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Abstract

In this paper, we describe the collection and analysis of
file system traces from a variety of different environ-
ments, including both UNIX and NT systems, clients and
servers, and instructional and production systems. Our
goal is to understand how modern workloads affect the
ability of file systems to provide high performance to
users. Because of the increasing gap between processor
speed and disk latency, file system performance is
largely determined by its disk behavior. Therefore we
primarily focus on the disk 1/O aspects of the traces. We
find that more processes accessfilesvia the memory-map
interface than through the read interface. However,
because many processes memory-map a small set of files,
these files are likely to be cached. We also find that file
access has a bimodal distribution pattern; somefilesare
written repeatedly without being read; other files are
almost exclusively read. We develop a new metric for
measuring file lifetime that accounts for files that are
never deleted. Using this metric, we find that the average
block lifetime for some workloads is significantly longer
than the 30-second write delay used by many file systems.
However, all workloads show lifetime locality: the same
filestend to be overwritten multiple times.

1 Introduction

focused on cache and virtual memory behavior. Since the
relative performance of hardware has changed since that
time, we focus instead on the 1/O bottleneck.

We collected traces from four different groups of
machines. Three of the groups run HP-UX, a variant of
the UNIX operating system. One of these is an instruc-
tional laboratory, another is a set of computers used for
research, and another is a single web server. The last
group is a set of personal computers running Windows
NT. This diversity of traces allows us to make conclu-
sions not only on how current file system usage differs
from past file system usage, but also how file system
usage varies among machines used for different pur-
poses.

Because improvements in disk latency are increasingly
lagging behind those of processors and disk bandwidth,
we chose to focus our study on measurements that eluci-
date how disk behavior is affected by workload and file
system parameters. As the 1/0O gap grows, one way to
provide good performance is to cache as many file reads
and writes as possible and to minimize latencies for the
remainder. For example, one way to avoid disk reads is
by employing large file caches. Our results show that
while small caches can avert many disk reads, there are
diminishing benefits for large cache sizes. In addition to
file reads, memory-mapping has become a popular file
access method. We examine memory-mapping behavior

Like other computer systems, file systems provide gooéh order to see the effect of memory-mapped files on the
performance by optimizing for common usage patternsiile cache. We find that more processes access files via
Unfortunately, usage patterns vary both over time anéhemory-mapping than through reads or writes. For the
across different user communities. To help delineate cutNIX workloads, we find that a small set of memory-
rent workload patterns, we decided to measure a widgapped files tend to be shared among many processes.
range of file systems in a number of different environ-As a result, cache misses on these files are unlikely.
ments, specifically, UNIX and Windows NT, client and
server, instructional, research, and production. We comlo avoid disk writes, the file system can increase the
pare our results with those from the Sprite study, contime between an application’s write and flushing the data
ducted in 1991. Although we were interested in tracking0 disk, for example, by using NVRAM. By delaying
how behavior has changed since the Sprite study, we d@ites, blocks that are deleted in the interval need not be
not directly reproduce all of their results. Their studywritten at all. We find that most blocks live longer than
the standard 30-second write delay commonly employed
This research was supported by the National Science Foundaticmy file systems. In UNIX systems, most blocks die
(Grant No. CCR-9972244), the State of California MICRO program,Within an hour; in NT, many blocks survive over a day.
Cisco Systems, Fujitsu Microelectronics, IBM, Intel Corporation, Max- Most blocks die due to overwrites, and these overwrites
tor Corporation, Mic_rosoft Corporation, Quantum.Corporation,_ Sonyhave a high degree of locality—that is, most overwritten
Research Laboratories, Sun Microsystems, Toshiba Corporation, armes are multiply overwritten. Because of this locality,

