Why disk arrays?

e CPUs improving faster than disks

- disks will increasingly be bottleneck

e New applications (audio/video) require big files
(motivation for XFS)

e Disk arrays - make one logical disk out of many
physical disks

e More disks results in two benefits
- Higher data transfer rates on large data accesses

- Higher I/O rates on small data accesses



Reliability implications of arrays

e JBOD array with 100 disks is 100 times more likely to fail!

- Each disk 200,000 hours MTBF — array 2,000 hours (3 months)
[approximately — double counts two disks failing]

e Use redundancy to improve reliability
- But makes writes slower, since redundant info must be updated

- Raises issues of consistency in the face of power failures



Disk array basics

e Data striping - balances load across disks
¢ Redundancy - improve reliability

e Many different schemes, depending on

- granularity of data interleaving

- fine grained — high transfer rates for all requests
- course grained — allow parallel small requests to different disks

- method in which redundant information computed & distributed



RAID 0

e Nonredundant storage (JBOD - just a bunch of disks)
- E.g., Stripe sequential 128K logical regions to different disk

e Offers best possible write performance
(only one write per write)

e Offers best possible storage efficiency (no redundancy)
o Offers good read performance

e Use if speed more important that reliability
(scientific computing)



RAID 1

e Mirrored storage — Each block stored on two disks
o Writing slower (twice as many operations)
e Storage efficiency 1/2 optimal

e Small reads better than other scheme

- can read on disk with shortest seek



RAID 2

e Use Hamming codes, like ECC memory

- Multiply data by generator matrix G = (I A)

1 0

0 1
G =

0 O

0 O
D = (di ds
EFE = GxD=

o R O O

0 1 1 1
0 0 1 1
0 1 0 1
1 1 1 0
ds dy)
dq \
da
ds3
dy
dy + ds + dy
di + do 4 dy

d1+d2+d3)



hamming codes (continued)

e Decode by multiplying by H = (A" 1)
1 0 1 1 1 0 0
H = 1 1 0 1 0 1 0
1 1 1 0 0 0 1
HxFE = (dl dg d3 d4 0 O 0)

e Can recover any two missing bits

e Can even recover from one incorrect bit!
- If one extra bit is 1, it is wrong
- If two extra bits are 1, ds, d3, or d4 is wrong

- If all 3 extra bits are 1, d; is wrong



Properties of RAID 2

e Small reads about like RAID 0

- Though more contention for data disks
e Writes must update multiple parity disks

e Storage more efficient than RAID 1
(uses more than half of disks)

e Recovers from errors (RAID 1 assumes fail-stop)
- Is this overkill?

- Most disks are fail-stop



RAID 3

e Bit interleaved parity
e Assume fail stop disks, add one parity disk
D = (dydsdsdy)
E = (didydsdydy+dy+ds+dy)
e Any read touches all data disks
e Any write touches all data disks plus parity disk



RAID 4

e Block-interleaved parity
e Interleave data in blocks instead of bits

e Reads smaller than striping unit can access only
one disk

o Writes must update data and compute and update
parity block
- Small writes require two reads plus two writes

- Heavy contention for parity disk (all writes touch it)



RAID 5

e Block-interleaved distributed parity
- Distribute parity uniformly over all the disks

- Want to access disks sequentially when sequentially

accessing logical blocks:
0 1 2 3 Po

5 6 7 pp 4
10 11 py; 8 9
15 p3 12 13 14
ps 16 17 18 19

e Better load balancing than RAID 4

e Small writes still require read-modify-write



RAID 6

¢ P+Q Redundancy (rarely implemented)
- Have two parity blocks instead of one

- With Reed-Solomon codes, can lose any two blocks

e Now must read-modify-write two parity blocks
plus data



RAID Summary

I}é%gl) SmRd SmWr BigRd BigWr Space
0 1 1 1 1 1
1 1 1/2 1 1/2 1/2
3 1/G 1/G G-1)/G (G-1)/G (G-1)/G
5 1 max(1/G, 1/4) 1 (G-1)/G (G-1)/G
6 1 max(1/G, 1/6) 1 (G-2)/G (G-2)/G

e RAID 4 is strictly inferior to RAID 5

e RAID 2 inferior to RAID 5 for fail-stop disks

e RAID 1 is just RAID 5 with parity group size G=2

e RAID 3 is just like RAID 5 with a very small stripe unit



When/how do disks fail?

e Disks can fail very early in their lifetimes
(manufacturing errors)

e Also tend to fail late in their lifetimes
(when disk wears out)

e Systematic manufacturing defect can make entire
batch of disks fail early

- Beware disks with consecutive serial numbers!

e Environmental factors can kill a bunch of disks
(air conditioning failure)

e Disks can fail when a bad block is read Bad block
may exist for a while before being detected



Dealing with failures

e Basic idea:
- Add new disk

- Reconstruct failed disk’s state on new disk

e Must store metadata information during recovery
- Which disks are failed?

- How much of failed disk has been reconstructed?

e System crashes become very serious in
conjunction with disk failure
- Parity may be inconsistent (particularly bad for P+Q)
- You could lose a block other than the one you were writing
- MUST log in NVRAM enough info to recover parity
- Makes software-only implementation of RAID risky



Maximizing availability

e Want to keep operating after failure

¢ Demand reconstruction
- Assumes spare disk immediately (or already) installed
- Reconstruct blocks as accessed

- Background thread reconstructs all blocks

e Parity sparing
- Replaces parity block with reconstructed data block
- Need extra metadata to keep track of this



Unrecoverable RAID failures

e Double disk failures (or tripple, if P+Q
redundancy)

e System crash followed by disk failure

e Disk failure, then read and discover bad block
during reconstruction



RAID improvements

e Parity logging
- Log difference of old and new parity blocks
- Delay updating actual parity

- Further writes may save you from a read

e Declustered parity
- Many parity groups, spread over many disks
e Parity sparing

- Use spare disks to improve performance by spreading load



Tuning RAID

e What is optimal size of data stripe in RAID 0 disk array?
J(PX(L—-1)Z)/N

- P - average positioning time

- X - disk transfer rate
- L - concurrency of workload
- Z - request size

- N - size of array in disks

e What about in RAID 5?
- Reads - similar to RAID 0
- Writes - optimal is a factor of 4 smaller than for reads (for 16 disks)

- Seems to vary WITH #disks, while reads vary inversely!

e Conclusion: Very workload dependent!



