Banking problem

e Bank with two accounts
e One operation: transfer $1 from A to B

e Components:

client programs (concurrent)

System R

disk cache (for performance)

Disks

First implementation: mmap a file

e What goes wrong?

o Atomicity:

e Consistency:

e What goes wrong?

First implementation: mmap a file

e Atomicity:
- What if server crashes between A -=$1 and B += $17?

- What if client crashes/cancels between two operations?

e Consistency: read-modify-writes interfere

R

= B.balance;

=R + $1;

.balance = R;

oo/

= B.balance;
=R + $1;

.balance = R;

Next implementation: Shadow files

e Never update disk pages in place
- Save copies of modified disk blocks
- Update pointers to blocks

- Atomically switch directory ptr from shadow PT to current

e Problems:

Next implementation: Shadow files

e Never update disk pages in place
- Save copies of modified disk blocks
- Update pointers to blocks

- Atomically switch directory ptr from shadow PT to current

e Problems:
- Doesn’t offer consistency with multiple clients

- Bad for both sequential and random access

- Sequential blocks not near each other
- Index too large to keep in core

- Requires twice the storage to rewrite whole file!

Transactions

e Series of modifications to state

BEGIN
actions
END

e Has the following properties:
- A. atomic — either completes entirely of completely undone
- C. consistent — results as if all transactions were serialized

- D. durable — once complete, crash won't erase effects

e What are dangers to consistency?

Consistency failures

e Lost Update. READ-WRITE-WRITE

- Second write overwrites the first (banking example)

e Dirty read. WRITE-READ-WRITE

- Read returns uncommitted value

e Unrepeatable read. READ-WRITE-READ

- Two reads of same data return different values

e Can view transaction dependencies graphically
- If one transcation depends on another, draw arrow

- Any cycle represents a dependency failure

Locks

e Restrict concurrent access per DB record

e Acquired as transaction reads/writes data
- Shared for reading
- Can upgrade to exclusive for writing

- Possibility of deadlock
e Released at end of transaction

e Assure no one reads uncommitted values!

When do actions not complete?

When do actions not complete?

e Abort
- Cancelled by user/client (3%)

- Cancelled by system (<< 1%)
(deadlock, resource shortage, system shutdown, etc.)

e Restart

- After crash and reboot (OS or hardware failure)

e Media failure
- Disk dies

e Unrecoverable error
- Operator error (disk fails & didn’t do backups)
- Software bug in RSS

Save points

e Allow transaction to rewind to previous state
- Example: Multihop airline reservation

- Don’t flush entire trip if one seat/flight unavailable

¢ Programming interface
- SAVE directive creates save point N

- UNDO N returns to save point N

¢ Implementation:
- Record state of all locks and cursors in log
- Release any locks acquired since save

- No locks to reacquire-locks held until end of transaction

Nested transactions

e Not available in system R

- More general than save points

e Can begin one transaction within another
- Abort backs out all changes—like save points
- Commit will release locks

- Nested commits not globally visible until outermost
commit

e Very good for concurrency

- Perform various components of a transaction in parallel
E.g., A —=9%1land B +=$1

e Harder to implement efficiently

OLD ; ; NEW

STATE DO STATE
—— | LOG RECORD

NEW OLD

STATE » | UNDO STATE
LOG RECORD—j
OLD NEW
—— | REDO |

STATE STATE

LOG RECORD

B

Logging

e Keep log of all actions

- Optionally duplex log

e Each action has 3 operations:
- DO — performs & logs action
- UNDO - reverts action
- REDO - repeats action

e Merge all actions in one log
- Reduces seek time
- Reduces fragmentation

- Requires linked list of actions within one transaction

What's in a log record?

e Modification being performed
File name
Record ID
Old value

New value

e Log system info

- Log record length

Transaction ID

Action ID

Timestamp

Pointer to previous record in this transaction

Commit processing

e Write commit record to the log
e Never update shadow file before log

e Transaction considered committed after log
written

- Don’t need to update shadow on each commit

e After a crash, don’t know which actions are in file
- What point in log does shadow state correspond to?

- Does state even correspond to one point in log?

e Plus, don’t want to keep log around forever...

Checkpoints

e Wait until no RSS actions in progress (why?)

e Write checkpoint record to log
- List of all transactions in progress

- Pointer to most recent log entry of each transaction
e Update shadow state of all files with current state
e Update shadow state to point to checkpoint record

e Crash betw. writing to file & checkpoint to log?

- Shadow directory contains pointer to checkpoint record

System restart

T1 l — + <
T3 + | | <
T4 1= +— - <
TS + l—<

CHECKPOINT CRASH

e Scan log forwards, backwards
o Categorize & process winners & losers

e Write new checkpoint to log

Locking and UNDO

e Problem: What if deadlock while executing UNDO
- Cannot abort UNDO - transaction already aborting

e Good news: Record locks held to end of transaction
- Will still be held at time of abort

e Bad news: Page-level locks (false sharing)
- UNDO transactions marked as “Golden”
- Only one “golden” transaction executes at a time

- Always abort the non-golden xaction after deadlock

e More bad news: What about during restart
- No locking during restart

- All transactions recovered sequentially

Cleaning the log

LOG._END -
CHECK__POINT
LOG_BEGIN[T111] —
LOG__BEGIN[T250)

LOG_BEGIN[T345]

LOG_ BEGIN[T346]
LOG_ARCHIVE !

¢ l 4 k4 o
FIRE_WALL

e Must keep log to earliest of:
- Last checkpoint
- Oldest record of a pending transaction (can always abort really old)

- Last archive (for media failures)

Recovery from media failure

e Same as system restart
- Use older backup

- Use more of log

e No need to implement extra code for this

Other transaction techniques

e Group commit

o Write-ahead logging

e Keep undo log separate, garbage collect it sooner
e Message logging! (Big omission in system R)

o Keep locks after commit (or downgrade to shared)
e Two-phase commit

e How to use disks to get better throughput?

e How might you implement truly atomic rename?

