The RPC abstraction

e Procedure calls well-understood mechanism

- Transfer control and data on single computer

e Goal: Make distributed programming look same
- Code libraries provide APIs to access functionality

- Have servers export interfaces accessible through local APIs

e Implement RPC through request-response
protocol
- Procedure call generates network request to server

- Server return generates response



RPC Failure

e More failure modes than simple procedure calls
- Machine failures

- Communication failures
e RPCs can return “failure” instead of results

e What are possible outcomes of failure?

Procedure did not execute

Procedure executed once

Procedure executed multiple times

Procedure partially executed

e Generally desired semantics: at most once



Implementing at most once semantics

e Danger: Request message lost

- Client must retransmit requests when it gets no reply

e Danger: Reply message may be lost
- Client may retransmit previously executed request

- Okay if operations are idempotent, but many are not
(e.g., process order, charge customer, .. .)

- Server must keep “replay cache” to reply to already
executed requests

e Danger: Server takes too long to execute procedure
- Client will retransmit request already in progress

- Server must recognize duplicate—can reply “in progress”



Server crashes

e Danger: Server crashes and reply lost
- Can make replay cache persistent—slow

- Can hope reboot takes long enough for all clients to fail

e Danger: Server crashes during execution
- Can log enough to restart partial execution—slow and hard

- Can hope reboot takes long enough for all clients to fail

e Can use “cookies” to inform clients of crashes
- Server gives client cookie which is time of boot
- Client includes cookie with RPC

- After server crash, server will reject invalid cookie



Parmeter passing

e Different data representations
- Big/little endian
- Size of data types

e No shared memory
- No global variables
- How to pass pointers

- How to garbage-collect distributed objects

e How to pass unions



Interface Definition Languages

e Idea: Specify RPC call and return types in IDL

e Compile interface description with IDL compiler.
Output:

- Native language types (e.g., C/Java/C++ structs/classes)

- Code to marshal (serialize) native types into byte streams

- Stub routines on client to forward requests to server

e Stub routines handle communication details
- Helps maintain RPC transparency, but
- Still had to bind client to a particular server

- Still need to worry about failures



Intro to SUN RPC

e Simple, no-frills, widely-used RPC standard

Does not emulate pointer passing or distributed objects

Programs and procedures simply referenced by numbers

Client must know server—no automatic location

Portmap service maps program #s to TCP/UDP port #s
e IDL: XDR - eXternal Data Representation

- Compilers for multiple languages (C, java, C++)



Transport layer

e Transport layer transmits delimited RPC messages
- In theory, RPC is transport-independent

- In practice, RPC library must know certain properties
(e.g., Is transport connected? Is it reliable?)

e UDP transport: unconnected, unreliable
- Sends one UDP packet for each RPC request/response
- Each message has its own destination address

- Server needs replay cache

o TCP transport (simplified): connected, reliable
- Each message in stream prefixed by length

- RPC library does not retransmit or keep replay cache



Sun XDR

o “External Data Representation”
- Describes argument and result types:
struct message {
int opcode;
opaque cookiel[8];

string name<255>;

+;

- Types can be passed across the network

e Libasync rpcc compiles to C++
- Converts messages to native data structures
- Generates marshaling routines (struct < byte stream)

- Generates info for stub routines



Basic data types

e int var — 32-bit signed integer
- wire rep: big endian (0x11223344 — 0x11, 0x22, 0x33, 0x44)

- rpccrep: int32_t var

e hyper var — 64-bit signed integer
- wire rep: big endian
- rpccrep: int64_t var
e unsigned 1int var,unsigned hyper var

- wire rep: same as signed

- rpccrep: u_int32_t var,u_int64_t var



More basic types

e void — No data
- wire rep: 0 bytes of data

e enum {name = constant,...}—enumeration
- wire rep: Same as int

- IpCC rep: enum

e bool var —boolean
- both reps: As if enum bool {FALSE = 0, TRUE = 1} var



Opaque data

e opaque var [n] —n bytes of opaque data

- wire rep: n bytes of data, 0-padded to multiple of 4
opaque v[5] — v[0],v[1],v([2],v[3],v[4],0,0,0

