SCSI overview

e SCSI domain consists of devices and an SDS
- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices—e.g., SCSI bus

e SCSI-2 bus (SDS) connects up to 8 devices

- Controllers can have > 1 “logical units” (LUNSs)

- Typically, controller built into disk and 1 LUN /target, but
“bridge controllers” can manage multiple physical devices

e Each device can assume role of initiator or target
- Traditionally, host adapter was initiator, controller target
- Now controllers act as initiators (e.g., COPY command)

- Typical domain has 1 initiator, > 1 targets

SCSI requests

o A request is a command from initiator to target
- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

e Commands contain the following;:
- Task identifier—initiator ID, target ID, LUN, tag

Command descriptor block—e.g., read 10 blocks at pos. N

Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE

Optional: output/input buffer, sense data

Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . .

Executing SCSI commdns

e Each LUN maintains a queue of tasks
- Each task is DORMANT, BLOCKED, ENABLED, or ENDED
- SIMPLE tasks are dormant until no ordered /head of queue
- ORDERED tasks dormant until no HoQQ/more recent ordered

- HOQ tasks begin in enabled state

e Task management commands available to initiator

- Abort/terminate task, Reset target, etc.

e Linked commands
- Initiator can link commands, so no intervening tasks
- E.g., could use to implement atomic read-modify-write

- Intermediate commands return status byte INTERMEDIATE

SCSI exceptions and errors

o After error stop executing most SCSI commands
- Target returns with CHECK CONDITION status
- Initiator will eventually notice error

- Must read specifics w. REQUEST SENSE

e Prevents unwanted commands from executing

- E.g., initiator may not want to execute 2nd write if 1st fails

e Simplifies device implementation

- Don’t need to remember more than one error condition

e Same mechanism used to notify of media changes
- Le., ejected tape, changed CD-ROM

But back in the 80s...

e Disks spin at 3,600 RPM

- 17 ms/Rotation (vs. 4 ms on fastest disks today)
o Fixed # sectors/track (no zoning)
e Head switching free (?)

e Requests issued one at a time
- No caching in disks
- Head must pass over sector after getting a read

- By the time OS issues next request, too late for next sector

e Slower CPUs, memory

- Noticeable cost for block allocation algorithms

Original Unix file system

e Each FS breaks partition into three regions:
- Superblock (parameters of file system, free ptr)
- Inodes — type/mode/size + ptr to data blocks
- File and directory data blocks

e All data blocks 512 bytes
e Free blocks kept in a linked list

Inodes

inode contents
_metadata data
directory data ptr
! . ! data ptr
: : : : o data
i i ' indirect
pame / indirect ptr block :
I-number double indir \ data ptr ~
| : | : data ptr \ data
data

Problems with original FS

e IS never transfers more than 512 bytes/disk access

o After a while, allocation essentially random

- Requires a random seek every 512 bytes of file data
e Inodes far from both directory data and file data
e Within a directory, inodes not near each other

e Usability problems:
- File names limited to 14 characters

- No way to update file atomically & guarantee existence
after crash

Fast file system
e New block size must be at least 4K
- To avoid wasting space, use “fragments” for ends of files
e Cylinder groups avoid spread inodes around disk
e Bitmaps replace free list

e IS reserves space to improve allocation
- Tunable parameter, default 10%

- Only superuser can use space when over 90% full

FFS superblock

e Contains file system parameters
- Disk characteristics, block size, CG info

- Information necessary to get inode given i-number

o Replicated once per cylinder group
- At shifting offsets, so as to span multiple platters

- Contains magic to find replicas if 1st superblock dies

e Contains non-replicated “summary info”
- #blocks, fragments, inodes, directories in FS

- Flag stating if FS was cleanly unmounted

Cylinder groups

e Groups related inodes and their data

e Contains a number of inodes (set when FS created)

- Default one inode per 2K data
e Contains file and directory blocks

e Contains bookkeeping information
- Block map — bit map of available fragments

- Summary info within CG — # free inodes, blocks/frags, files,
directories

- # free blocks by rotational position (8 positions)

Inode allocation

e Allocate inodes in same CG as directory if possible

e New directories put in new cylinder groups
- Consider CGs with greater than average # free inodes

- Chose CG with smallest # directories

e Within CG, inodes allocated randomly (next free)
- Would like related inodes as close as possible

- OK, because one CG doesn’t have that many inodes

Fragment allocation

e Allocate space when user writes beyond end of file

e Want last block to be a fragment if not full-size
- If already a fragment, may contain space for write — done

- Else, must deallocate any existing fragment, allocate new
e If no appropriate free fragments, break full block

e Problem: Slow for many small writes
- (Partial) soution: new stat struct field st_blksize
- Tells applications file system block size

- stdio library can buffer this much data

Block allocation

e Try to optimize for sequential access
- If available, use rotationally close block in same cylinder
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing

- Otherwise, search all CGs for some free space

e Problem: Don’t want one file filling up whole CG

- Otherwise other inodes will have data far away

e Solution: Break big files over many CGs

- But large extents in each CGs, so sequential access doesn’t
require many seeks

Directories

e Inodes like files, but with different type bits
e Contents considered as 512-byte chunks

e Each chunk has direct structure(s) with:
- 32-bit inumber

- 16-bit size of directory entry
- 8-bit file type (NEW)
- 8-bit length of file name

e Coalesce when deleting

- If first direct in chunk deleted, set inumber = 0

e Periodically compact directory chunks

Updating FES for the 90s

e No longer want to assume rotational delay

- With disk caches, want data contiguously allocated

e Solution: Cluster writes
- FS delays writing a block back to get more blocks

- Accumulates blocks into 64K clusters, written at once

e Allocation of clusters similar to fragments/blocks
- Summary info

- Cluster map has one bit for each 64K if all free

e Also read in 64K chunks when doing read ahead

Dealing with crashes

e Suppose all data written asynchronously

e Delete/truncate a file, append to other file, crash
- New file may reuse block from old
- Old inode may not be updated
- Cross-allocation!

- Often inode with older mtime wrong, but can’t be sure

e Append to file, allocate indirect block, crash
- Inode points to indirect block

- But indirect block may contain garbage

Ordering of updates

e Must be careful about order of updates
- Write new inode to disk before directory entry
- Remove directory name before deallocating inode

- Write cleared inode to disk before updating CG free map

e Solution: Many metadata updates syncrhonous
- Of course, this hurts performance

- E.g., untar much slower than disk b/w

e Note: Cannot update buffers on the disk queue

Fixing corruption — fsck

e Summary info usually bad after crash

- Scan to check free block map, block/inode counts

e System may have corrupt inodes (not simple crash)
- Bad block numbers, cross-allocation, etc.

- Do sanity check, clear inodes with garbage

e Fields in inodes may be wrong

- Count number of directory entries to verity link count, if no
entries but count # 0, move to lost+found

- Make sure size and used data counts match blocks

e Directories may be bad
- Holes illegal, . and .. must be valid, ...

- All directories must be reachable

