
Fast and Secure Distributed
Read-Only File System

Kevin Fu, M. Frans Kaashoek
MIT Laboratory for Computer Science

David Mazières
NYU Computer Science Department

http://www.fs.net/



Much read-only data improperly trusted

• People install/upgrade software over the Internet
- No guarantee you are talking to the right host

- No guarantee server has not been compromised

- No guarantee you can trust a mirror site’s owner

• Central servers configure/upgrade machines
- sup, anonymous rsync, AFS read-only—all insecure

• People base financial decisions on public data
- Stock quotes, financial news



Why people avoid security

• Performance
- Public-key cryptography can cripple throughput (e.g. SSL)

• Scalability and reliability
- Widespread replication essential for popular data

- The more replicas, the less they can be trusted

• Convenience
- Most users will skip optional verification steps

- Often hard to understand precise security guarantees



Example: PGP-sign data off-line

• Advantages:
- Compromising server does not circumvent PGP security

- Data can be replicated on untrusted servers

• Not general purpose

• Most users will ignore signatures

• Requires continued attention of user
- Was file signed by authoritative key?

- Is a signed file the latest version?

- Does signed contents of file match file name?

- Were two separately signed files published together?



Solution: SFS read-only file system

• Convenience: Use the file system interface
- Publish any data

- Access it from any application

• Scalability: Separate publishing from distribution
- Off-line publisher produces signed database

- On-line servers/replicas completely untrusted

• Intrinsic security: Nothing for user to do
- Every file system has a public key (specified in name)

- Client automatically verifies integrity of files



SFSRO Architecture

[CDN]

sfsrodb

file system

private key SFS
client

Netscape
RPM

Client

Publisher
untrusted

server untrusted
replica

untrusted
replica

• Publisher stores files in replicated database

• Clients verify files without trusting servers



Cryptographic primitives

• Digital signatures
- Client knows server public key in advance

- When server signs data, client can verify integrity

- Cost: ∼24 msec to sign, ∼80 µsec to verify

- If server signs multiple versions, must ensure freshness

• Collision-resistant hashes (Computationally
infeasible to find x 6= y, H(x) = H(y))

- Server hashes data securely, transmits hash to client

- Client hashes untrusted copy, compares to trusted hash

- Cost: 15+ MBytes/sec to hash



Example: Publishing 2 blocks of data

dataH(data)
H(data)

Index

version
expiration

signature
data

• Digitally sign version & hashes of blocks
- Can verify one block without having the other

- Two blocks must come from same version of file

• Generalize technique to an entire file system



Traditional FS data structures

. . .

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr

• In database arbitrary key can replace disk location



Read-only data structures

. . .

data

data

data

data

name ...

contents

directory

...

RO-inode

...

indirect
block

H(data)
H(data)

H(inode)

...

...
...

H(dbl. ind.)
H(ind. blk.)

...
H(data)
H(data)

metadata

• Index all data & metadata with cryptographic hash



The SFSRO protocol

• CONNECT () – Initiate SFSRO protocol

• GETFSINFO () – Get signed hash of root directory

• GETDATA (hash) – Get block with hash value

• All data interpreted entirely by client
- Server need know nothing about file system structure

- Makes server fast and simple (< 400 lines of code)



Example: File Read
/sfs/sfs.nyu.edu:bzcc5hder7cuc86kf6qswyx6yuemnw69/README

pub key

ServerClient

CONNECT

...

GETFSINFO

GETDATA

GETDATA

root inode

README contents

{root, vers.}K−1



Incremental replication

• Replicas need transfer only modified data

• pulldb utility incrementally updates a replica
- Uses SFSRO protocol to traverse file system

- Stores all hashes/values encountered in new database

- Avoids transferring any hashes already in old database

- Unchanged directories automatically pruned from transfer

• Makes short signature durations practical



Application: RedHat distribution

• Publish ftp.redhat.com via SFSRO
- Push out new signature every 24 hours

• Advantages:
- Volunteer mirror sites need no longer be trusted

- Install from file system, not URL (easier to browse)

- Secure automatic upgrade becomes a simple script

- Can revoke/update flawed packages quickly

- File names securely bound to contents

- Easy for users to understand security properties



Application: Software distribution

• Distribute open-source software via SFSRO
- Users can compile directly from the distribution

• Benchmark: Compile emacs-20.6 from source code
- 550 MHz Pentium IIIs, 256 MBytes RAM, FreeBSD 3.3

- Warm server cache, cold client cache



Performance: Emacs compile

0

20

40

60

80

C
om

pi
le

 t
im

e 
(s

ec
on

ds
)

L
ocal

U
D

P

T
C

P

R
W

R
O

R
O

N
V

NFSv3 SFS File Systems



Scalability: Emacs compile

1 10 100

Number of clients 

0

2

4

6

8

10

Se
rv

er
 t

hr
ou

gh
pu

t 
(M

by
te

/s
)



Application: Certificate authorities

• SFS specifies public keys of servers in file names:
/sfs/sfs.nyu.edu:bzcc5hder7cuc86kf6qswyx6yuemnw69

• Symbolic links hide public keys from users:
/verisign → /sfs/sfs.verisign.com:r6ui9gw· · ·pfbz4pe

• SFSRO can serve name-to-key bindings:
/verisign/nyu → /sfs/sfs.nyu.edu:bzcc5hd· · ·uemnw69

• Better revocation than traditional CAs
- Signature can realistically expire in hours, not months

- Cannot revert one certificate without reverting them all



Scalability: Certificate downloads

HTTP SSL SFSRO SFSRW
0

500

1000

1500

C
er

ti
fi

ca
te

s/
s

/a
/a/b/c/d

1493

11

1012

 38

1448

11

526

 38



Conclusions

• Public read-only data needs integrity guarantees.

• Cannot realistically sacrifice performance,
scalability, or convenience to get those guarantees.

• SFSRO achieves integrity without sacrifice
- Off-line publishing has cost independent of server load

- Dirt-simple server offloads cryptographic costs to clients

- File system is the most convenient/universal interface