- I'pcCrep: rpc_opaque<n> var

var[i]: char & —ithbyte

var.size (): size_t—number of bytes (i.e. n)
var.base (): char *—address of first byte
var.lim (): char * —one pastlast



Variable length opaque data

e opaque var<n> — 0-n bytes of opaque data

- wire rep: 4-byte data size in big endian format, followed by

n bytes of data, 0-padded to multiple of 4

- rpcc rep: rpc_bytes<n> var

var.setsize (size_t n) — set size to n (destructive)
var[i]: char & - ith byte

var.size (): size_t—number of bytes

var.base (): char *—address of first byte
var.lim (): char * —one past last

e opaque var<> - arbitrary length opaque data

- wire rep: same

- rpcc rep: rpc_bytes<RPC_INFINITY> var



Strings

e string var<n> — string of up to n bytes
- wire rep: just like opaque var<n>

- rpcc rep: rpc_str<n> behaves like str, except cannot be
NULL, cannot be longer than n bytes

e string var<> - arbitrary length string
- wire rep: same as string var<n>

- rpcc rep: same as string var<RPC_INFINITY>

e Note: Strings cannot contain 0-valued bytes
- Should be allowed by RFC
- Because of C string implementations, does not work

- rpcc preserves “broken” semantics of C applications



Arrays

e obj_t var[n] — Array of n obj_ts
- wire rep: n wire reps of obj_t in a row
- rpccrep: array<obj_t, n> var; as for opaque:
var[i], var.size (),var.base (),var.lim ()
e obj_t var<n>-0-n obj_ts

- wire rep: array size in big endian, followed by that many
wire reps of obj_t

- rpcc rep: rpc_vec<obj_t, n> var;var.setsize (n),

var[i], var.size (),var.base (),var.lim ()



Pointers

e obj_t *var —“optional” obj_t
- wire rep: same as obj_t var<1>: Either just 0, or 1 followed
by wire rep of obj_t
- rpcc rep: rpc_ptr<obj_t> var
- var.alloc () —makes var behave like obj t *

- var.clear () —makes var behave like NULL
- var = var2— Makes a copy of *var2 if non-NULL

e Pointers allow linked lists:

struct entry {
filename name;
entry *nextentry;

+;

e Not to be confused with network object pointers!



Structures
struct type {

type_A fieldA;
type_B fieldB;

+;

e wire rep: wire representation of each field in order

e rpcc rep: structure as defined



Discriminated unions

union type switch (simple_type which) {
case value_A:

type_A varA;

default:
void;

s
e simple type must be [unsigned] int, bool, or enum

e Wire representation: wire rep of which, followed
by wire rep of case selected by which.



Discriminated unions: rpcc representation

struct type {
simple_type which;
union {

union_entry<type_A> varA;

+;
+;

e void type::set_which (simple_type newwhich)
sets the value of the discriminant

e varA behaves like type A * if which == value A

e Otherwise, accessing varA causes core dump
(when using dmalloc)



RPC message format

enum msg_type { CALL = O, REPLY = 1 };
struct rpc_msg {
unsigned int xid;
union switch (msg_type mtype) {
case CALL:
call_body cbody;
case REPLY:
reply_body rbody;
} body;
¥

e 32-bit XID identifies each RPC

- Chosen by client, returned by server

- Server may base replay cache on XID



RPC call format

struct call_body {
unsigned int rpcvers; /* must always be 2 x/
unsigned int prog;
unsigned int vers,
unsigned int proc;
opaque_auth cred;
opaque_auth verf;

/* argument structure goes here */

+;

e Every call has a 32-bit program & version number
- E.g., NFS is program 100003, versions 2 & 3 in use

- Can implement multiple servers on same port

e Opaque auth is hook for authentication & security

- Credentials — who you are; Verifier — proof.



