Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System

Douglas B. €rry, Marvin M. TheimeyKarin Petersen, Alan J. Demers,
Mike J. Spreitzer and Carl H. Hauser

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, California 94304 U.S.A.

Abstract “connectedness” are possible. Groups of computers may be parti-
tioned away from the rest of the system yet remain connected to
Bayou is a replicated, weakly consistent storage systemeach otherSupporting disconnected workgroups is a central goal
designed for a mobile computing environment that includes porta- of the Bayou system. By relying only on pailse communication
ble machines with less than ideal network connectiiilymaxi- in the normal mode of operation, the Bayou design copes with
mize availability users can read and write any accessible replica. arbitrary network connectivity
Bayous design has focused on supporting application-specific A weak connectivity networking model can be accommodated
mechanisms to detect and resolve the update conflicts that natuenly with weakly consistent, replicated data. Replication is
rally arise in such a system, ensuring that replicas move towardsequired since a single storage site may not be reachable from
eventual consistencynd defining a protocol by which the resolu- mobile clients or within disconnected workgroupseak consis-
tion of update conflicts stabilizes. It includes novel methods for tency is desired since any replication scheme providing one copy
conflict detection, called dependency checks, andvpiég con- serializability [6], such as requiring clients to access a quorum of
flict resolution based on client-provided merprocedures. or replicas or to acquire exclusive locks on data that they wish to
guarantee eventual consistenBgyou servers must be able to roll- update, yields unacceptably low write availability in partitioned
back the dects of previously executed writes and redo them networks [5]. For these reasons, Bayou adopts a model in which
according to a global serialization ordEurthermore, Bayou per- clients can read and write to any replica without the need for
mits clients to observe the results of all writes received by a serverexplicit coordination with other replicas. Every computer eventu-
including tentative writes whose conflicts have not been ultimately ally receives updates from every ottather directly or indirectly
resolved. This paper presents the motivation for and design ofthrough a chain of paivise interactions.
these mechanisms and describes the experiences gained with an Unlike many previous systems [12, 27], our goal in designing

initial implementation of the system. the Bayou system wampot to provide transparent replicated data
support for existing file system and database applicatiors. W
1. Introduction believe that applications must be aware that they may read weakly

consistent data and also that their write operations may conflict
) . with those of other users and applications. Morecsgplications

The Bayou storage system provides an infrastructure for col- y st he involved in the detection and resolution of conflicts since
laborative applications that manages the conflicts introduced byhege naturally depend on the semantics of the application.
concurrent activity while relying only on the weak connectivity To this end, Bayou provides system support for application-
available for mobile computing. The advent of mobile computers, specific conflict detection and resolution. Previous systems, such
in the form of laptops and .personaI. .d'lgltal assistants (PDAS) 55 Locus [30] and Coda [17], have proven the value of semantic
enables the use of computational facilities away from the usual conflict detection and resolution for file directories, and several
work setting of users. Howevenobile computers do not enjoy the gystems are exploring conflict resolution for file and database con-
connectivity giforded by Ipcal area networks or the Felephone SYS- tents [8, 18, 26]. Bayos’mechanisms extend this work by letting
tem. Even wireless media, such as cellular telephwitiynot per- applications exploit domain-specific knowledge to achieve auto-
mit continuous connectivity until peninute costs decline enough natic conflict resolution at the granularity of individual update
to justify lengthy connections. Thus, the Bayou design requires gperations without compromising security or eventual consistency
only occasional, pawise communication between computers. Automatic conflict resolution is highly desirable because it
This model takes into consideration characteristics of mobile com- gnaples a Bayou replica to remain available. In a replicated system
puting such as expensive connection time, frequent or occasionalyith the weak connectivity model adopted by Bayou, conflicts
disconnections, and that collaborating computers may never be alinay pe detected arbitrarily far from the users who introduced the
connected simultaneously [1, 13, 16].] _conflicts. Moreover conflicts may be detected when no user is

The Bayou architecture does not include the notion of a “dis- yresent. Bayou does not take the approach of systems that mark
connected” mode of operation because, in fact, various degrees ofgnfiicting data as unavailable until a person resolves the conflict.
Instead, clients can read data at all times, including data whose
. . . conflicts have not been fully resolved either because human inter-
Preprint of paper to appear in the Proceedings of the 15th vention is needed or beca)tluse other conflicting updates may be

ACM Symposium on Operating Systems Principles, propagating through the system. Bayou provides interfaces that
December 3-6, 1995, Copper Mountain Resort, Colorado. make the state of a replisaiata apparent to the application.

The contributions presented in this paper are as follows: we
Copyright © 1995 Association for Computing Machinery introduce peupdate dependency checks andgegsrocedures as

a general mechanism for application-specific conflict detection and2.2 Bibliographic database
resolution; we define two states of an update, committed and tenta-
tive, which relate to whether or not the conflicts potentially intro-

duced by the update have been ultimately resolved; we presen e . . . i
mechanisms for managing these two states of an update both fror%atabases of bibliographic entries. Users can add entries to a data

the perspective of the clients and the storage management required?;eoﬁtshth;ybﬁngtk?:rp;rg‘;gsthp\e ng‘é’;ﬁ:ﬁgf ergztds’a\gg \\/,vvrci)tre(zj an
ments of the replicas; we describe how replicas move towards ! y ’ y y

. ; ; . o copy of the database, such as one that resides on his laptop. For the
eventual consistency; and, finallye discuss how security is pro- X . h
vided in a system like Bayou. most part, the database is append-otfigugh users occasionally

update entries to fix mistakes or add personal annotations.

. i As is common in bibliographic databases, each entry has a
2. Bayou Appllcatlons unique, human-sensible key that is constructed by appending the
year in which the paper was published to the first ailghast

The Bayou replicated storage system was designed to support #&ame and adding a character if necessary to distinguish between
variety of non-real-time collaborative applications, such as sharedMultiple papers by the same author in the same yéas, the first
calendars, mail and bibliographic databases, program developPaper by Jonegt al. in 1995 might be identified as *Jones95” and
ment, and document editing for disconnected workgroups, as wellSubseguent papers as “Jones9sb”, “Jones95¢”, and so on.
as applications that might be used by individuals &rift hosts An entrys key is tentatively assigned when the entry is added.
at different times. @ serve as a backdrop for the discussion in fol- A User must be aware that the assigned keys are only tentative and
lowing sections, this section presents a quick overview of two May change when the entry is “committed.” In other words, a user
applications that have been implemented thysafaneeting room ~ Must be aware that other concurrent updaters could be trying to
scheduler and a bibliographic database. assign the same key to feifent entries. Only one entry can have

the key; the others will be assigned alternative keys by the system.
Thus, for example, if the user employs the tentatively assigned key
in some fashion, such as embedding it as a citation in a document,
then he must also remember later to check that the key assigned

Our meeting room scheduling application enables users towhen the entry was committed is in fact the expected one.
reserve meeting rooms. At most one person (or group) can reserve Because users can access inconsistent database copies, the
the room for any given period of time. This meeting room schedul- same bibliographic entry may be concurrently added tigrdift
ing program is intended for use after a group of people haveusers with diferent keys. @ the extent possible, the system detects
already decided that they want to meet in a certain room and haveluplicates and mges their contents into a single entry with a sin-
determined a set of acceptable times for the meeting. It does nogle key
help them to determine a mutually agreeable place and time for the Interestingly this is an application where a user may choose to
meeting, it only allows them to reserve the room. Thus, it is a operate in disconnected mode even if constant connectivity were
much simpler application than one of general meeting scheduling. possible. Consider the case where a user is in a university library

Users interact with a graphical interface for the schedule of alooking up some papers. He occasionally types bibliographic refer-
room that indicates which times are already reserved, much likeences into his laptop or PDA. He may spend hours in the library
the display of a typical calendar managéhe meeting room but only enter a handful of references. He is not likely to want to
scheduling program periodically re-reads the room schedule andkeep a cellular phone connection open for the duration of his visit.
refreshes the userdisplay This refresh process enables the user Nor will he want to connect to the universiylocal wireless net-
to observe new entries added by other users. Thésudisplay work and subject himself to student hackers. He will more likely
might be out-of-date with respect to the confirmed reservations ofbe content to have his bibliographic entries integrated into his
the room, for example when it is showing a local copy of the room database stored by Bayou upon returning to his homdice.of
schedule on a disconnected laptop.

