Traditional network file system security

untrusted
{user’s client} Fl;rélr%tglgi
untrusted
| network
untrusted
[usgl’lssgfﬂmtJ user’s client}

e All communications mutually authenticated

e Server trusted to reflect only authorized modifications

The problem: Trusting the server

e People with server access shouldn’t have data access

- System administrators, contractors, server collocation sites,
data warehouses, web/file hosting servivces, ...

- Network attackers often gain complete access to servers
e Anyone with server access can tamper with data

e Yet people expect fail-stop behavior from servers
- Server may crash; people will recover with backups

- No protection against unauthorized data modification

e No system has achieved anything like traditional
network FS semantics without trusting the storage.

The SUNDR file service

untrusted
{user’s client} U‘;E;‘%,Zt,_.ed
untrusted
| network
untrusted
Lusérr"lssfﬁﬂ,m} user’s client}

e A provably secure file system protocol

- Secure whether or not the server obeys the protocol

e A notion of file system consistency — fork consistency

- Server may fail, but only in readily detectable ways

e Implementation underway at NYU

SUNDR approach

e Give every user & server a public signature key

- Assume for talk that all parties know each others’ keys
(Can use the file system to manage the keys)

e Users sign state of file system on every operation
- Clients get state of file system from signed data
- Compare users’ signed data for consistency

- Assumes signatures are cheaper than network RTT
(Increasingly valid assumption as CPUs improve)

Threats from a malicious file server

0. Violation of Secrecy (not addressed in this talk)
1. Data forgery

- Attacker can substitute arbitrary data for a file

- Attacker can substitute random/specific data for a file

2. Data freshness attacks

- Attacker can roll back any file/block to a previous state

3. Forking attacks — complete partitioning of users

- If you see a user’s activity, all is well. However, server
might fork users, hiding their actions from each other

4. Denial of service — readily detectable
SUNDR Goal: Prevent 1-2, facilitate detection of 3

Related work: Cryptographic storage

e Encrypt all files on disk
- Attacker cannot read encrypted files

- Tampering with data produces garbage

e Does not ensure integrity or freshness
- Inserting garbage in files may be useful attack
- Attackers can roll back file contents to previous version

- Anyone with read access can forge a file’s contents

e Many files more widely readable than writable
- Challenge: Sharing files some can write and others can’t

- Need digital signatures for untrusted users to verity files

Traditional file system semantics

e One often hears of “close-to-open consistency”
- User A writes and closes a file f on one client
- User B subsequently opens f on another client
- B should read the contents written by A

- Close-to-open a misnomer — e.g., truncate w/o open/close

e Instead, let’s speak of fetch-modify consistency.
- Fetch — Client validates cached file or downloads new data
- Modify — One client makes new file data visible to others

- Can map system calls onto fetch & modify operations:
open — fetch (dir & file), write+close — modity,
truncate — modify, creat — fetch+modity;, ...

e View FS as clients performing fetch/modify ops

Ordering of file system operations

Definition. A set of fetch and modify operations is
ordered iff:

e Every op has wall-clock issue and completion times
(for model only — client & server don’t know times)

e Every op’s completion time is after its issue time

e There is a partial order, happens before (<), such that:
— If Oy completed before O, issued, then O; < O
— < orders any two operations by the same client

— < orders any two conflicting operations
(i.e., a modification and any other op on same file)

Fetch-modify consistency

Definition. A set O of fetch & modify operations is
fetch-modify consistent iff O is ordered and any fetch
F' of a file p reflects exactly the modifications of p that
happened before F.

Question: How close can we get to fetch-modity
consistency without trusting the server?

Answer: Fork consistency

Straw-man: Signed history

server

L7

fetch | mod | fetch | fetch | mod | fetch | fetch

ANELRAVAN = d
.-

e Server keeps complete log of all operations

- No concurrent operations (untrusted lock serializes all ops)

e Each log entry signed by principal performing op

- Signature covers current operation + entire past history

What can a malicious server do?

e Clients verify signatures on log entries

- Prevents data forgery attacks

e Clients check compatibility of signed histories
- Check any two histories by ensuring one is prefix of other

- Prevents data freshness attacks

e Consistency violations produce incompatible histories:

fetch

mod

fetch

fetch

fetch

(sig by client 1)

fetch

mod

fetch

fetch

mod

fetch

(sig by client 2)

e Detected if ever one client sees other’s later history

Fork consistency

e Consider the following set of histories:

- Maximal signed histories (that are not prefixes of others)