RPC reply format

enum reply_stat { MSG_ACCEPTED = O, MSG_DENIED = 1 };
union reply_body switch (reply_stat stat) {
case MSG_ACCEPTED:
accepted_reply areply;
case MSG_DENIED:
rejected_reply rreply;
} reply;

e Most calls generate “accepted replies”

- Includes many error conditions, too

e Authentication failures produce “rejected replies”



Accepted calls

struct accepted_reply {
opaque_auth verf;
union switch (accept_stat stat) {
case SUCCESS:
/* result structure goes here */
case PROG_MISMATCH:
struct { unsigned low; unsigned high; }
mismatch_info;
default:
/* PROG/PROC_UNAVAIL, GARBAGE_ARGS, SYSTEM_ERR,
void;
} reply_data;
¥



Rejected calls

enum reject_stat { RPC_MISMATCH = O, AUTH_ERROR = 1 }
union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:
struct {
unsigned int low;

unsigned int high;

} mismatch_info; /* means rpcvers != 2 x/
case AUTH_ERROR:
auth_stat stat; /* Authentication insufficient x*/

+;



RPC authentication

enum auth_flavor {
AUTH_NONE = O,
AUTH_SYS = 1, /* a.k.a. AUTH_UNIX x/
AUTH_SHORT = 2,
AUTH_DES = 3
s
struct opaque_auth {
auth_flavor flavor;
opaque body<400>;
s

e Opaque allows new types w/o changing RPC lib
- E.g., SFS adds AUTH_UINT=10, containing simple integer



AUTH _UNIX credential flavors

struct authsys_parms {
unsigned int time;
string machinename<255>;
unsigned int uid;
unsigned int gid;
unsigned int gids<16>;

+;
e Contains credentials of user on client machine

e Only useful if:
1. Server trusts client machine, and
2. Client and server have same UIDs/GIDs, and

3. Network between client and server is secure



Example: fetch and add server

struct fadd_arg {
string var<>;
int inc;

+;

union fadd_res switch (int error) {
case O:

int sum;
default:

void;

+;



RPC program definition

program FADD_PROG {
version FADD_VERS {
void FADDPROC_NULL (void) = O;
fadd_res FADDPROC_FADD (fadd_arg) = 1;
F =1
} = 300001;

e RPC library needs information for each call

- prog, vers, marshaling function for arg and result

e rpcc encapsulates all needed info in a struct

- Lower-case prog name, numeric version: fadd_prog-_1



Client code

fadd_arg arg; fadd_res res;

void getres (clnt_stat err) {
if (err) warn << "server: " << err << "\n"; // pretty-prints
else if (res.error) warn << "error #" << res.error << "\n";

else warn << "sum is " << *xres.sum << "\n";

void start () {
int fd;
/* ... connect fd to server, fill in arg ... */
ref<axprt> x = axprt_stream::alloc (fd);
ref<aclnt> ¢ = aclnt::alloc (x, fadd_prog_1);
c->call (FADDPROC_FADD, &arg, &res, wrap (getres));



Server code

ghash<str, int> table;
void dofadd (fadd_arg *arg, fad_res *res) {
int *valp = tablelarg->var];
if (valp) {
res.set_error (0);
*res—>sum = *valp += arg->inc;
} else
res.set_error (NOTFOUND) ;

ptr<asrv> s;
void getnewclient (int fd) {
s = asrv::alloc (axprt_stream::alloc (fd), fadd_prog_1,
wrap (dispatch));



Server dispatch code

void dispatch (svccb *sbp) {
if (!sbp) { s = NULL; return; }
switch (sbp->proc () {
case FADDPROC_NULL:
sbp->reply (NULL);
break;
case FADDPROC_FADD:
fadd_res res;
dofadd (sbp->template getarg<fadd_arg> (), &res);
sbp->reply (&res);
break;
default:
sbp->reject (PROC_UNAVAIL);
+