Users reserve a time slpt_simply by se_lecting a_free _time period3_ Bayou‘s Basic System Model
and filling in a form describing the meeting that is being sched-
uled. Because the userdisplay might be out-of-date, there is a o))
chance that the user could try to schedule a meeting at a time that In the Bayou system, eadhta collection is replicated in full at
was already reserved by someone elseadcount for this possi- & number ofervers. Applications running aslients interact with
bility, users can select several acceptable meeting times rather thafie servers through the Bayou application programming interface
just one. At most one of the requested times will eventually be (AP1), which is implemented as a client stub bound with the appli-
reserved. cation. This API, as well as the underlying client-server RPC pro-

A users reservation, rather than being immediately confirmed tocol, supports two basic operationRead and Write. Read
(or rejected), may remain “tentative” for awhile. While tentative, a Operations permit queries over a data collection, whilieeVdper-
meeting may be rescheduled as other interfering reservationsations can insert, modifyand delete a number of data items in a
become known. @ntative reservations are indicated as such on the collection. Figure 1 illustrates these components of the Bayou
display (by showing them grayed). The “outdatedness” of a Ca|en_architecture. Note that a client and a server may be co-resident on a
dar does not prevent it from being useful, but simply increases thehost, as would be typical of a laptop or PDA running in isolation.
likelihood that tentative room reservations will be rescheduled and ~ Access to one server is fafent for a client to perform useful
finally “committed” to less preferred meeting times. work. The client can read the data held by that server and submit

A group of users, although disconnected from the rest of the Writes to the serveOnce a Wite is accepted by a seryéhe cli-
system, can immediately see each dthentative room reserva- €nt has no further responsibility for thatiw. In particulay the
tions if they are all connected to the same copy of the meetingclient does not wait for the ke to propagate to other servers. In
room schedule. If, instead, users are maintaining private copies orPther words, Bayou presents a weakly consistent replication model
their laptop computers, local communication between the With aread-any/write-any style of access. #ékly consistent repli-

machines will eventually synchronize all copies within the group. cation has been used previously for availabilgymplicity and
scalability in a variety of systems [3, 7, 10, 12, 15, 19].

Our second application allows users to cooperatively manage

2.1 Meeting mom scheduler

SERVER

lication
App Storage

System

[— Bayou API
Client Stub

Server State
CLIENT

Machine
boundaries

Storage
System

Server State

Storage
System

Server State Storage

System

Server State

Read
or
Write

Application

— Bayou API
Cient Stub

CLIENT

Figure 1. Bayou System Model

While individual Read and YMe operations are performed at a

single serverclients need not confine themselves to interacting

with a single serveindeed, in a mobile computing environment,

switching between servers is often desirable, and Bayou provide
session guarantees to reduce client-observed inconsistencies when
accessing diérent servers. The description of session guarantees

has been presented elsewhere [29].

To support application-specific conflict detection and resolu-

tion, Bayou Wites must contain more than a typical file system

4. Conflict Detection and Resolution

4.1 Accommodating application semantics

Supporting application-specific conflict detection and resolu-
tion is a major emphasis in the Bayou design. A basic tenet of our
work is that storage systems must provide means for an application
to specify its notion of a conflict along with its policy for resolving

write or database update. Along with the desired updates, a Bayouwonflicts. In return, the system implements the mechanisms for

Write carries information that lets each server receiving theeW

reliably detecting conflicts, as specified by the application, and for

decide if there is a conflict and if so, how to fix it. Each Bayou automatically resolving them when possible. This design goal fol-

Write also contains a globally uniquktitelD assigned by the
server that first accepted theiw.

lows from the observation that fiifent applications have &fent
notions of what it means for two updates to conflict, and that such

The storage system at each Bayou server conceptually consistgonflicts cannot always be identified by simply observing conven-

of an ordered log of the ki¥es described above plus the data
resulting from the execution of theseit&s. Each server performs

tional reads and writes submitted by the applications.
As an example of application-specific conflicts, consider the

each Wite locally with conflicts detected and resolved as they are meeting room scheduling application discussed in Section 2.1.
encountered during the execution. A server immediately makes theObserving updates at a coarse granulasitizh as the whole-file

effects of all known Wites available for reading.

In keeping with the goal of requiring as little of the network as
possible, Bayou servers propagatet®$ among themselves dur-
ing pairwise contacts, callednti-entropy sessions [7]. The two
servers involved in a session exchangeta\bperations so that
when they are finished they agree on the set of Bayited\they
have seen and the order in which to perform them.

level, the storage system might detect that two users have concur-
rently updated df€rent replicas of the meeting room calendar and
conclude that their updates conflict. Observing updates at a fine
granularity such as the record level, the system might detect that
the two users have added independent records and thereby con-
clude that their updates do not conflict. Neither of these conclu-
sions are warranted. In fact, for this application, a conflict occurs

The theory of epidemic algorithms assures that as long as thewhen two meetings scheduled for the same room overlap in time.

set of servers is not permanently partitioned eadteWill even-

Bibliographic databases provide another example of applica-

tually reach all servers [7]. This holds even for communication tion-specific conflicts. In this application, two bibliographic entries
patterns in which at most one pair of servers is ever connected atonflict when either they describe feifent publications but have

once. In the absence of newit®'s from clients, all servers will

been assigned the same key by their submitters or else they

eventually hold the same data. The rate at which servers reach cordescribe the same publication and have been assigned distinct
vergence depends on a number of factors including network con-keys. Again, this definition of conflicting updates is specific to this
nectivity, the frequency of anti-entropgind the policies by which application.

servers select anti-entropy partners. These policies may vary The steps taken to resolve conflicting updates once they have
according to the characteristics of the network, the data, and itsheen detected may also vary according to the semantics of the
servers. Developing optimal anti-entropy policies is a research application. In the case of the meeting room scheduling applica-
topic in its own right and not further discussed in this paper tion, one or more of a set of conflicting meetings may need to be

Bayou_Write (update, dependency_check, mergeproc) {
IF (DB_Eval (dependency_check.query) <> dependency_check.expected_result)
resolved_update = Interpret (mergeproc);
ELSE
resolved_update = update;
DB_Apply (resolved_update);

Figure 2. Processing a Bayou Write Operation

Bayou_Write(
update = {insert, Meetings, 12/18/95, 1:30pm, 60min, “Budget Meeting”},
dependency_check = {
query = “SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 2:30pm AND end > 1:30pm”,
expected_result = EMPTY},
mergeproc = {
alternates = {{12/18/95, 3:00pm}, {12/19/95, 9:30am}};
newupdate = {};
FOREACH a IN alternates {
check if there would be a conflict
IF (NOT EMPTY (
SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, “Budget Meeting”};
BREAK;