- The greatest common prefix of every two maximal histories

e Arrange histories as a graph

- Put an edge to each node from its longest prefix:

fetch

mod

fetch | fetch

~

{ fetch

mod

fetch

fetch

fetch

|

fetch

mod

fetch

fetch

mod

fetch

e Histories will form a tree

- Once forked, two users can never be joined (see same op)

- Thus, we call this property fork consistency

Fork consistency formalized

Definition. Let O be a set of completed operations.
A forking tree on O is a tree, each node of which has a
subset of O called a forking group, such that:

e Each forking group is fetch-modify consistent

e For any client ¢, at least one f.g. has all ¢’s operations

e Any op occurs in a highest node n + all descendents of n
o If O < Osin g; and {01, 05} C g5 then O; < O5 in g5

e YO€ g, either O € parent(g) or VO'€ parent(g), O' < O

Definition. A file system is fork consistent iff it there
always exists a forking tree on all completed operations.

Implications of fork consistency

e Magnifies subtle consistency failures

Two users see all of one another’s changes or none

A fork attack partitions users into disjoint sets

Users who communicate will easily notice problem

Users who log into same client will easily notice problem

e Can trivially audit server retroactively

If you see effects of operation X, guarantees file system was
consistent at least until X was performed

Clients that communicate get fetch-modify consistency
E.g., two clients on an Ethernet when server “outsourced”

Exchange information about a recently modified file

Pre-arrange for “timestamp” box to update FS every minute

Implementing fork consistency

o Keeping complete file system history not practical
- Would need to garbage collect at some point

- Signing large histories would be expensive

e Instead, use a collision-resistant hash function H
(Intractable to find « # y, H(z) = H(y))

- All files writable by a user or group are specified by a short
(20-byte) i-handle
e SUNDR then takes a two-pronged approach:
- Block protocol verifies file data based on i-hendles

- Consistency protocol handles fetch/mod of i-handles

Compressing files into handles

i-hash

H(inode)<—

I-number

signature

data

-

—

data

data

\

H(data)
H(data)

/

—

data

e Hash file data blocks

e Store hashes in indirect blocks & i-nodes

e Hash i-nodes to get i-hashes

- Given i-hash, can verify any block of file

Compressing i-hashes into i-handles

i-table

i-handle

H (index)=——-

N\

i-number
H (inode)

inode

%ooo

\...

e Build per-usr/grp i-table mapping i-number — i-hash

- Directories map filename — (user/group, i-number)

e Hash tree compresses i-table into i-handle

e Each user/group digitally signs its own i-handle

Implementing a consistent file system

e Easy if clients can get latest i-handles

e To fetch a file:
- Fetch latest i-handle

- Retrieve any i-table, i-node, and data blocks not in cache

e To modify afile

- Store new blocks on server
- Sign new i-handle

- Make new i-handle available to other users

The SUNDR block protocol

e User and server authentication (straight-forward)
e STORE (block) — store block/bump per-user refcnt
e RETRIEVE (hash) — retrieve block with hash

e UNREF (hash) — decrement per-user refcnt

o UPDATE (certificate) — get all i-handles

o COMMIT (version info) — commit new i-handle

e Crash recovery functions

Implementing i-handle consistency

e Users assign increasing vers. nos. to their i-handles

e Idea: Users sign each other’s version numbers:

- Each user u; maintains a version structure:
{VRS, principal-ihandle, u;-nq ue-no ... u;-n; ...}

- When updating its i-handle, a user bumps its own version
{VRS, u;-h,u1-ny ug-ng ... u;-(n; +1) .. .}K;l
- When updating a group, a user bumps his &1group’s no.:
{VRS, u;-h g-hg,u1-n1 u2-na ... g-(ng+1) ... ui-(n; +1) .. .}K;il
e All signed version structures must be ordered
- Let y|u] be u’s version in y, or 0 if u not in y
- Say x < y iff Vu z[u] < ylu]

- Two unordered structures indicate a forking attack

A “bare-bones” protocol

e Simplify the problem for bare-bones protocol:

- Still no concurrent updates (assume untrusted lock)

e Server maintains users’ latest signed i-handles in
version structure list or VSL.

e To fetch or modify a file, u;’s client makes 2 RPCs:
- UPDATE: Locks FS, downloads and sanity-checks VSL

- Calculates & signs new version structure:

{VRS, Ui-h, U1-N1 Ua-No ... Ui-N; .. .}K—.l

- COMMIT: Uploads version struct for new VSL, releases lock

Example

Users u and v both start at version 1:

Yu
Yo

{VRS, u-hy,u,u-1 ...}

u

{VRS, v-hy,v,u-1v-1 ...} 1

v

u updates a file, and bumps version number to 2:

Yu
Yu

v fetches the file,

Yu
Yo

{VRS, u-hy, u-2 v-1 ...}
{VRS, v-hy,u-1v-1 ...}
bumps its version number, reflects u-2:
{VRS, u-hy, u-2 v-1 ...}
{VRS, v-hy,u-20-2 ...}

Attack

Suppose v hadn’t seen u’s latest i-handle 7/, then:
Yu = {VRS,u-hy,u-2v-1 ...},

Yo = {VRS,v-h,,u-1v-2 ... }p

Now vy, £ v, and vy, £ v,. v and v can never see one
another’s updates again (partitioned). Forking tree:

u-1
u-1 v-1

u-2 v-1 u-1 v-2

Protocol correctness theorem

Theorem: A set of (completed) operations on a file
system is fork consistent if there exists a partial order <
on operations with the following two properties:

1. Every two distinct operations created by a single
client are ordered by <.

2. For any operation ¢, the set {o | 0 < ¢} of all
operations (by any client) less than or equal to q is
totally ordered and fetch-modify consistent with <
as the happens-before relation.

Allowing concurrent updates

e Bad to lock FS between UPDATE & COMMIT

e Fix1: pre-declare operations in UPDATE certificates
{UPDATE, u,n + 1, H(y,), |(ust/grp,inum, ihash), .. .|}
- Specify new version number, hash of old version struct

- Specify new i-hashes for any modified files (deltas for dirs)

o Fix2: reflect pending ops in version structures
- Fold any pending modifications into new i-handles
- List COMMITs not available at tine of signature

- Conflicting fetches won’t complete before COMMIT

Concurrent protocol

e Server keeps list of pending updates in pending
version list or PVL

- Contains signed update certificates

- Contains future version structs, unsigned & w/o i-handles
(Server can calculate vers structs as it determines order)

- Server replies to UPDATE with both VSL and PVL

e Concurrent clients must only wait if conflict:
- When opening an updated file, wait for commit
- Otherwise, can tell no conflict, so proceed immediately

- i-hashes let user recover if client crashes

Concurrent protocol details

e Version structures now reflect pending updates
{VRS, u;-h,u1-ny ... u;=n; ..., u1-ni-hq u;-n;-1L .. ’}K,;.l
- In addition to u-n pairs, v.s. has a u-n-h triple for each PVL ezntry
- u,n = user,version of a pending update

- h is hash of a version structure, or reserved “self” value L
(u’s nth version structure always contains u-n-_1)

e Define collision-resistant hash V for version structs
- E.g., delete i-handle, sort u-n/u-n-h data, run through

e PVL contains future version structures
- Each entry is of the form (update cert, ¢)
- ¢ is unsigned version structure to be, but i-handle = L

- Clients compute each u-n-h triple with V' (¢)

Ordering concurrent version structures
Definition. We now say z < y iff:
1. For all users u, x[u] < y[u] (i.e., x < y by old def.), and
2. For each user-version-hash triple u-n-h in y, one of

the following conditions must hold:

(@) z|u] < n (x happened before the pending
operation that u-n-h represents), or

(b) z also contains u-n-h (z happened after the
pending operation and reflects the fact the
operation was pending), or

(c) x contains u-n-1L and h = V' (z) (z was the
pending operation).

Informal justification

o If x <y
- y must reflect any operations that were pending when x signed.

This follows from z|u| < y|u] for all u, since pending
versions numbers are reflected in version structure.

- For operation o pending when y was signed:

Either z reflects o was pending, or x “happened before” o.

o If client saw operation o committed when it sigged z,
version structure greater than x must also be
signed by someone who saw o committed.

Future work

e Low bandwidth file system protocol

- Because SUNDR based on hashing, ideal for LBFS
technique [SOSP’01]

e High-performance log-structured server

e Combine with archival storage

- Venti [FAST’01] suggests keeping all unique hashed blocks
practical

e Untrusted peer-to-peer file cache
- Don’t trust server anyway

- Might as well get data from untrusted peer

e Data secrecy (cryptographic storage)

Summary

e Eliminate trust in network file servers
- Administrative issues shouldn’t drive security policy

- Make servers far more immune to network attacks

e Fork consistency makes server failures detectable
- Most server failures immediately detected
- Only complete partitioning of users may go undetected

- But users can easily check this in a variety of ways

e Fork consistency is practical w/o trusted server

- Two signatures + 11 round trips per FS operation

