
Traditional network file system security

trusted
user’s client

untrusted
user’s client

untrusted
user’s client

untrusted
network

Trusted
server

• All communications mutually authenticated

• Server trusted to reflect only authorized modifications



The problem: Trusting the server

• People with server access shouldn’t have data access
- System administrators, contractors, server collocation sites,

data warehouses, web/file hosting servivces, . . .

- Network attackers often gain complete access to servers

• Anyone with server access can tamper with data

• Yet people expect fail-stop behavior from servers
- Server may crash; people will recover with backups

- No protection against unauthorized data modification

• No system has achieved anything like traditional
network FS semantics without trusting the storage.



The SUNDR file service

untrusted

user’s client
trusted untrusted

user’s client

user’s client
untrusted
network

server
Untrusted

• A provably secure file system protocol
- Secure whether or not the server obeys the protocol

• A notion of file system consistency – fork consistency
- Server may fail, but only in readily detectable ways

• Implementation underway at NYU



SUNDR approach

• Give every user & server a public signature key
- Assume for talk that all parties know each others’ keys

(Can use the file system to manage the keys)

• Users sign state of file system on every operation
- Clients get state of file system from signed data

- Compare users’ signed data for consistency

- Assumes signatures are cheaper than network RTT
(Increasingly valid assumption as CPUs improve)



Threats from a malicious file server

0. Violation of Secrecy (not addressed in this talk)

1. Data forgery
- Attacker can substitute arbitrary data for a file

- Attacker can substitute random/specific data for a file

2. Data freshness attacks
- Attacker can roll back any file/block to a previous state

3. Forking attacks – complete partitioning of users
- If you see a user’s activity, all is well. However, server

might fork users, hiding their actions from each other

4. Denial of service – readily detectable

SUNDR Goal: Prevent 1–2, facilitate detection of 3



Related work: Cryptographic storage

• Encrypt all files on disk
- Attacker cannot read encrypted files

- Tampering with data produces garbage

• Does not ensure integrity or freshness
- Inserting garbage in files may be useful attack

- Attackers can roll back file contents to previous version

- Anyone with read access can forge a file’s contents

• Many files more widely readable than writable
- Challenge: Sharing files some can write and others can’t

- Need digital signatures for untrusted users to verify files



Traditional file system semantics

• One often hears of “close-to-open consistency”
- User A writes and closes a file f on one client

- User B subsequently opens f on another client

- B should read the contents written by A

- Close-to-open a misnomer – e.g., truncate w/o open/close

• Instead, let’s speak of fetch-modify consistency.
- Fetch – Client validates cached file or downloads new data

- Modify – One client makes new file data visible to others

- Can map system calls onto fetch & modify operations:
open → fetch (dir & file), write+close → modify,
truncate → modify, creat → fetch+modify, . . .

• View FS as clients performing fetch/modify ops



Ordering of file system operations

Definition. A set of fetch and modify operations is
ordered iff:

• Every op has wall-clock issue and completion times
(for model only – client & server don’t know times)

• Every op’s completion time is after its issue time

• There is a partial order, happens before (≺), such that:

– If O1 completed before O2 issued, then O1 ≺ O2

– ≺ orders any two operations by the same client

– ≺ orders any two conflicting operations
(i.e., a modification and any other op on same file)



Fetch-modify consistency

Definition. A set O of fetch & modify operations is
fetch-modify consistent iff O is ordered and any fetch
F of a file p reflects exactly the modifications of p that
happened before F .

Question: How close can we get to fetch-modify
consistency without trusting the server?

Answer: Fork consistency



Straw-man: Signed history

server

client 2client 1

fetch fetchmod fetchfetch mod fetch

• Server keeps complete log of all operations
- No concurrent operations (untrusted lock serializes all ops)

• Each log entry signed by principal performing op
- Signature covers current operation + entire past history



What can a malicious server do?
• Clients verify signatures on log entries

- Prevents data forgery attacks

• Clients check compatibility of signed histories
- Check any two histories by ensuring one is prefix of other

- Prevents data freshness attacks

• Consistency violations produce incompatible histories:

modfetch

fetch fetch fetch (sig by client 1)

(sig by client 2)

modfetch

fetch mod fetchfetch

• Detected if ever one client sees other’s later history



Fork consistency
• Consider the following set of histories:

- Maximal signed histories (that are not prefixes of others)

- The greatest common prefix of every two maximal histories

• Arrange histories as a graph
- Put an edge to each node from its longest prefix:

fetch

fetch mod fetch fetch

fetch mod fetchmodfetch fetch fetchmodfetchfetch

• Histories will form a tree
- Once forked, two users can never be joined (see same op)

- Thus, we call this property fork consistency



Fork consistency formalized

Definition. Let O be a set of completed operations.
A forking tree on O is a tree, each node of which has a
subset of O called a forking group, such that:

• Each forking group is fetch-modify consistent

• For any client c, at least one f.g. has all c’s operations

• Any op occurs in a highest node n + all descendents of n

• If O1 ≺ O2 in g1 and {O1, O2} ⊆ g2 then O1 ≺ O2 in g2

• ∀O∈ g, either O ∈ parent(g) or ∀O′∈ parent(g), O′ ≺ O

Definition. A file system is fork consistent iff it there
always exists a forking tree on all completed operations.