IF (newupdate = {}) # no alternate is acceptable
newupdate = {insert, ErrorLog, 12/18/95, 1:30pm, 60min, “Budget Meeting”};
RETURN newupdate;}

Figure3. A Bayou Write Operation

moved to a dierent room or dferent time. In the bibliographic provide application-specific mechanisms to handle conflicts, but

application, an entry may need to be assignedfaréift unique rather create multiple versions of a document, file, or data object

key or two entries for the same publication may need to bgeder when conflicts arise. As will become apparent from the next cou-

into one. ple of sections, Bayos'dependency checks and geeprocedures
The Bayou system includes two mechanisms for automatic are more general than these previous techniques.

conflict detection and resolution that are intended to support arbi-

trary applicatio_ns:depende_ncy. checks .anq merge procedqres.. . 4.2 Dependency checks

These mechanisms permit clients to indicate, for each individual

Write operation, how the system should detect conflicts involving o

the Wite and what steps should be taken to resolve any detected Application-specific conflict detection is accomplished in the

conflicts based on the semantics of the application. They wereBayou system through the usedspendency checks. Each Wite

designed to be flexible since we expect that applications widrdif ~ OPeration includes a dependency check consisting of an applica-

appreciably in both the procedures used to handle conflicts, andtion-supplied query and its expected result. A conflict is detected if

more generallyin their ability to deal with conflicts. the querywhen run at a server against its current copy of the dqta,
Techniques for semantic-based conflict detection and resolutiondo€s not return the expected result. This dependency check is a

have previously been incorporated into some systems to handig’recondition for performing the update that is included in the

special cases such as file directory updates. For example, th&/Vrite operation. If the check fails, then the requested update is not

Locus [30], Ficus [12], and Coda [17] distributed file systems all Performed and the server invokes a procedure to resolve the

include mechanisms for automatically resolving certain classes ofdetected conflict as outlined in Figure 2 and discussed below

conflicting directory operations. More recentpme of these sys- As an example of application-defined conflicts, Figure 3 pre-

tems have also incorporated support for “resolver” programs thatS€nts & sample Bayourité operation that might be submitted by

reduce the need for human intervention when resolving other typesh® meeting room scheduling application. Thisité@Vattempts to

of file conflicts [18, 26]. Oracle’ symmetric replication product reserve an hodong time slot. It includes a dependency check

also includes the notion of application-selected resolvers for rela-With @ single querywritten in an SQL-like language, that returns

tional databases [8]. Other systems, like Lotus Notes [15], do notinformation about any previously reserved meetings that overlap
with this time slot. It expects the query to return an empty set.

Bayous dependency checks, like the version vectors and times-ing. An example of such a nggr procedure is illustrated in Figure
tamps traditionally used in distributed systems [12, 19, 25, 27], can3. A different mege procedure altogether could search for the next
be used to detect Mte-Write conflicts. That is, they can be used to available time slot to schedule the meeting, which is an option a
detect when two users update the same data item without one ofiser might choose if any time would be satisfactory
them first observing the otherupdate. Such conflicts can be In practice, Bayou mge procedures are written by application
detected by having the dependency check query the current valueprogrammers in the form of templates that are instantiated with the
of any data items being updated and ensure that they have noappropriate details filled in for eachrié. The users of applica-
changed from the values they had at the time thieeWas sub- tions do not have to know about merprocedures, and therefore
mitted, as is done in Oractefeplicated database [8]. about the internal workings of the applications they use, except

Bayous dependency checking mechanism is more powerful when automatic conflict resolution cannot be done.
than the traditional use of version vectors since it can also be used In the case where automatic resolution is not possible, the
to detect Read-Vite conflicts. Specificallyeach Wite operation mege procedure will still run to completion, but is expected to
can explicitly specify the expected values of any data items onproduce a revised update that logs the detected conflict in some
which the update depends, including data items that have beerfashion that will enable a person to resolve the conflict. |ater
read but are not being updated. Thus, Bayou clients can emulatenable manual resolution, perhaps using an interactivgeneol
the optimistic style of concurrency control employed in some dis- [22], the conflicting updates must be presented to a user in a man-
tributed database systems [4, 6]. For example rite\Wperation ner that allows him to understand what has happened. By conven-
that installs a new program binary file might only include a depen- tion, most Bayou data collections include an error log for
dency check of the sources, including version stamps, from whichunresolvable conflicts. Such conventions, howeaer outside the
it was derived. Since the binary does not depend on its previousdomain of the Bayou storage system and may vary according to

value, this need not be included. the application.
Moreover because dependency queries can read any data in the In contrast to systems like Coda [18] or Ficus [26] that lock
servefts replica, dependency checks can enforce arhitramjti- individual files or complete file volumes when conflicts have been

item integrity constraints on the data. For example, suppose adetected but not yet resolved, Bayou allows replicas to always
Write transfers $100 from account A to account B. The applica- remain accessible. This permits clients to continue to Read previ-
tion, before issuing the kite, reads the balance of account A and ously written data and to continue to issue newtad. In the
discovers that it currently has $150aditional optimistic concur- meeting room scheduling application, for example, a user who
rency control would check that account A still had $150 before only cares about Monday meetings need not concern himself with
performing the requested rité operation. The real requirement, scheduling conflicts on BdnesdayOf course, the potential draw-
however is that the account have at least $100, and this can easilyback of this approach is that newly issuedt®$ may depend on

be specified in the Yie’s dependency check. Thus, only if con- data that is in conflict and may lead to cascaded conflict resolution.
current updates cause the balance in account A to drop below $100 Bayous mege procedures resemble the previously mentioned

will a conflict be detected. resolver programs, for which support has been added to a number
of replicated file systems [18, 26]. In these systems, a file-type-
4.3 Merge procedures specific resolver program is run when a version vector mismatch is

detected for a file. This program is presented with both the current
o) and proposed file contents and it can do whatever it wishes in order
Once a conflict is detected,naerge procedure is run by the {5 resolve the detected conflict. An example is a resolver program
Bayou server in an attempt to resolve the conflict.gdeuroce- for g pinary file that checks to see if it can find a specification for
dures, included with each & operation, are general programs ha to derive the file from its sources, such as a Unix makefile,
written in a high-level, interpreted language. They can have gnq then recompiles the program in order to obtain a, new
embedded data, such as application-specific knowledge related to,ggglved” value for the file. Mee procedures are more general
the update that was being attempted, and can perform arbitrarysince they can vary for individual W& operations rather than
Reads on the current state of the sesveplica. The mee proce- being associated with the type of the updated data, as illustrated

dure associated with afiéé is responsible for resolving any con- gpove for the meeting room scheduling application.
flicts detected by its dependency check and for producing a revised

update to applyThe complete process of detecting a conflict, run- . .

ning a mege procedure, and applying the revised update, shown in5- Repl Ica Consstency

Figure 2, is performed atomically at each server as part of execut-

ing a Wite. While the replicas held by two servers at any time may vary in
In principle, the algorithm in Figure 2 could be imbedded in their contents because they have received and procesfazdrdif

each mege procedure, thereby eliminating any special mecha- Writes, a fundamental property of the Bayou design is that all serv-

nisms for dependency checking. This approach would require ers move towardeventual consistency. That is, the Bayou system

servers to create a new memrocedure interpreter to execute each guarantees that all serveesentually receive all Wites via the