Veritas Software. In addition, Roselli was supported by a GAANN fel- f . . . s
lowship. even a small write buffer is sufficient to handle a day’s




worth of write traffic. ior in [Floy89] do not include file read or write requests.
The disk activity study in [Ruem93] is at the disk level
To reduce disk seeks, most file systems organize thejng does not include specific file system calls. Mummert
layout to optimize for either reads or writes. We find thagt 5. focused on results relevant to disconnected file sys-
whether read traffic or write traffic dominates variesiem operation [Mumm94]. Zhou and Smith collected

depending on the workload and the file system configuraces on personal computers for research in low-power
ration. However, for all workloads, we find that individ- computing [Zhou99)].

ual files tend to have bimodal access patterns—they are
either read-mostly or write-mostly. This tendency is mostn 1985, Ousterhout et al. presented a general character-
clear in frequently accessed files. ization of dynamically collected traces [Oust85]. In this
work, they traced three servers running BSD UNIX for
slightly over three days. This paper introduced a frame-
work for workload analysis using metrics such as run
length, burstiness, lifetime of newly written bytes, and
file access sequentiality. Henceforth, we refer to this
ork as the BSD study. In 1991, Baker et al. conducted

2 Related Work

Characterizing file system behavior is difficult due to
both the wide range of workloads and the difficulty in

obtaining data to analyze. Obviously, no trace analysi

project has the scope to analyze all relevant features of & ethsarge .ttypﬁ of anfllys%oE fgir t_\ll_vr? -day lsl' et? c()jf ttlzaces
relevant workloads. Instead, each study lets us undet?— € ?:Ihe f!le system [ %e ] te{j(iﬁ ec e'th (la_set
stand a piece of the greater picture. races at the file servers and augmented them with clien

information on local cache activity. For the rest of this
In order to minimize the complexity of trace collection, Paper, we refer to this work as the Sprite study. The data
many studies concentrate on static data, which they coknalysis techniques developed in the BSD and Sprite
lect by examining file system metadata at one or severgfudies were repeated in several subsequent studies. In
frozen instants in time [Douc99] [Sien94] [Chia93] 1991, Bozman et al. repeated many of the Sprite studies
[Benn91] [Saty81] [Smit81]. These studiessnépshots ~ Using traces from two separate IBM sites [Bozm91].
are useful for studying distributions of file attributes This study confirmed that the results from the Sprite
commonly stored in metadata, such as file size, lagitudy applied to non-academic sites. In 1999, the same
access time, last modification time, file name, and direcstudies were repeated on three sets of two-week traces
tory structure. taken from 45 hosts running Windows NT [Voge99].
This workload is close to our NT workload, and for the
Dynamic traces of continuous file system access patterzmalyses that are directly comparable (file size, file life-
yield more detailed information about file system usagetime and access patterns), our results are similar.
However, these traces are considerably more difficult to
collect both because of the volume of data involved ant this work, we repeat some of the influential studies
because the collection process typically involves modifyintroduced by the BSD study, such as file access pat-
ing the operating system kernel. Some tracing method€rns. In addition, we contribute new studies that have
avoid altering the kernel by recording file system event§ecome relevant to modern systems, such as the effect of
that pass over a network [Blaz92] [Dahl94]. However,memory-mapping files on the file cache. A more com-
this method misses file system events that do not crogdete comparison of the Sprite studies against our UNIX
the network, such as local file system calls. Also, artifraces can be found elsewhere [Rose98]. Because the
facts of the network file system being measured caf®prite traces are publicly available, we generate results
affect these types of traces. for the Sprite traces wherever possible for purposes of
comparison.
Modifying the kernel to obtain local file system behavior
has its own set of drawbacks. First, the kernel sourc
code is not always available. Second, the modified ker?
nels must be deployed to users willing to run their appli-
cations on an altered kernel. Finally, the overhead d8.1 Environment
collecting fine-grained traces must be kept low so that
overall system performance is not significantly We collected the traces discussed in this paper in four
degraded. Due to these limitations, most researchegeparate environments. Three of these environments use
limit their trace collection to only the data that is necesHewlett-Packard series 700 workstations running HP-
sary to perform specific studies. For example, the tracédX 9.05. Each of the HP-UX machines has 64MB of
collected to perform analysis of directory access behavnemory. The first group consists of twenty machines
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located in laboratories for undergraduate classes. For timeentations are quite different.
rest of this paper, we refer to this workload as the Instruc-
tional Workload (INS). The second group consists of 1 .