Implications of fork consistency

• Magnifies subtle consistency failures
- Two users see all of one another’s changes or none

- A fork attack partitions users into disjoint sets

- Users who communicate will easily notice problem

- Users who log into same client will easily notice problem

• Can trivially audit server retroactively
- If you see effects of operation X , guarantees file system was

consistent at least until X was performed

- Clients that communicate get fetch-modify consistency
E.g., two clients on an Ethernet when server “outsourced”

- Exchange information about a recently modified file

- Pre-arrange for “timestamp” box to update FS every minute



Implementing fork consistency

• Keeping complete file system history not practical
- Would need to garbage collect at some point

- Signing large histories would be expensive

• Instead, use a collision-resistant hash function H

(Intractable to find x 6= y, H(x) = H(y))
- All files writable by a user or group are specified by a short

(20-byte) i-handle

• SUNDR then takes a two-pronged approach:
- Block protocol verifies file data based on i-hendles

- Consistency protocol handles fetch/mod of i-handles



Compressing files into handles

i-hash

data

data

data

data

i-number

H(data)
H(data)

signature
H(index)

H(data)
H(data)

date/time

H(inode)

• Hash file data blocks

• Store hashes in indirect blocks & i-nodes

• Hash i-nodes to get i-hashes
- Given i-hash, can verify any block of file



Compressing i-hashes into i-handles

i-handle
inode

· · ·

· · ·

· · ·
...

H(T1)
H(T2)
H(T3) · · ·H(index)

...

...

i-table

i-number
H(inode)

• Build per-usr/grp i-table mapping i-number → i-hash
- Directories map filename → 〈user/group, i-number〉

• Hash tree compresses i-table into i-handle

• Each user/group digitally signs its own i-handle



Implementing a consistent file system

• Easy if clients can get latest i-handles

• To fetch a file:
- Fetch latest i-handle

- Retrieve any i-table, i-node, and data blocks not in cache

• To modify a file
- Store new blocks on server

- Sign new i-handle

- Make new i-handle available to other users



The SUNDR block protocol

• User and server authentication (straight-forward)

• STORE (block) – store block/bump per-user refcnt

• RETRIEVE (hash) – retrieve block with hash

• UNREF (hash) – decrement per-user refcnt

• UPDATE (certificate) – get all i-handles

• COMMIT (version info) – commit new i-handle

• Crash recovery functions



Implementing i-handle consistency

• Users assign increasing vers. nos. to their i-handles

• Idea: Users sign each other’s version numbers:
- Each user ui maintains a version structure:
{VRS, principal-ihandle, u1-n1 u2-n2 . . . ui-ni . . .}

- When updating its i-handle, a user bumps its own version
{VRS, ui-h, u1-n1 u2-n2 . . . ui-(ni + 1) . . .}

K
−1

ui

- When updating a group, a user bumps his & group’s no.:
{VRS, ui-h g-hg, u1-n1 u2-n2 . . . g-(ng + 1) . . . ui-(ni + 1) . . .}

K
−1

ui

• All signed version structures must be ordered
- Let y[u] be u’s version in y, or 0 if u not in y

- Say x ≤ y iff ∀u x[u] ≤ y[u]

- Two unordered structures indicate a forking attack



A “bare-bones” protocol

• Simplify the problem for bare-bones protocol:
- Still no concurrent updates (assume untrusted lock)

• Server maintains users’ latest signed i-handles in
version structure list or VSL.