Write, which would be overly expensive. Supporting dependency pair-wise anti-entropy process and that two servers holding the

check_s separately allows servers to a\{oid running thgmmoce- same set of Wes will have thesame data contents. Howeveit
dure in the expected case where theté\Mdoes not introduce a cannot enforce strict bounds onri propagation delays since
conflict. these depend on network connectivity factors that are outside of

The meeting room scheduling application provides good exam- Bayou's control.
ples of conflict resolution procedures that are specific notonly toa Two important features of the Bayou system design allows
particular application but also to a particularité/ operation. In servers to achieve eventual consisterféyst, Wites are per-
this application, users, well aware that their reservations may beformed in the same, well-defined order at all servers. Second, the
invalidated by other concurrent users, can specify alternate schedeonflict detection and mge procedures are deterministic so that
uling choices as part of their original scheduling updates. Theseservers resolve the same conflicts in the same manner
alternates are encoded in a gerprocedure that attempts to In theory the execution history at individual servers could vary
reserve one of the alternate meeting times if the original time isas long as their execution waguivalent to some global \ite
found to be in conflict with some other previously scheduled meet-

ordering. For example, ¥es known to be commutative could be
performed in any ordein practice, because Bayou'sii% opera-
tions include arbitrary mge procedures, it is fetctively impossi-
ble either to determine whether tworit¥s commute or to

transform two Wites so they can be reordered as has been sug-

gested for some systems [9].
When a Wite is accepted by a Bayou server from a client, it is
initially deemedtentative. Tentative Wites are ordered according

to timestamps assigned to them by their accepting servers. Eventu

ally, each Wite is committed, by a process described in the next
section. Committed Vites are ordered according to the times at
which they commit and before any tentativeitas.

The only requirement placed on timestamps for tentative

Writes is that they be monotonically increasing at each server so

that the pair <timestamp, ID of server that assigned it> produce
total order on Wite operations. There is no requirement that serv-
ers have synchronized clocks, which is crucial since trying to

ensure clock synchronization across portable computers is prob

lematic. However keeping servers’ clocks reasonably close is
desirable so that the inducediW order is consistent with a user
perception of the order in whichridés are submitted. Bayou serv-
ers maintain logical clocks [20] to timestamp newitéé. A
servets logical clock is generally synchronized with its real-time
system clock, but, to preserve the causal ordering raeWpera-
tions, the server may need to advance its logical clock whgasV
are received during anti-entrapy

Enforcing a global order on tentative, as well as committed,

Writes ensures that an isolated cluster of servers will come to
agreement on the tentative resolution of any conflicts that they

encounterWhile this is not strictly necessary since clients must be

prepared to deal with temporarily inconsistent servers in any case
we believe it desirable to provide as much internal consistency as

possible. Moreoverlients can expect that the tentative resolution
of conflicts within their cluster will correspond to their eventual
permanent resolution, provided that no further conflicts are intro-
duced outside the cluster

Because servers may receivaitds from clients and from
other servers in an order thatfdis from the required execution
order and because servers immediately apply all knowite¥/to
their replicas, servers must be able to undo tleetsfof some pre-
vious tentative execution of arilé operation and reapply it in a
different order Interestingly the number of times that a given

Write operation is re-executed depends only on the order in which

Writes arrive via anti-entropy and not on the likelihood of conflicts
involving the Wite.
Conceptually each server maintains a log of allit&' opera-

tions that it has received, sorted by their committed or tentative

timestamps, with committed iites at the head of the log. The

servefs current data contents are generated by executing all of the

Writes in the given ordeffechniques for pruning a seri@Wtite
log and for diiciently maintaining the corresponding data contents
by undoing and redoing kite operations are given in Section 7.
Bayou guarantees that rgerprocedures, which execute inde-
pendently at each seryg@roduce consistent updates by restricting
them to depend only on the sergecurrent data contents and on
any data supplied by the nger procedure itself. In particulaa
meige procedure cannot access time-varying or sapecific
“environment” information such as the current system clock or
servefs name. Moreovermege procedures that fail due to
exceeding their limits on resource usage must fail deterministi-

cally. This means that all servers must place uniform bounds on the

CPU and memory resources allocated to agmerocedure and
must consistently enforce these bounds during execution. Onc

these conditions are met, two servers that start with identical repli-

cas will end up with identical replicas after executingraéV

a

6. Write Stability and Commitment

A Write is said to bestable at a server when it has been exe-
cuted for the last time by that servRecall that as servers learn of
new updates by performing anti-entropy with other servers, the
effects of previously executed té operations may need to be
undone and the Wifes re-executed. Thus, a giveni& operation
may be executed several times at a server and may prodigce dif
ent results depending on the execution history of the sefver
Write operation becomes stable when the setritE®/that precede
it in the serveis Wite log is fixed. This means that the server has
already received and executed anyit®¢ that could possibly be
ordered before the givenité. Bayous notion of stability is simi-
lar to that in ordered multicast protocols, such as those provided in
the ISIS toolkit [2].

In many cases, an application can be designed with a notion of

“confirmation” or “commitment” that corresponds to the Bayou

notion of stability As an example, in the Bayou meeting room
scheduling application, two users may try to schedule separate
meetings for the same time in the same room. Only when one of
the users discovers that higi# has become stable and his sched-
ule still shows that he has reserved the room for the desired time,
can he be sure that his tentative reservation has been confirmed.

Since clients may want to know when ail has stabilized,
the Bayou API provides means for inquiring about the stability of
a specific Wite. Given a Wite's unique identifiera client can ask
a server whether the givenri¢ is stable at the servathe answer
may vary of course, depending on which server is contacted.
Bayou also provides support for clients that may choose to access
only stable data.

. How does a server determine whether at&\ls stable? One
approach would be to have each server include in the information
passed during anti-entropy not only anyifds that have been
accepted by this server but also the current value of the clock that
it uses to timestamp newridés. With suitable assumptions about
the propagation order of ites, a server could then determine that

a Wite is stable when it has a lower timestamp than all servers’
clocks. The main drawback of this approach is that a server that
remains disconnected can preventité¢ from stabilizing, which
could cause a lge number of Wtes to be rolled back when the
server reconnects.

To speed up the rate at which updates stabilize in an environ-
ment where communication with some servers may not be possible
for extended periods of time, the Bayou system usesait pro-
cedure. That is, a e becomes stable when it is explicitly com-
mitted, and, in fact, we generally use the terms “stable” and
“committed” interchangeably in the Bayou system. Committed
Writes, in commit orderare placed ahead of any tentativetiés
in each servés Wite log. This, along with Bayos’anti-entropy
protocol ensuring that servers learn of committedtéd' in the
order that they were committed, provides stability

In the Bayou system, we usepemary commit scheme [28].
That is, one server designated asphienary takes responsibility
for committing updates. Knowledge of whichri¥s have com-
mitted and in which order they were committed then propagates to
other servers during anti-entropg all other respects, the primary
behaves exactly like any other serv&ach replicated data collec-
tion can have a diérent server designated as its primary

Any commit protocol that prevents flifent groups of servers
from committing updates in dédrent orders would meet Baysu’
needs. In our anticipated weak connectivity environment, using a

eorimary to commit data is more attractive than the standard two-

phase commit protocol since it alleviates the need to gather a
majority quorum of servers. Consider the case of data that is repli-
cated among laptops that are mostly disconnected. Requiring a
majority of these laptops to be in communication with each other

