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Much read-only data improperly trusted

e People install/upgrade software over the Internet
- No guarantee you are talking to the right host
- No guarantee server has not been compromised

- No guarantee you can trust a mirror site’s owner

e Central servers configure/upgrade machines

- sup, anonymous rsync, AFS read-only—all insecure

e People base financial decisions on public data

- Stock quotes, financial news



Why people avoid security

e Performance

- Public-key cryptography can cripple throughput (e.g. SSL)
e Scalability and reliability

- Widespread replication essential for popular data

- The more replicas, the less they can be trusted

e Convenience
- Most users will skip optional verification steps

- Often hard to understand precise security guarantees



Example: PGP-sign data off-line

e Advantages:
- Compromising server does not circumvent PGP security

- Data can be replicated on untrusted servers
e Not general purpose
e Most users will ignore signatures

e Requires continued attention of user
- Was file signed by authoritative key?
- Is a signed file the latest version?
- Does signed contents of file match file name?

- Were two separately signed files published together?



Solution: SFS read-only file system

e Convenience: Use the file system interface
- Publish any data

- Access it from any application

e Scalability: Separate publishing from distribution
- Off-line publisher produces signed database

- On-line servers/replicas completely untrusted

e Intrinsic security: Nothing for user to do
- Every file system has a public key (specified in name)

- Client automatically verifies integrity of files



SFSRO Architecture
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e Publisher stores files in replicated database

e Clients verify files without trusting servers



Cryptographic primitives

e Digital signatures
- Client knows server public key in advance
- When server signs data, client can verity integrity
- Cost: ~24 msec to sign, ~80 usec to verify

- If server signs multiple versions, must ensure freshness

e Collision-resistant hashes (Computationally
infeasible to find = # y, H(x) = H(y))
- Server hashes data securely, transmits hash to client

- Client hashes untrusted copy, compares to trusted hash
- Cost: 15+ MBytes/sec to hash



Example: Publishing 2 blocks of data

Index
H(data) = data
H(data)
version \
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e Digitally sign version & hashes of blocks
- Can verify one block without having the other

- Two blocks must come from same version of file

e Generalize technique to an entire file system



Traditional FS data structures
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e In database arbitrary key can replace disk location



Read-only data structures
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e Index all data & metadata with cryptographic hash



The SFSRO protocol

e CONNECT () — Initiate SFSRO protocol
e GETFSINFO () — Get signed hash of root directory
o GETDATA (hash) — Get block with hash value

o All data interpreted entirely by client
- Server need know nothing about file system structure

- Makes server fast and simple (< 400 lines of code)



Example: File Read

/sfs/sfs.nyu.edu:bzccbhder7cuc86kfbqswyx6yuemnw69/README
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Incremental replication

e Replicas need transfer only modified data

o pulldb utility incrementally updates a replica
- Uses SFSRO protocol to traverse file system
- Stores all hashes/values encountered in new database
- Avoids transferring any hashes already in old database

- Unchanged directories automatically pruned from transfer

e Makes short signature durations practical



Application: RedHat distribution

e Publish ftp.redhat.com via SFSRO

- Push out new signature every 24 hours

e Advantages:

Volunteer mirror sites need no longer be trusted

Install from file system, not URL (easier to browse)

Secure automatic upgrade becomes a simple script

Can revoke/update flawed packages quickly

File names securely bound to contents

Easy for users to understand security properties



Application: Software distribution

e Distribute open-source software via SFSRO

- Users can compile directly from the distribution

e Benchmark: Compile emacs-20.6 from source code
- 550 MHz Pentium IIIs, 256 MBytes RAM, FreeBSD 3.3

- Warm server cache, cold client cache
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Server throughput (Mbyte/s)

Scalability: Emacs compile
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Application: Certificate authorities

e SES specifies public keys of servers in file names:

/sfs/sfs.nyu.edu:bzccbhder7cuc86kf6qswyx6yuemnw69

e Symbolic links hide public keys from users:

/verisign — /sfs/sfs.verisign.com:r6ui9gw- - -pfbzdpe

e SFSRO can serve name-to-key bindings:

/verisign/nyu — /sfs/sfs.nyu.edu:bzccbhd: - -uemnw69

o Better revocation than traditional CAs
- Signature can realistically expire in hours, not months

- Cannot revert one certificate without reverting them all
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Scalability: Certificate downloads
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Conclusions

e Public read-only data needs integrity guarantees.

e Cannot realistically sacrifice performance,
scalability, or convenience to get those guarantees.

e SFSRO achieves integrity without sacrifice
- Off-line publishing has cost independent of server load
- Dirt-simple server offloads cryptographic costs to clients

- File system is the most convenient/universal interface