• To fetch or modify a file, ui’s client makes 2 RPCs:
- UPDATE: Locks FS, downloads and sanity-checks VSL

- Calculates & signs new version structure:
{VRS, ui-h, u1-n1 u2-n2 . . . ui-ni . . .}

K
−1

ui

- COMMIT: Uploads version struct for new VSL, releases lock



Example

Users u and v both start at version 1:
yu = {VRS, u-hu, u, u-1 . . .}

K
−1

u

yv = {VRS, v-hv, v, u-1 v-1 . . .}
K
−1

v

u updates a file, and bumps version number to 2:
yu = {VRS, u-h′

u
, u-2 v-1 . . .}

K
−1

u

yv = {VRS, v-hv, u-1 v-1 . . .}
K
−1

v

v fetches the file, bumps its version number, reflects u-2:
yu = {VRS, u-h′

u
, u-2 v-1 . . .}

K
−1

u

yv = {VRS, v-hv, u-2 v-2 . . .}
K
−1

v



Attack
Suppose v hadn’t seen u’s latest i-handle h′, then:

yu = {VRS, u-h′

u
, u-2 v-1 . . .}

K
−1

u

yv = {VRS, v-hv, u-1 v-2 . . .}
K
−1

v

Now yu 6≤ yv and yv 6≤ yu. u and v can never see one
another’s updates again (partitioned). Forking tree:

u-1

u-2 v-1 u-1 v-2
u-1 v-1 u-1 v-1

u-1 v-1
u-1

u-1



Protocol correctness theorem

Theorem: A set of (completed) operations on a file
system is fork consistent if there exists a partial order <

on operations with the following two properties:

1. Every two distinct operations created by a single
client are ordered by <.

2. For any operation q, the set {o | o ≤ q} of all
operations (by any client) less than or equal to q is
totally ordered and fetch-modify consistent with <

as the happens-before relation.



Allowing concurrent updates

• Bad to lock FS between UPDATE & COMMIT

• Fix1: pre-declare operations in UPDATE certificates
{UPDATE, u, n + 1, H(yu), [〈usr/grp, inum, ihash〉, . . .]}

K
−1

ui

- Specify new version number, hash of old version struct

- Specify new i-hashes for any modified files (deltas for dirs)

• Fix2: reflect pending ops in version structures
- Fold any pending modifications into new i-handles

- List COMMITs not available at tine of signature

- Conflicting fetches won’t complete before COMMIT



Concurrent protocol

• Server keeps list of pending updates in pending
version list or PVL

- Contains signed update certificates

- Contains future version structs, unsigned & w/o i-handles
(Server can calculate vers structs as it determines order)

- Server replies to UPDATE with both VSL and PVL

• Concurrent clients must only wait if conflict:
- When opening an updated file, wait for commit

- Otherwise, can tell no conflict, so proceed immediately

- i-hashes let user recover if client crashes



Concurrent protocol details
• Version structures now reflect pending updates
{VRS, ui-h, u1-n1 . . . ui-ni . . . , u1-n1-h1 ui-ni-⊥ . . .}

K
−1

ui

- In addition to u-n pairs, v.s. has a u-n-h triple for each PVL entry

- u, n = user,version of a pending update

- h is hash of a version structure, or reserved “self” value ⊥

(u’s nth version structure always contains u-n-⊥)

• Define collision-resistant hash V for version structs
- E.g., delete i-handle, sort u-n/u-n-h data, run through H

• PVL contains future version structures
- Each entry is of the form 〈update cert, `〉

- ` is unsigned version structure to be, but i-handle = ⊥

- Clients compute each u-n-h triple with V (`)



Ordering concurrent version structures

Definition. We now say x ≤ y iff:

1. For all users u, x[u] ≤ y[u] (i.e., x ≤ y by old def.), and

2. For each user-version-hash triple u-n-h in y, one of
the following conditions must hold:

(a) x[u] < n (x happened before the pending
operation that u-n-h represents), or

(b) x also contains u-n-h (x happened after the
pending operation and reflects the fact the
operation was pending), or

(c) x contains u-n-⊥ and h = V (x) (x was the
pending operation).



Informal justification

• If x ≤ y:
- y must reflect any operations that were pending when x signed.

This follows from x[u] ≤ y[u] for all u, since pending
versions numbers are reflected in version structure.

- For operation o pending when y was signed:

Either x reflects o was pending, or x “happened before” o.

• If client saw operation o committed when it signed x,any
version structure greater than x must also be
signed by someone who saw o committed.



Future work

• Low bandwidth file system protocol
- Because SUNDR based on hashing, ideal for LBFS

technique [SOSP’01]

• High-performance log-structured server

• Combine with archival storage
- Venti [FAST’01] suggests keeping all unique hashed blocks

practical

• Untrusted peer-to-peer file cache
- Don’t trust server anyway

- Might as well get data from untrusted peer

• Data secrecy (cryptographic storage)



Summary

• Eliminate trust in network file servers
- Administrative issues shouldn’t drive security policy

- Make servers far more immune to network attacks

• Fork consistency makes server failures detectable
- Most server failures immediately detected

- Only complete partitioning of users may go undetected

- But users can easily check this in a variety of ways

• Fork consistency is practical w/o trusted server
- Two signatures + 1 1

2
round trips per FS operation