Timestamp Vectors

LiEi N L SRR
Isgls3 | | | | | | |sn =< 1 i
Sysgsd {4 Fee i Committed
Tuple Store Undo L N T T Tuple Store (checkpoint
ndolog . RN (checkpoint
Table 1o R Table 1
| Table2 o Labie2
v — \y [[
— . | |
1 ﬁ ———— | Tentative -
Table 3 o \ly I EEETable 8
T T T T Tli O
- -r T T 1
M |
-~ = It
___In Memory i ~/ On Stable Storage)

Figure 4. Bayou Database Organization

at the same time in order to commit updates would be unreasonthe Wtites in order and is used to process Read requests. The Undo

able. Log facilitates rolling back tentative Més that have been applied
The primary commit approach also enables updates to committo the Tuple Store so that they can be re-executed infarelift
on a disconnected laptop that acts as the primary s€egexam- order such as when a newly receivedi/ gets inserted into the

ple, suppose a user keeps the primary copy of his calendar wittmiddle of the Wite Log or when existing Vites get reordered
him on his laptop and allows others, such as a spouse or secretaryhrough the commit process.
to keep secondaryostly read-only copies. In this case, the 'sser The Wite Log conceptually contains all tités ever received
updates to his own calendar commit immediat&lyis example by the serveras discussed in Section 5. In practice, a server can
illustrates how one might choose the primary to coincide with the discard a Wite from the Wite Log once it becomes stable, since
locus of update activifythereby maximizing the rate at which by definition the server will never need to rollback and re-execute
Writes get committed. a stable Wite. Bayou servers do, in fact, hold onto a few recently
Unlike other distributed storage systems in which the ability to committed Wites to facilitate incremental anti-entroplge details
commit data is of primary importance, the Bayou design readily of which are beyond the scope of this papéus, the Wite Log is

accommodates the temporary unavailability of the prim@he actually an ordered set offilés containing a tail of the committed
inability of a client to communicate with the primary senfer Writes and all tentative Yiles known to the server

instance if the primary crashes or is disconnected, does not prevent Each server must keep track of whichités it has received but
it from performing useful Read and rifé¢ operations. \Ates are no longer explicitly held in its kite Log. This is to ensure that
accepted by other servers simply remain tentative until they even-the server does not re-accept the samiée®/from another server
tually reach the primary during anti-entropy Each server maintains a timestamp vector

Bayou tries to arrange, but cannot ensure, that the order incalled the “O vector”, to indicate in a compact way the “omitted”
which Wites are committed is consistent with the tentative order prefix of committed Wites. This O vector records, for each server
indicated by their timestamps.rités from a given server are com- the timestamp of the latestrité¢ from the given server that has
mitted in timestamp ordeWrites from diferent servers, however been discarded. A single timestamp vector can precisely character-
may commit in a dferent order based on when the servers per- ize the set of discardedrités because: (1) servers discard a prefix

form anti-entropy with the primary and with each othéfites of their Wite Log, and (2) Wites that originate from any given

held on a disconnected non-primary serf@rinstance, will com- server propagate and get committed in timestamp.order

mit only after the server reconnects to the rest of the system and The Tuple Store we implemented is an in-memory relational

could be committed after kites with later timestamps. database, providing query processing in a subset of SQL, local
transaction support, and some integrity constraints. Requiring a

7. Stor age System | mplementation | ssues database to fit in virtual memory is, admittedlypractical limita-

tion in our current implementation, but is not intrinsic to the over-
all Bayou design. Theuple Store, and its associated language for
The Bayou design places several demands on the underlyingspecifying queries and updates, is the principal place in the Bayou
storage system used by each server including the need for spaceyrchitecture where the issue of data model ariseschiése the
efficient Wite logging, eficient undo/redo of \\te operations, relational model for our initial prototype because of its power and
separate views of committed and tentative data, and support foflexibility. It naturally supports fine-grain access to specific fields
serverto-server anti-entropjWe implemented a storage system of tuples as well as queries and updates to all tuples in the data-

tailored to these special needs. base.
Our _|mpl.ementat|on is factored into three main components as aA unique aspect of theuple Store is that it must support the
shown in Figure 4: th&\tite Log, the Tuple Store, and theUndo two distinct views of a Bayou database that are of interest to cli-

Log. The Wite Log contains Wites that have been received by a ents: committed and full. When a Wite is tentative, its ééct
Bayou serversorted by their global committed or tentative order appears in the full view but not in the committed vi@mce the
The servers Tuple Store is a database that is obtained by eXchtingWrite has been committed, itfedt appears in both views. A ten-

Receive_Writes (writeset, received_from) {
IF (received_from = CLIENT) {
Received one write from the client, insert at end of WriteLog
first increment the server’s timestamp
logicalclock = MAX(systemclock, logicalclock + 1);
write = First(writeset);
write. WID = {logicalclock, myServerID};
write.state = TENTATIVE;
WriteLog_Append(write);
Bayou_Write(write.update, write.dependency_check, write.mergeproc);
} ELSE {
Set of writes received from another server during anti-entropy,
therefore writeset is ordered
write = First(writeset);
insertionPoint = WriteLog_IdentifyInsertionPoint(write. WID);
TupleStore_RollbackTo(insertionPoint);
WriteLog_Insert(writeset);
Now roll forward
FOREACH write IN WriteLog AFTER insertionPoint DO
Bayou_Write(write.update, write.dependency_check, write.mergeproc);
Maintain the logical clocks of servers close
write = Last(writeset);
logicalclock = MAX(logicalclock, write. WID.timestamp);

Figure5. Applying Sets of Bayou Writesto the Database

tative deletion may result in a tuple that appears in the committed The Undo Log permits a server to undo anfeaf on the
view but not in the full viewFor many servers, certainly those that Tuple Store of Wites performed after a given position in theité/

communicate regularly with the primarhe committed and full Log. As each new Vite is received via anti-entropy server
views will be nearly identical. Howevareither view is a subset of inserts it into its WWte Log. Newly committed \Wtes are inserted
the other immediately following the current set of committedités known

Our Tuple Store maintains the union of the two views. Each to the serverwhich may in turn require that some of theset&y
tuple is tagged with a 2-bit characteristic vector identifying the set be removed from their previous tentative positions in thréeW
of views that contain it. The bits of all tupledezted by a \Wite Log. After all the Wites have been received, the server uses its
get set when the ¥ife is applied to the dple Store. Therefore, re- Undo Log to roll back its dple Store to a state corresponding to
executing a Wite when it gets committed is necessary so that all the position where the first newly receivedit®/was inserted. It
corresponding committed bits get set appropriatly query pro- then enumerates and executes all followingt&¥ from the Wite
cessor respects and propagates these bits, so that in the result ofLag, bringing its Tiple Store and Undo Log up-to-date. This pro-
query each tuple is tagged with the views for which that tuple cedure is illustrated in Figure 5.
would be produced if the identical query were run conventianally For crash recovery purposes, both the fulité/Log and a
Propagating these bits through a relational algebra query ischeckpoint of the @iple Store are maintained in stable storage,
straightforward. Assuming the tentative and committed views are while for performance the e Log and the currentuple Store
nearly identical, this technique reduces the space occupied by there maintained in memory as shown in Figure 4. The Undo Log is
Tuple Store, compared to maintaining two separate full and com-maintained only in memoryThe stable checkpoint of thaifle
mitted databases, by nearly a factor of two without substantially Store reflects only a prefix of the committeditds. This check-
increasing the query processing cost. In addition, our query pro-point must contain the fefcts of any Wites that have been trun-
cessor can easily guarantee that identical tuples occurring in thecated from the Wte Log. At all times, a valid ple Store can be
two views of a query result will always be med and delivered as recovered by reading this checkpoint and applying fixsoif the
a single tuple with both bits in the characteristic vector set. This Write Log to it. Thus, to make the database recoverable, Bayou

makes it convenient for clients to base decisions ouliffezence stably records the unique identifier of the lasit®\teflected in the
between the two views without having to gethe results of inde- Tuple Store checkpoint (making it possible to identify the correct
pendent queries. suffix of the Write Log) and makes the W& Log itself recover-

