Anatomy of a disk

e Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM

- Drives speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions

e Disk arm assembly

Arms rotate around pivot, all move together

Pivot offers some resistance to linear shocks

Arms contain disk heads—one for each recording surface

Heads read and write data to platters

Storage on a magnetic platter

e Platters divided into concentric tracks
o A stack of tracks of fixed radius is a cylinder

e Heads record and sense data along cylinders

- Significant fractions of encoded stream for error correction

e Generally only one head active at a time
- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels

- Hard to keep multiple heads exactly aligned

Disk positioning system

e Move head to specific track and keep it there

- Resist physical socks, imperfect tracks, etc.

e A seek consists of up to four phases:

speedup—accelerate arm to max speed or half way point

coast—at max speed (for long seeks)

slowdown—stops arm near destination

settle—adjusts head to actual desired track
e Very short seeks dominated by settle time (~1 ms)

e Short (200-400 cyl.) seeks dominated by speedup

- Accelerations of 40g

Seek details

e Head switches comparable to short seeks
- May also require head adjustment

- Settles take longer for writes than reads

e Disk keeps table of pivot motor power

Maps seek distance to power and time

Disk interpolates over entries in table

Table set by periodic “thermal recalibration”

500 ms recalibration every 25 min, bad for AV

e “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk,

Sectors

e Disk interface presents linear array of sectors
- Generally 512 bytes, written atomically

e Disk maps logical sector #s to physical sectors
- Zoning—puts more sectors on longer tracks
- Track skewing—sector 0 pos. varies for sequential 1/O

- Sparing—tlawed sectors remapped elsewhere

e OS doesn’t know logical to physical sector
mapping
- Larger logical sector # difference means larger seek
- Highly non-linear relationship (and depends on zone)
- OS has no info on rotational positions

- Can empirically build table to estimate times

Disk interface

e Controls hardware, mediates access

o Computer, disk often connected by bus (e.g., SCSI)
- Multiple devices may contentd for bus

- SCSI devices can disconnect during requests (+200 us)

¢ Command queuing: Give disk multiple requests

- Disk can schedule them using rotational information

e Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution

- Cross track boundaries? Can’t stop a head-switch

e Some disks support write caching

- But data not stable-not suitable for all requests

Scheduling: First come first served (FCFS)

e Process disk requests in the order they are received

e Advantages

e Disadvantages

Scheduling: First come first served (FCFS)

e Process disk requests in the order they are received

e Advantages
- Easy to implement

- Good fairness

e Disadvantages
- Cannot exploit request locality

- Increases average latency, decreasing throughput

Shortest positioning time first (SPTF)

o Always pick request with shortest seek time

e Advantages

e Disadvantages

e Improvement

Shortest positioning time first (SPTF)

o Always pick request with shortest seek time

e Advantages
- Exploits locality of disk requests
- Higher throughput

e Disadvantages
- Starvation

- Don’t always know what request will be fastest

e Improvement: Aged SPTF
- Give older requests higher priority

- Adjust “etfective” seek time with weighting factor:
Teff — Tpos - W Twait

“Elevator” scheduling (SCAN)

e Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

e Advantages

e Disadvantages

e Variant

“Elevator” scheduling (SCAN)

e Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

e Advantages
- Takes advantage of locality

- Bounded waiting

e Disadvantages
- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

e CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

VSCAN(r)

e Continuum between SPTF and SCAN

- Like SPTF, but slightly uses “etffective” positioning time
If request in same direction as previous seek: Teg = T}os
Otherwise: Tog = Tpos + 7+ Trnax

- whenr =0, get SPTF, whenr =1, get SCAN
- E.g.,r =0.2 works well

e Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

Proportional scheduling

e Goal: Prioritize processes
- More important tasks should get more resources

- Fix a target ratio for resource utilization, e.g., 2:1

e Generally implementated using feedback
- Track difference between desired and actual usage
- Actual will fluctuate form desired over time

- Weight scheduler with difference

e Example: Background thread scans DB for
statistics

- Want more throughput for critical transactions

Review: The different Unix contexts

e User-level (processes that must be scheduled)

e Kernel “top halt”

- System call, page fault handler, kernel-only process, etc.
e Software interrupt
e Device interrupt
e Timer interrupt (hardclock)

e Context switch code

Transitions between contexts

e User — top half: syscall, page fault
e User/top half — device/timer interrupt: hardware

e Top half — user/context switch: return
- want_resched variable causes scheduler to be invoked

- Can be set in device context—e.g., completed disk I/O
makes processs runable

e Top half — context switch: sleep

e Context switch — user/top half

Top/bottom half synchronization

e Top half kernel procedures can mask interrupts

int x = splhigh ();
/* ... %/
splx (x);

e splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, ...

e Masking interrupts in hardware can be expensive

- Optimistic implementation — set mask flag on splhigh,
check interrupted flag on splx

Process scheduling

e Goal: High throughput

- Minimize context switches to avoid wasting CPU, TLB
misses, cache misses, even page faults.

e Goal: Low latency
- People typing at editors want fast response

- Network services can be latency-bound, not CPU-bound

e BSD time quantum: 1/10 sec (since ~1980)
- Empirically longest tolerable latency

- Computers now faster, but job queues also shorter

Multilevel feeedback queues (BSD)

e Every runnable proc. on one of 32 run queues
- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

e Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

e Idea: Favor interactive jobs that use less CPU

Process priority

e p nice — user-settable weighting factor

e p estcpu — per-process estimated CPU usage
- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

2 - load
2-load +1

p-estcpu «— () p-estcpu + p-nice

¢ Run queue determined by p_usrpri/4

, p-estcpu _
p-usrpri <« 50 + (1) + 2 -pmnice

(value clipped if over 127)

Sleeping process increases priority

e p_estcpu not updated while asleep

- Instead p_slptime keeps count of sleep time

e When process becomes runnable

9. load p-slptime
p-estcpu « 3 Toad = 1 X p_estcpu

- Approximates decay ignoring nice and past loads

Discussion

e 10 people running vi have 1 sec latency?

e How do UNIX signals work?

- What if signal arrives while process in “top half”

e Does UNIX kernel suffer from priority inversion?