machines on the desktops of graduate students, facul ',2'1 HP-UX Collection Methodology

and administrative staff of our research group project. , »
We refer to this workload as the Research Workload©" the UNIX machines, we used the auditing subsystem

(RES). Of all our traces, the environment for this work-© record file system events. Although the auditing sys-
load most closely resembles the environment in whicifM Was designed for security purposes, it is ideal for
the Sprite traces were collected. We collected the thirfaCing since it catches the logical level of requests using

set of traces from a single machine that is the web serv8fréady-existing kernel functionality. The auditing sub-

for an online library project. This host maintains a dataSyStem gets invoked after a system call and is configured

base of images using the Postgres database manageni@nlod specified system calls with their arguments and
system and exports the images via its web interface. Thf§{Urn values. However, it does not record kernel file
server received approximately 2,300 accesses per daystem activity, such as paging from executable images.

during the period of the trace. We refer to this as therhe major problem we faced in using the auditing sys-

WEB workload. The INS machines mount home directos, ., \vas that HP-UX records pathnames exactly as spec-

ries and common binaries from a non-traced HeWIen|'ﬁed by the user, and users often specify paths relative to

Packard workstation. In total, we collected eight monthg, . . /. rent working directory instead of with their com-
of traces from the INS cluster (two semester;), one ye%ﬂete paths. Since some file systems use a file's parent
of tr?ﬁ e? tfrom tf;e ths Cvl\l;étBerh art1d approximately on irectory to direct file layout, we needed to record the
month oftraces from the ost full pathname. We solved this problem by recording the

We collected the fourth group of traces from eight deskeUIment working directory’s pathname for each process

top machines running Windows NT 4.0. Two of these®"d configuring the auditing system to catch all system
machines are 450 MHz Pentium Ilis, two are 200 MHanIIs capable of chaqglng the current working directory.
Pentium Pros, and the other four are Pentium Iis rangin§1€S€ changes required only small changes to the kernel
from 266-400 MHz. Five of them have 128 MB of main(aPout 350 of lines of C code) and were wholly con-
memory, while the others have 64, 96, and 256 mptained within the auditing subsystem.

These hosts are used for a variety of purposes. Two are

used by a crime laboratory director and his supervisor,3 2 2 \Windows NT Collection M ethodol ogy

state police captain; they use these machines for time

management, personnel management, accounting, Pize collected the Windows NT traces using a tool we
curement, mail, office suite applications, and web browsge,e|oped that traces not only file system activity, but
ing and publishing. Another two are used for networking,iso a wide range of device and process behavior

and system administration tasks: one primarily runs an ﬁorcOO]. We focus here on the aspects of the tracer rel-
server, email client, web browser, and Windows NT sysg, ant to tracing file system activity.

tem administration tools; the other primarily runs office
suite, groupware, firewall, and web browsing applica\We perform most of the file system tracing using the
tions. Two are used by computer science graduate stgtandard mechanism in Windows NT for interposing file
dents as X servers as well as for software developmerystem calls: a file system filter driver. A file system fil-
mail, and web browsing. Another is shared among theer driver creates a virtual file system device that inter-
members of a computer science graduate research groggpts all requests to an existing file system device and
and used primarily for office suite applications. The finalhandles them itself. Our filter device merely records
machine is used primarily as an X server, but occasioninformation about the request, passes the request on to
ally for office suite and web browsing applications.the real file system, and arranges to be called again when
Despite the different uses of the NT machines, the resultae request has completed so it can record information
are similar for all the machines, so we include themabout the success or failure of the request. The design of
together as one group. our filter driver borrows much from the Filemon file sys-
tem monitoring program [Russ97b].