To support anti-entropy fiently, the running state of each able using conventional techniques for logging high-level changes
server also includes two timestamp vectors that represent the comto the Wite Log.
mitted and full views. The “C vector” characterizes the state of the
Tuple Store after executing the last committedt&\in the Wite A ntrol
Log while the “F vector” characterizes the state after executing the8' ceess Contro
last tentative Wte in the Wite Log, that is, the currentuple

Store. These timestamp vectors apeused for conflict detection; ~ Providing access control and authentication in Bayou posed
they simply enable server pairs to identify precisely the sets of interesting challenges because of our minimal connectivity
Writes that need to be exchanged during anti-entropy assumptions. In particulathe design cannot rely on an online,

trusted authentication server [23] to mediate the establishment of

secure channels between a client and server or between two BayoWrites with unsuitable access rights. This level of trust is reason-
servers. As an example, suppose two users holding Bayou replicasble since a server ensures that any server with which it performs
on their portable computers are in a meeting togeBefore per- anti-entropy is authorized to hold a replica of the data collection.
forming anti-entropyeach of the two mutually suspicious servers Having access controls checked for a second time at the pri-
must verify that the other is authorized to manage the data. Simi-mary server ensures that revocations aft&\privileges can be
larly, if one machine simply wants to act as a client for the data applied at the primary and guarantees that any “baditeW
stored on the otheit will want to make sure that the server is attempting to commit after such a revocation will be rejected. In
legitimate and then must prove that it is authorized to access theparticular revocation of \Wite access for a malicious user can be
data. enforced without having to ensure that every server to which such
The access control model currently implemented in the Bayou a user could connect has been notified of the revocation.
system provides authorization at the granularity of a whole data Even though a We’'s mege procedure may perform ftifent
collection, which is the unit of replication. A user may be granted Read operations on the data and perforfieint updates when it
Read and \Wte privileges to a data collection. A user may also be is executed at dérent times, checking access control once is suf-
granted “Server” privileges to maintain a replica of the data on his ficient because of the whole-data-collection access control model.
workstation or portable computdhat is, to run a server for the More fine-grained access control would require careful design
data collection. Enabling servers to run on mobile platforms radi- modifications.
cally departs from the notion of physically protected servers.
l\/_IutuaI authentication and access control in Bayou is_, bas_ed ong Status and Experience
public-key cryptographyEvery user possesses a public/private
key pair and a set of digitally signegtcess contl certificates]] o
granting him access to various data collections. Client applications The implementation of the Bayou system has two distinguish-
and Bayou servers operate on behalf of users and obtain the kefble components: the client stub and the sefe client stub is a
pair and access control certificates from the corresponding user afuntime library linked into applications that use Bayou for storage
start-up time. Currentlywe use a single trusted signing authority Mmanagement. It prowdes. mechamsm; for server location, session
with a well-known public key to sign all access-granting certifi- guarantees, secure sessions, Read arite \3perations, and mis-
cates, though moving to a hierarchy or web of signing authorities C€llaneous utilities. The server implements the Bayou storage

would not be dfficult. management including the mechanisms for conflict detection and
Bayou uses three types of certificates to grant, delegate andesolution, server to server communication, and persistent data-
revoke access to a data collection: base management. Baysimplementation is Posix compliant and

developed in ANSI C so that the same sources run on Intel-based

laptops with Linux and on our regular development platform of

Sun SRRCstations with SunOS.

In the current implementation, ILU [14], a language-indepen-
dent RPC package developed at XerARE, is used for commu-

h . e . - nication between Bayou clients and servers, as well as between
is PY to delegate his p_”""eg*?s encoded in certificate C to servers. Server location, by both clients and other servers, uses a
another user whose public key is PU. _ ~ simple decentralized registration and lookup service for key-value

* R[C, PY] - certificate signed by the user whose public key is pairs that are made visible across a network via multicast. Bayou
PY to revoke some u_SerprIVI_Ieges encoded in Certlflca.te. C, memge procedures arg;ﬂ'programs [24] that are run in alTnter-
the user whose public key is PY must also have originally preter modified to enforce the limits described in Section &. W
signed certificate C. foresee that these components may change as the system evolves.
Revocation certificates are stored byitéé to, and hence prop- The two running applications have demonstrated how to use

agated with, the data collections to which they apphrtificates Bayous conflict detection and resolution mechanisnfiscéfrely.

that revoke server privileges may also be kept by client users tolnterestingly one of the lessons we learned immediately from

ensure protection against malicious servers. Users maintain a these applications was that the Bayou server had to supply a per

tificate purse which applications running under their identity can database library mechanism focl Tode invoked by the mge

* ACI[PU, R D] - certificate that grants privilege P (one of Read,
Write, or Server) on data collection D to the user whose public
key is PU. AC certificates are signed by the well-known sign-
ing authority

* D[PU, C, PY] - certificate signed by the user whose public key

both read and append to. procedures. Otherwise, fités are bloated by the g amount of
For a server to determine whether a client has some privilegerepeated code in their nger procedures. For both the meeting
for the servess data, the server first authenticates the cigdén- room scheduler and the shared bibliographic database manager

tity using a challenge/response protocol. The client also hands theonly two of roughly 100 lines ofcT in the original mege proce-
server a certificate that asserts the privilege in question. The serveflures changed from onerif¢ to another
must verify that the certificate is legitimate, that the certificate and ~ The performance of Bayou depends on several factors, such as
any enclosed certificates for a delegation have not been revoked téhe schema of the data being stored, the amount of data stored at a
the servels knowledge, and that it grants the necessary accessserver the location of clients and servers, and the platforms on
rights. Serveto-client and serveto-server authentication and which the components are running. This section shows how Bayou
access control checking is done in a similar fashion. The establishperforms for a particular instance of the system: a server and client
ment of mutual trust between a server and a client is performed afor the bibliographic database described in Section 2. The database
the beginning of &ecue sessiorand covers all Read or rité is composed of a single table containing 1550 tuples, obtained
operations performed as part of that session. A server will preemptfrom a bibtex source [21]. Each tuple was inserted into the data-
the session if it is notified of a revocation thdeetls a certificate ~ base with a single Bayou W& operation. Results are presented
associated with the session. for five different configurations of the database characterized by
For Write operations, the submitteraccess rights are checked the number of \ites that are tentative. For each configuration we
once by the accepting seryand then again at the primary when measured storage requirements and the execution times for three
the Wite is committed. Servers, other than the primavizen operations in the system: undoing and redoing tfeetedf all ten-
receiving a Wite during anti-entropy trust that the accepting tative Wites, executing a client Read operation against the data-
server has correctly checked the Useprivileges and rejected base, and adding a newrit® to the database.

