical disks

• More disks results in two benefits
- Higher data transfer rates on large data accesses

- Higher I/O rates on small data accesses

Reliability implications of arrays

• JBOD array with 100 disks is 100 times more likely to fail!
- Each disk 200,000 hours MTBF → array 2,000 hours (3 months)

[approximately – double counts two disks failing]

• Use redundancy to improve reliability
- But makes writes slower, since redundant info must be updated

- Raises issues of consistency in the face of power failures

Disk array basics

• Data striping - balances load across disks

• Redundancy - improve reliability

• Many different schemes, depending on
- granularity of data interleaving

- fine grained → high transfer rates for all requests
- course grained → allow parallel small requests to different disks

- method in which redundant information computed & distributed

RAID 0

• Nonredundant storage (JBOD - just a bunch of disks)
- E.g., Stripe sequential 128K logical regions to different disk

• Offers best possible write performance
(only one write per write)

• Offers best possible storage efficiency (no redundancy)

• Offers good read performance

• Use if speed more important that reliability
(scientific computing)

RAID 1

• Mirrored storage – Each block stored on two disks

• Writing slower (twice as many operations)

• Storage efficiency 1/2 optimal

• Small reads better than other scheme
- can read on disk with shortest seek

RAID 2

• Use Hamming codes, like ECC memory
- Multiply data by generator matrix G = (I A)

G =









1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 0









D = (d1 d2 d3 d4)

E = G × D =























d1

d2

d3

d4

d1 + d3 + d4

d1 + d2 + d4

d1 + d2 + d3























hamming codes (continued)

• Decode by multiplying by H = (AT I)

H =





1 0 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 0 0 0 1





H × E = (d1 d2 d3 d4 0 0 0)

• Can recover any two missing bits

• Can even recover from one incorrect bit!
- If one extra bit is 1, it is wrong

- If two extra bits are 1, d2, d3, or d4 is wrong

- If all 3 extra bits are 1, d1 is wrong

Properties of RAID 2

• Small reads about like RAID 0
- Though more contention for data disks

• Writes must update multiple parity disks

• Storage more efficient than RAID 1
(uses more than half of disks)

• Recovers from errors (RAID 1 assumes fail-stop)
- Is this overkill?

- Most disks are fail-stop

RAID 3

• Bit interleaved parity

• Assume fail stop disks, add one parity disk

D = (d1 d2 d3 d4)

E = (d1 d2 d3 d4 d1 + d2 + d3 + d4)

• Any read touches all data disks

• Any write touches all data disks plus parity disk

RAID 4

• Block-interleaved parity

• Interleave data in blocks instead of bits

• Reads smaller than striping unit can access only
one disk

• Writes must update data and compute and update
parity block

- Small writes require two reads plus two writes

- Heavy contention for parity disk (all writes touch it)

RAID 5

• Block-interleaved distributed parity
- Distribute parity uniformly over all the disks

- Want to access disks sequentially when sequentially
accessing logical blocks:

0 1 2 3 p0

5 6 7 p1 4

10 11 p2 8 9

15 p3 12 13 14

p4 16 17 18 19

• Better load balancing than RAID 4

• Small writes still require read-modify-write

RAID 6

• P+Q Redundancy (rarely implemented)
- Have two parity blocks instead of one

- With Reed-Solomon codes, can lose any two blocks

• Now must read-modify-write two parity blocks
plus data

RAID Summary

RAID
level SmRd SmWr BigRd BigWr Space

0 1 1 1 1 1

1 1 1/2 1 1/2 1/2

3 1/G 1/G (G-1)/G (G-1)/G (G-1)/G

5 1 max(1/G, 1/4) 1 (G-1)/G (G-1)/G

6 1 max(1/G, 1/6) 1 (G-2)/G (G-2)/G

• RAID 4 is strictly inferior to RAID 5

• RAID 2 inferior to RAID 5 for fail-stop disks

• RAID 1 is just RAID 5 with parity group size G=2

• RAID 3 is just like RAID 5 with a very small stripe unit

When/how do disks fail?

• Disks can fail very early in their lifetimes
(manufacturing errors)

• Also tend to fail late in their lifetimes
(when disk wears out)

• Systematic manufacturing defect can make entire
batch of disks fail early

- Beware disks with consecutive serial numbers!

• Environmental factors can kill a bunch of disks
(air conditioning failure)

• Disks can fail when a bad block is read Bad block
may exist for a while before being detected

Dealing with failures
• Basic idea:

- Add new disk

- Reconstruct failed disk’s state on new disk

• Must store metadata information during recovery
- Which disks are failed?

- How much of failed disk has been reconstructed?

• System crashes become very serious in
conjunction with disk failure

- Parity may be inconsistent (particularly bad for P+Q)

- You could lose a block other than the one you were writing

- MUST log in NVRAM enough info to recover parity

- Makes software-only implementation of RAID risky

Maximizing availability

• Want to keep operating after failure

• Demand reconstruction
- Assumes spare disk immediately (or already) installed

- Reconstruct blocks as accessed

- Background thread reconstructs all blocks

• Parity sparing
- Replaces parity block with reconstructed data block

- Need extra metadata to keep track of this

Unrecoverable RAID failures

• Double disk failures (or tripple, if P+Q
redundancy)

• System crash followed by disk failure

• Disk failure, then read and discover bad block
during reconstruction

RAID improvements

• Parity logging
- Log difference of old and new parity blocks

- Delay updating actual parity

- Further writes may save you from a read

• Declustered parity
- Many parity groups, spread over many disks

• Parity sparing
- Use spare disks to improve performance by spreading load

Tuning RAID

• What is optimal size of data stripe in RAID 0 disk array?
√

(PX(L − 1)Z)/N

- P - average positioning time

- X - disk transfer rate

- L - concurrency of workload

- Z - request size

- N - size of array in disks

• What about in RAID 5?
- Reads - similar to RAID 0

- Writes - optimal is a factor of 4 smaller than for reads (for 16 disks)

- Seems to vary WITH #disks, while reads vary inversely!

• Conclusion: Very workload dependent!

