Fast and Secure Distributed

Read-Only File System

Kevin Fu, M. Frans Kaashoek
MIT Laboratory for Computer Science

David Mazieres
NYU Computer Science Department

http://www.fs.net/

Much read-only data improperly trusted

e People install/upgrade software over the Internet
- No guarantee you are talking to the right host
- No guarantee server has not been compromised

- No guarantee you can trust a mirror site’s owner

e Central servers configure/upgrade machines

- sup, anonymous rsync, AFS read-only—all insecure

e People base financial decisions on public data

- Stock quotes, financial news

Why people avoid security

e Performance

- Public-key cryptography can cripple throughput (e.g. SSL)
e Scalability and reliability

- Widespread replication essential for popular data

- The more replicas, the less they can be trusted

e Convenience
- Most users will skip optional verification steps

- Often hard to understand precise security guarantees

Example: PGP-sign data off-line

e Advantages:
- Compromising server does not circumvent PGP security

- Data can be replicated on untrusted servers
e Not general purpose
e Most users will ignore signatures

e Requires continued attention of user
- Was file signed by authoritative key?
- Is a signed file the latest version?
- Does signed contents of file match file name?

- Were two separately signed files published together?

Solution: SFS read-only file system

e Convenience: Use the file system interface
- Publish any data

- Access it from any application

e Scalability: Separate publishing from distribution
- Off-line publisher produces signed database

- On-line servers/replicas completely untrusted

e Intrinsic security: Nothing for user to do
- Every file system has a public key (specified in name)

- Client automatically verifies integrity of files

SFSRO Architecture

| {untrustedj
Publisher - server [untru.stedj
file system | - ’ replica
/
1 y Client
/
sfsrodb e
/ RPM
private key SFS
client

untrusted
replica

e Publisher stores files in replicated database

e Clients verify files without trusting servers

Cryptographic primitives

e Digital signatures
- Client knows server public key in advance
- When server signs data, client can verity integrity
- Cost: ~24 msec to sign, ~80 usec to verify

- If server signs multiple versions, must ensure freshness

e Collision-resistant hashes (Computationally
infeasible to find = # y, H(x) = H(y))
- Server hashes data securely, transmits hash to client

- Client hashes untrusted copy, compares to trusted hash
- Cost: 15+ MBytes/sec to hash

Example: Publishing 2 blocks of data

Index
H(data) = data
H(data)
version \
expiration data
signature

e Digitally sign version & hashes of blocks
- Can verify one block without having the other

- Two blocks must come from same version of file

e Generalize technique to an entire file system

Traditional FS data structures

inode contents
metadata data
directory ~ dataptr
! . ! data ptr
: : : : o data
| | ‘ indirect
) ..I??‘.I_n_s_ y / indirect ptr block :
IFUmMDber double indir \ data ptr
: : : : data ptr i data
data

e In database arbitrary key can replace disk location

Read-only data structures

RO-inode contents
metadata .
! ; ! H (data)
: : : : SR data
I I ' indirect
Hrgamg y / H (ind. blk.) block E
imode H (dbl. ind.) \ H (data)
| : : H(data) sdata
data

e Index all data & metadata with cryptographic hash

The SFSRO protocol

e CONNECT () — Initiate SFSRO protocol
e GETFSINFO () — Get signed hash of root directory
o GETDATA (hash) — Get block with hash value

o All data interpreted entirely by client
- Server need know nothing about file system structure

- Makes server fast and simple (< 400 lines of code)

Example: File Read

/sfs/sfs.nyu.edu:bzccbhder7cuc86kfbqswyx6yuemnw69/README

—— — — — — — ——— — — — —

\ CONNECT ; \

pub key _
GETFSINFO

{root, vers.} ;-1

a——

Client GETDATA - Server |

root inode

I

I

|

==

lo

|.
°

I

GETDATA
: README contents

S N A

N _ —_— — _ —_ = N e—m - —— -

Incremental replication

e Replicas need transfer only modified data

o pulldb utility incrementally updates a replica
- Uses SFSRO protocol to traverse file system
- Stores all hashes/values encountered in new database
- Avoids transferring any hashes already in old database

- Unchanged directories automatically pruned from transfer

e Makes short signature durations practical

Application: RedHat distribution

e Publish ftp.redhat.com via SFSRO

- Push out new signature every 24 hours

e Advantages:

Volunteer mirror sites need no longer be trusted

Install from file system, not URL (easier to browse)

Secure automatic upgrade becomes a simple script

Can revoke/update flawed packages quickly

File names securely bound to contents

Easy for users to understand security properties

Application: Software distribution

e Distribute open-source software via SFSRO

- Users can compile directly from the distribution

e Benchmark: Compile emacs-20.6 from source code
- 550 MHz Pentium IIIs, 256 MBytes RAM, FreeBSD 3.3

- Warm server cache, cold client cache

Compile time (seconds)

80 —

o))
o
I

LN
o
|

N
o
I

Performance: Emacs compile

ZNES
C%Zi

SFSFile Systems

Server throughput (Mbyte/s)

Scalability: Emacs compile

lll ! ! ! llllll
10 100

Number of clients

Application: Certificate authorities

e SES specifies public keys of servers in file names:

/sfs/sfs.nyu.edu:bzccbhder7cuc86kf6qswyx6yuemnw69

e Symbolic links hide public keys from users:

/verisign — /sfs/sfs.verisign.com:r6ui9gw- - -pfbzdpe

e SFSRO can serve name-to-key bindings:

/verisign/nyu — /sfs/sfs.nyu.edu:bzccbhd: - -uemnw69

o Better revocation than traditional CAs
- Signature can realistically expire in hours, not months

- Cannot revert one certificate without reverting them all

Certificates/s

Scalability: Certificate downloads

mEm /a
mmm /a/b/c/d
1000] 1012
| 526
500 —
0 11 11 B men
HTTP SsL SFSRO SESRW

Conclusions

e Public read-only data needs integrity guarantees.

e Cannot realistically sacrifice performance,
scalability, or convenience to get those guarantees.

e SFSRO achieves integrity without sacrifice
- Off-line publishing has cost independent of server load
- Dirt-simple server offloads cryptographic costs to clients

- File system is the most convenient/universal interface