Table 1: Size of Bayou Storage System for the Bibliographic Database with 1550 Entries
(sizes in Kilobytes)

Number of Entative Wites 0 50 100 500 1550
(none) (all)
Write Log 9 129 259 1302 4028
Tuple Store Ckpt 396 384 371 269 1
Total 405 513 630 1571 4029
Factor to 368K bibtex source 11 1.39 1.71 4.27 10.95

Table 2: Performance of the Bayou Storage System for Operations on Tentative Writesin the Write Log
(times in milliseconds with standard deviations in parentheses)

Tentative Wites 0 50 100 500 | 1550
Server running on a Sun ARC/20 with Sunos

Undo all 0 31 6) 70 (20) | 330 (155) 866 (195)
(avg. per Wite) .62 7 .66 .56
Redo all 0 237 (85) 611 (302) | 2796 (830) | 7838 (1094)
(avg. per Wite) 4.74 6.11 5.59 5.05

Server running on a Gateway Liberty Laptop with Linux
Undo all 0 47 ?3) 104 (7) | 482 (15) 1288 (62)
(avg. per Wite) .94 1.04 .96 .83
Redo all 0 302 (91) 705 (134) | 3504 (264) | 9920 (294)
(avg. per Wite) 6.04 7.05 7.01 6.4

Table 3: Performance of the Bayou Client Oper ations
(times in milliseconds with standard deviations in parentheses)

Server Sun SRRC/20 | Gateway Liberty | Sun SRRC/20
Client same as server| same as server | Gateway Liberty
Read: 1 tuple 27 (29) 38 (5) 23 4)

100 tuples| 206 (20) 358 (28) 244 (10)

Write: no conflict 159 (32) 212 (29) 177 (22)
with conflict 207 (37) 372 a7) 223 (40)

Table 1 shows that the size of a tentativét&\for this database Table 3 shows the performance of client/server interactions for
is about 10 times that of a committedit®. Over half of a tenta- the bibliographic database. Measurements were taken for three
tive Write's size is taken by the access control certificate required computing platform combinations: a Bayou server and biblio-
for security The serves storage requirements decrease signifi- graphic database client running on the same S#REBtation/

cantly as data gets committed. When most of théed/in the 20, both server and client running on the same Gateway Liberty
database are committed, its size is almost identical to that of thelaptop, and, finallythe server running on the SunARCstation/
bibtex file from which the data was obtained. 20 and the client running on the Gateway Lih€eFtye numbers for

Table 2 illustrates the execution times for a Bayou server to both Reads and M¥es include the costs of session guarantee man-
undo and then redo all Nies that are tentative in each configura- agement, the RPC propend a database quewhich for Wites
tion of the bibliographic database. Each result corresponds to thds part of the dependency check. Additionaliyrites require two
average over 100 executions of the undo/redo operations. The codile system synchronization operations and, in case of conflict, the
incurred by the server is a function of the number afé4 being execution of the mege procedure, which runs another database
undone and redone. While in general the size of ti@eTStore query For Wites involving conflicts, the bibliographic entry key
may afect the performance of executing aii®, the cost of redo- presented in each Nig is not unique and, hence, must be reas-
ing each tentative We for this database is close to constant signed in the mege procedure as discussed in Section 2.2; the key
because dependency checks are selections on the datgiéise’ presented is changed after each set of fivéteWbperations.
mary key index, and are therefore independent of theeTStore Because Reads operate on the in-memauplel Store, running
size. The standard deviations on the Sun tend to be higher tharselections on the primary kegnd Wites are appended to the
those for the laptop since the Sun workstation was running a muchWrite Log, execution times across thefeliént database configura-
higher workload of other applications than the laptop. tions vary little. Hence we present the combined average of the

500 executions of each operation over all configurations.

10

10. Conclusions Security Bayou executes each rgerprocedure within a secure
environment in which the only allowable external actions are
reading and writing data using the access credentials of the
user who submitted the conflictingrié. Public-keydigitally-
signed certificates permit authentication and access control
outside the presence of an authentication server ar user

Bayou is a storage infrastructure for mobile applications that
relies only on weak connectivity assumptions.cbpe with arbi-
trary network partitions, the system is built around-page cli-
ent-server and servserver communications.oTprovide high R - o
availability, Bayou employs weakly consistent replication where _ Applications that can best utilize Baysu'eplication scheme
clients are able to connect to any available server to perform Read§€ those for which reading weakly consistent, tentative data is
and Wites. Support for automatic conflict detection and resolution acceptable and for which the chance of update conflicts is low or
enables applications to deal with concurrent updatestiafely. the success of automatic resolution is high. Provided that the pen-
The system guarantees eventual consistency by ensuring that afiity for co_nfllct iS not excessive, _humans' would rather dea_l with
updates eventually propagate to all servers, that servers performn€ occasional unresolvable conflict than incur the adverse impact
updates in a global ordeand that any update conflicts are resolved ON availability inherent in systems that avoid conflicts altogether
in a consistent manner at all servers. such as those based on pessimistic locking. A number of shared

Bayous management of update conflictsfeli§ significantly databases, such as phone books and bulletin boards, meet these
from previous replicated systems, including file systems like Coda Characteristics, as do many asynchronous collaborative applica-

[18] and Ficus [26] as well as Oraclebcent commercial database ~ tions [22]. , . _
offering [8], in the following main areas: We have built an initial version of the Bayou system and our

measurements indicate that its performance and overhead are
acceptable. In particularunning Bayou servers and applications
flicts without the applications’ knowledge. In contrast, Bayou 22 ;ﬁ?fﬁyfhgtpt;ﬂgﬁ %?%Legséit::azggf‘%g r?ri?)ilg:(;n g;tsBaaI;gu,
adopts the philosophy that applications must be aware of andheaviewveight Wite operations is present only so long asan

integrally involved in conflict detection and resolution. Bayou operation is tentative. Committed data is no more expensive than
applications can take advantage of the semantics of their data P . P

to minimize false conflict detections and maximize the ability :,: ot“r::t;isgrr;r;péir ts gorg]gg :yg&eg%e\g(ree?ilrsnoeﬁﬁgdIrd\%tﬁ ?hue%bfg O;in
to resolve detected conflicts automatically pp P Y P 9 g

. . . - better insights into their needs.
Application-specific conflict detectioffrile systems that rely on Issues we are planning to explore further in the context of

version vectors and database systems that employ optimisticgayoy include partial replication, policies for choosing servers for
concurrency control detect update conflicts by observing cli- anti-entropy building servers with conventional database manag-
ents’ Reads and Wes. Using application-provided rules for grg alternate data models, and finer grain access control. Our cur-
detecting conflicts, called dependency checks, Bayou canyentfocus is on supporting partial replicas that contain subsets of a
detect a wider class of conflicts, particularly those that depend gata collection, which is important for some laptop-based applica-
on application semantics. tions and raises a number offiifilt problems ranging from char-
Perwrite conflict esolvers Whereas Coda, Ficus, and Oracle all acterizing a partial replica to resolving conflicts in a consistent
permit clients to write custom procedures to resolve conflicts, manner across partial replicas. The next steps in the implementa-
these resolvers are stored within the system and invoked base@on will include the development of other applications, such as an
on the type of the file or data in conflict. In Bayou, eaciteNV e-mail readerporting refdbms [1], a widely used shared biblio-
operation includes, in addition to the desired update and graphic database managgrrun on the Bayou storage system, and
dependency check, a rgerprocedure that gets executed if the experimenting with wireless connectivity for servers and clients
Write is determined to have caused a conflict. The power of running on a laptop.
this approach is demonstrated in applications, such as Bayou’
meeting room schedulevhere the mge procedure varies for
each Wite.

