
SCSI overview

• SCSI domain consists of devices and an SDS
- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices–e.g., SCSI bus

• SCSI-2 bus (SDS) connects up to 8 devices
- Controllers can have > 1 “logical units” (LUNs)

- Typically, controller built into disk and 1 LUN/target, but
“bridge controllers” can manage multiple physical devices

• Each device can assume role of initiator or target
- Traditionally, host adapter was initiator, controller target

- Now controllers act as initiators (e.g., COPY command)

- Typical domain has 1 initiator, ≥ 1 targets



SCSI requests

• A request is a command from initiator to target
- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

• Commands contain the following:
- Task identifier—initiator ID, target ID, LUN, tag

- Command descriptor block—e.g., read 10 blocks at pos. N

- Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE

- Optional: output/input buffer, sense data

- Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . .



Executing SCSI commdns

• Each LUN maintains a queue of tasks
- Each task is DORMANT, BLOCKED, ENABLED, or ENDED

- SIMPLE tasks are dormant until no ordered/head of queue

- ORDERED tasks dormant until no HoQ/more recent ordered

- HOQ tasks begin in enabled state

• Task management commands available to initiator
- Abort/terminate task, Reset target, etc.

• Linked commands
- Initiator can link commands, so no intervening tasks

- E.g., could use to implement atomic read-modify-write

- Intermediate commands return status byte INTERMEDIATE



SCSI exceptions and errors

• After error stop executing most SCSI commands
- Target returns with CHECK CONDITION status

- Initiator will eventually notice error

- Must read specifics w. REQUEST SENSE

• Prevents unwanted commands from executing
- E.g., initiator may not want to execute 2nd write if 1st fails

• Simplifies device implementation
- Don’t need to remember more than one error condition

• Same mechanism used to notify of media changes
- I.e., ejected tape, changed CD-ROM



But back in the 80s. . .

• Disks spin at 3,600 RPM
- 17 ms/Rotation (vs. 4 ms on fastest disks today)

• Fixed # sectors/track (no zoning)

• Head switching free (?)

• Requests issued one at a time
- No caching in disks

- Head must pass over sector after getting a read

- By the time OS issues next request, too late for next sector

• Slower CPUs, memory
- Noticeable cost for block allocation algorithms



Original Unix file system

• Each FS breaks partition into three regions:
- Superblock (parameters of file system, free ptr)

- Inodes – type/mode/size + ptr to data blocks

- File and directory data blocks

• All data blocks 512 bytes

• Free blocks kept in a linked list



Inodes

. . .

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr



Problems with original FS

• FS never transfers more than 512 bytes/disk access

• After a while, allocation essentially random
- Requires a random seek every 512 bytes of file data

• Inodes far from both directory data and file data

• Within a directory, inodes not near each other

• Usability problems:
- File names limited to 14 characters

- No way to update file atomically & guarantee existence
after crash



Fast file system

• New block size must be at least 4K
- To avoid wasting space, use “fragments” for ends of files

• Cylinder groups avoid spread inodes around disk

• Bitmaps replace free list

• FS reserves space to improve allocation
- Tunable parameter, default 10%

- Only superuser can use space when over 90% full



FFS superblock

• Contains file system parameters
- Disk characteristics, block size, CG info

- Information necessary to get inode given i-number

• Replicated once per cylinder group
- At shifting offsets, so as to span multiple platters

- Contains magic to find replicas if 1st superblock dies

• Contains non-replicated “summary info”
- # blocks, fragments, inodes, directories in FS

- Flag stating if FS was cleanly unmounted



Cylinder groups

• Groups related inodes and their data

• Contains a number of inodes (set when FS created)
- Default one inode per 2K data

• Contains file and directory blocks

• Contains bookkeeping information
- Block map – bit map of available fragments

- Summary info within CG – # free inodes, blocks/frags, files,
directories

- # free blocks by rotational position (8 positions)



Inode allocation

• Allocate inodes in same CG as directory if possible

• New directories put in new cylinder groups
- Consider CGs with greater than average # free inodes

- Chose CG with smallest # directories

• Within CG, inodes allocated randomly (next free)
- Would like related inodes as close as possible

- OK, because one CG doesn’t have that many inodes



Fragment allocation

• Allocate space when user writes beyond end of file

• Want last block to be a fragment if not full-size
- If already a fragment, may contain space for write – done

- Else, must deallocate any existing fragment, allocate new

• If no appropriate free fragments, break full block

• Problem: Slow for many small writes
- (Partial) soution: new stat struct field st blksize

- Tells applications file system block size

- stdio library can buffer this much data



Block allocation

• Try to optimize for sequential access
- If available, use rotationally close block in same cylinder

- Otherwise, use block in same CG

- If CG totally full, find other CG with quadratic hashing

- Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
- Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
- But large extents in each CGs, so sequential access doesn’t

require many seeks



Directories

• Inodes like files, but with different type bits

• Contents considered as 512-byte chunks

• Each chunk has direct structure(s) with:
- 32-bit inumber

- 16-bit size of directory entry

- 8-bit file type (NEW)

- 8-bit length of file name

• Coalesce when deleting
- If first direct in chunk deleted, set inumber = 0

• Periodically compact directory chunks



Updating FFS for the 90s

• No longer want to assume rotational delay
- With disk caches, want data contiguously allocated

• Solution: Cluster writes
- FS delays writing a block back to get more blocks

- Accumulates blocks into 64K clusters, written at once

• Allocation of clusters similar to fragments/blocks
- Summary info

- Cluster map has one bit for each 64K if all free

• Also read in 64K chunks when doing read ahead



Dealing with crashes

• Suppose all data written asynchronously

• Delete/truncate a file, append to other file, crash
- New file may reuse block from old

- Old inode may not be updated

- Cross-allocation!

- Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash
- Inode points to indirect block

- But indirect block may contain garbage



Ordering of updates

• Must be careful about order of updates
- Write new inode to disk before directory entry

- Remove directory name before deallocating inode

- Write cleared inode to disk before updating CG free map

• Solution: Many metadata updates syncrhonous
- Of course, this hurts performance

- E.g., untar much slower than disk b/w

• Note: Cannot update buffers on the disk queue



Fixing corruption – fsck
• Summary info usually bad after crash

- Scan to check free block map, block/inode counts

• System may have corrupt inodes (not simple crash)
- Bad block numbers, cross-allocation, etc.

- Do sanity check, clear inodes with garbage

• Fields in inodes may be wrong
- Count number of directory entries to verify link count, if no

entries but count 6= 0, move to lost+found

- Make sure size and used data counts match blocks

• Directories may be bad
- Holes illegal, . and .. must be valid, . . .

- All directories must be reachable


