
Anatomy of a disk

• Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM

- Drives speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- Arms contain disk heads–one for each recording surface

- Heads read and write data to platters



Storage on a magnetic platter

• Platters divided into concentric tracks

• A stack of tracks of fixed radius is a cylinder

• Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

• Generally only one head active at a time
- Disks usually have one set of read-write circuitry

- Must worry about cross-talk between channels

- Hard to keep multiple heads exactly aligned



Disk positioning system

• Move head to specific track and keep it there
- Resist physical socks, imperfect tracks, etc.

• A seek consists of up to four phases:
- speedup–accelerate arm to max speed or half way point

- coast–at max speed (for long seeks)

- slowdown–stops arm near destination

- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)

• Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g



Seek details

• Head switches comparable to short seeks
- May also require head adjustment

- Settles take longer for writes than reads

• Disk keeps table of pivot motor power
- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- 500 ms recalibration every 25 min, bad for AV

• “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk,



Sectors
• Disk interface presents linear array of sectors

- Generally 512 bytes, written atomically

• Disk maps logical sector #s to physical sectors
- Zoning–puts more sectors on longer tracks

- Track skewing–sector 0 pos. varies for sequential I/O

- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector
mapping

- Larger logical sector # difference means larger seek

- Highly non-linear relationship (and depends on zone)

- OS has no info on rotational positions

- Can empirically build table to estimate times



Disk interface

• Controls hardware, mediates access

• Computer, disk often connected by bus (e.g., SCSI)
- Multiple devices may contentd for bus

- SCSI devices can disconnect during requests (+200 µs)

• Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information

• Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution

- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching
- But data not stable–not suitable for all requests



Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages
- Easy to implement

- Good fairness

• Disadvantages
- Cannot exploit request locality

- Increases average latency, decreasing throughput



Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages
- Easy to implement

- Good fairness

• Disadvantages
- Cannot exploit request locality

- Increases average latency, decreasing throughput



Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages
- Exploits locality of disk requests

- Higher throughput

• Disadvantages
- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF
- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Teff = Tpos −W · Twait



Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages
- Exploits locality of disk requests

- Higher throughput

• Disadvantages
- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF
- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Teff = Tpos −W · Twait



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages
- Takes advantage of locality

- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• Variant CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages
- Takes advantage of locality

- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix



VSCAN(r)

• Continuum between SPTF and SCAN
- Like SPTF, but slightly uses “effective” positioning time

If request in same direction as previous seek: Teff = Tpos

Otherwise: Teff = Tpos + r · Tmax

- when r = 0, get SPTF, when r = 1, get SCAN

- E.g., r = 0.2 works well

• Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set



Proportional scheduling

• Goal: Prioritize processes
- More important tasks should get more resources

- Fix a target ratio for resource utilization, e.g., 2:1

• Generally implementated using feedback
- Track difference between desired and actual usage

- Actual will fluctuate form desired over time

- Weight scheduler with difference

• Example: Background thread scans DB for
statistics

- Want more throughput for critical transactions



Review: The different Unix contexts

• User-level (processes that must be scheduled)

• Kernel “top half”
- System call, page fault handler, kernel-only process, etc.

• Software interrupt

• Device interrupt

• Timer interrupt (hardclock)

• Context switch code



Transitions between contexts

• User→ top half: syscall, page fault

• User/top half→ device/timer interrupt: hardware

• Top half→ user/context switch: return
- want resched variable causes scheduler to be invoked

- Can be set in device context—e.g., completed disk I/O
makes processs runable

• Top half→ context switch: sleep

• Context switch→ user/top half



Top/bottom half synchronization

• Top half kernel procedures can mask interrupts

int x = splhigh ();

/* ... */

splx (x);

• splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, . . .

• Masking interrupts in hardware can be expensive
- Optimistic implementation – set mask flag on splhigh,

check interrupted flag on splx



Process scheduling

• Goal: High throughput
- Minimize context switches to avoid wasting CPU, TLB

misses, cache misses, even page faults.

• Goal: Low latency
- People typing at editors want fast response

- Network services can be latency-bound, not CPU-bound

• BSD time quantum: 1/10 sec (since ∼1980)
- Empirically longest tolerable latency

- Computers now faster, but job queues also shorter



Multilevel feeedback queues (BSD)

• Every runnable proc. on one of 32 run queues
- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

• Idea: Favor interactive jobs that use less CPU



Process priority

• p nice – user-settable weighting factor

• p estcpu – per-process estimated CPU usage
- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p estcpu←

(

2 · load

2 · load + 1

)

p estcpu + p nice

• Run queue determined by p usrpri/4

p usrpri← 50 +

(

p estcpu

4

)

+ 2 · p nice

(value clipped if over 127)



Sleeping process increases priority

• p estcpu not updated while asleep
- Instead p slptime keeps count of sleep time

• When process becomes runnable

p estcpu←

(

2 · load

2 · load + 1

)p slptime

× p estcpu

- Approximates decay ignoring nice and past loads



Discussion

• 10 people running vi have 1 sec latency?

• How do UNIX signals work?
- What if signal arrives while process in “top half”

• Does UNIX kernel suffer from priority inversion?


