
Banking problem

• Bank with two accounts

• One operation: transfer $1 from A to B

• Components:
- client programs (concurrent)

- System R

- disk cache (for performance)

- Disks

First implementation: mmap a file

• What goes wrong?

• Atomicity:
- What if server crashes between A -= $1 and B += $1?

- What if client crashes/cancels between two operations?

• Consistency:

First implementation: mmap a file

• What goes wrong?

• Atomicity:
- What if server crashes between A -= $1 and B += $1?

- What if client crashes/cancels between two operations?

• Consistency: read-modify-writes interfere

R = B.balance;

R = B.balance;

R = R + $1;

B.balance = R;

R = R + $1;

B.balance = R;

Next implementation: Shadow files

• Never update disk pages in place
- Save copies of modified disk blocks

- Update pointers to blocks

- Atomically switch directory ptr from shadow PT to current

• Problems:
- Doesn’t offer consistency with multiple clients

- Bad for both sequential and random access

- Sequential blocks not near each other
- Index too large to keep in core

- Requires twice the storage to rewrite whole file!

Next implementation: Shadow files

• Never update disk pages in place
- Save copies of modified disk blocks

- Update pointers to blocks

- Atomically switch directory ptr from shadow PT to current

• Problems:
- Doesn’t offer consistency with multiple clients

- Bad for both sequential and random access

- Sequential blocks not near each other
- Index too large to keep in core

- Requires twice the storage to rewrite whole file!

Transactions

• Series of modifications to state

BEGIN

actions

END

• Has the following properties:
- A. atomic – either completes entirely of completely undone

- C. consistent – results as if all transactions were serialized

- D. durable – once complete, crash won’t erase effects

• What are dangers to consistency?

Consistency failures

• Lost Update. READ–WRITE–WRITE
- Second write overwrites the first (banking example)

• Dirty read. WRITE–READ–WRITE
- Read returns uncommitted value

• Unrepeatable read. READ–WRITE–READ
- Two reads of same data return different values

• Can view transaction dependencies graphically
- If one transcation depends on another, draw arrow

- Any cycle represents a dependency failure

Locks

• Restrict concurrent access per DB record

• Acquired as transaction reads/writes data
- Shared for reading

- Can upgrade to exclusive for writing

- Possibility of deadlock

• Released at end of transaction

• Assure no one reads uncommitted values!

When do actions not complete?

• Abort
- Cancelled by user/client (3%)

- Cancelled by system (<< 1%)
(deadlock, resource shortage, system shutdown, etc.)

• Restart
- After crash and reboot (OS or hardware failure)

• Media failure
- Disk dies

• Unrecoverable error
- Operator error (disk fails & didn’t do backups)

- Software bug in RSS

When do actions not complete?

• Abort
- Cancelled by user/client (3%)

- Cancelled by system (<< 1%)
(deadlock, resource shortage, system shutdown, etc.)

• Restart
- After crash and reboot (OS or hardware failure)

• Media failure
- Disk dies

• Unrecoverable error
- Operator error (disk fails & didn’t do backups)

- Software bug in RSS

Save points

• Allow transaction to rewind to previous state
- Example: Multihop airline reservation

- Don’t flush entire trip if one seat/flight unavailable

• Programming interface
- SAVE directive creates save point N

- UNDO N returns to save point N

• Implementation:
- Record state of all locks and cursors in log

- Release any locks acquired since save

- No locks to reacquire–locks held until end of transaction

Nested transactions

• Not available in system R
- More general than save points

• Can begin one transaction within another
- Abort backs out all changes–like save points

- Commit will release locks

- Nested commits not globally visible until outermost
commit

• Very good for concurrency
- Perform various components of a transaction in parallel

E.g., A −= $1 and B += $1

• Harder to implement efficiently

Logging

Logging

• Keep log of all actions
- Optionally duplex log

• Each action has 3 operations:
- DO – performs & logs action

- UNDO – reverts action

- REDO – repeats action

• Merge all actions in one log
- Reduces seek time

- Reduces fragmentation

- Requires linked list of actions within one transaction

What’s in a log record?

• Modification being performed
- File name

- Record ID

- Old value

- New value

• Log system info
- Log record length

- Transaction ID

- Action ID

- Timestamp

- Pointer to previous record in this transaction

Commit processing

• Write commit record to the log

• Never update shadow file before log

• Transaction considered committed after log
written

- Don’t need to update shadow on each commit

• After a crash, don’t know which actions are in file
- What point in log does shadow state correspond to?

- Does state even correspond to one point in log?

• Plus, don’t want to keep log around forever...

Checkpoints

• Wait until no RSS actions in progress (why?)

• Write checkpoint record to log
- List of all transactions in progress

- Pointer to most recent log entry of each transaction

• Update shadow state of all files with current state

• Update shadow state to point to checkpoint record

• Crash betw. writing to file & checkpoint to log?
- Shadow directory contains pointer to checkpoint record

System restart

• Scan log forwards, backwards

• Categorize & process winners & losers

• Write new checkpoint to log

Locking and UNDO

• Problem: What if deadlock while executing UNDO
- Cannot abort UNDO – transaction already aborting

• Good news: Record locks held to end of transaction
- Will still be held at time of abort

• Bad news: Page-level locks (false sharing)
- UNDO transactions marked as “Golden”

- Only one “golden” transaction executes at a time

- Always abort the non-golden xaction after deadlock

• More bad news: What about during restart
- No locking during restart

- All transactions recovered sequentially

Cleaning the log

• Must keep log to earliest of:
- Last checkpoint

- Oldest record of a pending transaction (can always abort really old)

- Last archive (for media failures)

Recovery from media failure

• Same as system restart
- Use older backup

- Use more of log

• No need to implement extra code for this

Other transaction techniques

• Group commit

• Write-ahead logging

• Keep undo log separate, garbage collect it sooner

• Message logging! (Big omission in system R)

• Keep locks after commit (or downgrade to shared)

• Two-phase commit

• How to use disks to get better throughput?

• How might you implement truly atomic rename?