Partial and multi-object updatesBayous White operations can .) .))
atomically perform insertions, partial modifications, and dele- ~ The Bayou design has benefitted from discussions with a num-

tions to one or more data objects. This means that, unlike sys-Per of colleagues, including our fellowARC researchers anam

tems with a whole-file update model where storing the most Anderson, Mary BakeBrian Bershad, Hector Garcia-Molina, and
recent data contents is foient, Bayou servers must apply Terri _Wat_son. _Vbé especially thank Brent &th for hl_s technical
every Wite operation. &chniques have been devised in Bayou contributions in the early stages of the Bayou project. Atul Adya
for propagating, ordering, and undoing/redoingitéVopera- and Xinhua Zhou helped implement the first Bayou applications,
tions to ensure eventual consistency for arbitrary updates andfom which we learned a tremendous amount. Surendar Chandra
conflict resolution procedures. These techniques are neededOntributed significantly to making the network environment on
not only for relational database models, as in the current Bayou®Ur 1aptops work. Sue Owicki helped guide the final revisions to

system, but also for file systems supporting record-level this paper Mark Weiser and Craig Mudge, as managers of the
updates and multi-file atomic transactions. Computer Science Lab, have been supportive throughout.

Non-transpaency Previous systems have tried to support existing
file and database applications by detecting and resolving con-

11. Acknowledgments

Tentative and stableesolutions The Bayou system is novel in
maintaining both full and committed views of the data while 12. References
permitting clients to read eitheBoth clients and servers in

Bayou want to know when any conflicts involving aité/ [1] R. Alonso and H. FKorth. Database system issues in

have been fully resolved. Committing ait ensures that its nomadic computingProceedings ACM SIGMOD Interna-
outcome is stable, including the resolution of conflicts involv- tional Confeence on Management of Daté/ashington,
ing the Wite. The rate at which Wes stabilize is independent D.C., May 1993, pages 388-392.

of the probability of conflict. In keeping with the goal of mini-
mal connectivity requirements, Bayou commitsitéé using a
primary server

1

[2] K. Birman, A. Schiperand P Stephenson. Lightweight, [17] P. Kumar and M. Satyanarayanan. Log-based directory reso-

causal and atomic group multicasiCM Transactions on lution in the Codaile system Proceedings Second Interna-
Computer Systems 9(3):272-314, August 1991. tional Conference on Parallel and Distributed Information

[3] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder Systems, San Diego, California, January 1993.

Grapevine: An exercise in distributed computi@gmmuni- [18] P. Kumar and M. Satyanarayanan. Flexible and safe resolu-
cations of the ACM 25(4):260-274, April 1982. tion of file conficts. Proceedings USENIX Technical Confer-

[4] M. J. Carey and M. LivnyConfict detection traded$ for ence, New Orleans, Louisiana, January 1995, pages 95-106.
replicated dataACM Transactions on Database Systems [19] R. Ladin, B. Liskoy L. Shrira, and S. Ghemawat. Providing
16(4):703-746, December 1991. high availability using lazy replicatioACM Transactions on

[5] B. A. Coan, B. M. Oki, and E. K. Kolodnekimitations on Computer Systems 10(4):360-391, November 1992.
database availability when networks partiti®noceedings [20] L. Lamport. Tme, clocks, and the ordering of events in a dis-
Fifth ACM Symposium on Principles of Distributed Comput- tributed systemCommunications of the ACM 21(7):558-565,
ing, Calgary Alberta, Canada, August 1986, pages 187-194. July 1978.

[6] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in [21] L. Lamport.LaTeX - a document preparation system. Addi-

a partitioned network: A surveACM Computing Surveys son-Wesley Publishing Compan$986.
17(3):341-370, September 1985. [22] J. P Munson and FDewan. A flexible object mging frame-

[71 A. Demers, D. Greene, C. Haus#V. Irish, J. Larson, S. work. Proceedings ACM Conference on Computer Supported
ShenkerH. Stugis, D. Swinehart, and D.efry. Epidemic Cooperative Work (CSCW), Chapel Hill, North Carolina,
algorithms for replicated database maintenaRoaceedings October 1994, pages 231-242.

Sixth Symposium on Principles of Distributed Computing, [23] R. M. Needham and M. D. Schroedelsing encryption for
VancouverB.C., Canada, August 1987, pages 1-12. authentication in laye networks of computer€ommunica-

[8] A. Downing. Conlict resolution in symmetric replication. tions of the ACM 21(12): 993-999, December 1978.
Proceedings European Oracle User Group Conference, Flo- [24] J. OusterhoufTcl and the Tk Toolkit. Addison-Wésley Pub-
rence, Italy April 1995, pages 167-175. lishing Company1994.

[9] C. Ellis and S. Gibbs. Concurrency control in groupware sys- [25] D. S. ParkerG. J. Popek, G. Rudisin, A. Stoughton, B. J.
tems.Proceedings ACM SIGMOD International Conference Walker, E. Walton, J. M. ChowD. Edwards, S. Kiseand C.
on Management of Data, Portland, Oregon, June 1989, pages Kline. Detection of mutual inconsistency in distributed sys-
399-407. tems.|EEE Transactions on Software Engineering SE-

[10] R. A. Golding. A weak-consistency architecture for distrib- 9(3):240-246, May 1983.
uted information service€omputing Systems 5(4):379-405, [26] P. Reiher J. Heidemann, D. Ratnes. Skinnerand G. Popek.
Fall 1992. Resolving ile conficts in the Ficusife system Proceedings

[11] R. Golding, D. Long, and J. Wes. The refdbms distributed Summer USENIX Conference, June 1994, pages 183-195.
bibliographic database systeRroceedings Winter USENIX [27] M. Satyanarayanan, J.J. Kistlét Kumar M.E. Okasaki,
Conference, San Francisco, California, January 1994, pages E.H. Siegel, and D.C. Steere. Coda: a highly availdtge f
47-62. system for a distributed workstation environmdfEE

[12] R.G. Guy J.S. Heidemann, WMak, TW. Page, Jr G.J. Transactions on Computers 39(4):447-459, April 1990.

Popek, and D. Rothmeidmplementation of the Ficus repli- [28] M. StonebrakerConcurrency control and consistency of mul-
cated ile system Proceedings Summer USENIX Conference, tiple copies of data in distributed INGREEEE Transac-
June 1990, pages 63-71. tions on Software Engineering SE-5(3):188-194, May 1979.

[13] T. Imielinski and B. R. Badrinath. Mobile wireless comput- [29] D. B. Terry, A. J. Demers, K. Petersen, M. J. SpreijtserM.
ing: Challenges in data managemeZgmmunications of the Theimer and B. B. \alch. Session guarantees for weakly con-
ACM 37(10):18-28, October 1994. sistent replicated dat®roceedings Third International Con-

[14] B. Janssen and M. Spreitzémter-Language Unification - ference on Parallel and Distributed Information Systems,
ILU. ftp://ftp.parc.xerox.com/publ/ilu/ilu.html. Austin, Texas, September 1994, pages 140-149.

[15] L. Kalwell Jr, S. Beckhardt, THalvorsen, R. Ozzie, and I. [30] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The
Greif. Replicated document management in a group commu- LOCUS distributed operating system. Proceedings Ninth
nication system. lisroupware: Software for Computer-Sup- Symposium on Operating Systems Principles, Bretton
ported Cooperative Work, edited by D. Marca and G. Bock, Woods, New Hampshire, October 1983, pages 49-70.

IEEE Computer Society Press, 1992, pages 226-235.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file systemdCM Transactions on Computer Sys-
tems 10(1): 3-25, February 1992.

12