3.2 Trace Collection Methodology A Windows NT optimization called thiast path com-

We used separate tools to collect traces for the HP_URIicates tracing these file systems. The operating system

and Windows NT systems. While both of our collectionUS€S this optimization whenever it believes a request can
techniques trace similar file system events, their imple?® handled quickly, for example, with the cache. In this



case, it makes a call to afast-dispatch function provided
by the file system instead of passing requests through the
standard request path. In order to intercept these calls, we
implemented our own fast-dispatch functions to record
any calls made this way.

In order to collect data on memory-mapping operations,
we needed to interpose Windows NT system calls. This
is difficult because Microsoft gives no documented way
to do this. Fortunately, atool called Regmon solves this
problem; it finds the system call entry point vector in
memory and overwrites certain entry pointswith our own
[Russ97a).

Because we interpose at the file system layer and not at
the system call layer, there were some challengesin con-
verting our traces to aformat comparable with the UNIX
traces. Thefirst problem ariseswhen thefile system calls
the cache manager to handle a read request, and there is
amiss. The cache manager fills the needed cache block
by recursively calling the file system. We need to iden-
tify the recursive requests because they do not reflect
actual read requests and should be elided. We distinguish
them by three of their properties: they areinitiated by the
kernel, they have the no-caching flag set (in order to pre-
vent an infinite loop), and they involve bytes that are
being read by another ongoing request. The second prob-
lem is that we cannot distinguish a read caused by an
explicit read request from one caused by kernel-initiated
read-ahead. We distinguish the latter by looking for read
requests with the following four properties: they areini-
tiated by the kernel, they have the no-caching flag set,
they do not involve bytes currently being read by another
request, and they are made to a file handle that was
explicitly read earlier. Finaly, it isalso difficult to deter-
mine which read and write requests are due to paging of
memory-mapped files. If arequest isinitiated by the ker-
nel with the no-caching flag set and it does not belong to
any of the previous characterizations, we classify it as a

paging request.

Thefile system interface of Windows NT is quite differ-
ent from that of UNIX. For instance, there is no st at
system call in Windows NT, but thereisasimilar system
cal: ZwQuer yAttri but esFi | e. For the purpose of
comparison, we have mapped the request types seen in
Windows NT to their closest analogous system calls in
UNIX in this paper.

4 Resaults

Due to the time-consuming nature of collecting statistics
on the entire length of our traces (which are currently
over 150GB compressed), we present results in this

paper based on subsets of the traces. For the INS and
RES traces, we used traces collected from the month of
March 1997. For WEB, we used the traces from January
23 to February 16, 1997. Because this trace includes
activity not related to the web server, we filtered it to
remove non-web-server activity. Because the NT traces
begin at different times, we chose a 31-day period for
each host. All but one of these periods were within the
first quarter of the year 2000; the other trace was taken
from October and November of 1999. For the Sprite
results, our results differ slightly from those presented
by Hartman and Ousterhout [Hart93] because we filter
them differently. For example, we do not include non-
file, non-directory objectsin any results.

None of our results include paging of executables. For
the NT workload, executable paging constitutes 15% of
all reads and nearly 30% of all writes. Paging activity for
the UNIX workloads is unknown.

4.1 Histogram of Key Calls

To provide an overview of our workloads, we first
present counts of the most common events traced; these
are summarized in Tablel1. The results reveal some
notabl e differences among the workloads. For example,
the WEB workload reads significantly more data than
the other workloads; its read to write ratio is two orders
of magnitude higher than any other workload. The NT
workload reads and writes more than twice the amount
of data per host per day than the INS and RES work-
loads, despite having significantly fewer users. Also,
notable in al workloads is the high number of requests
to read file attributes. In particular, cals to st at
(including f st at) comprise 42% of al file-system-
related calls in INS, 71% for RES, 10% for WEB, and
26% for NT.

Two common usage patterns could account for the large
number of st at cals. Firgt, listing a directory often
involves checking the attributes of each file in the direc-
tory: ast at system call is made for each file. Second,
a program may call stat to check attributes before
opening and accessing a file. For example, the make
program checks the last modification times on source
and object files to determine whether to regenerate the
object file. We measured the percentage of st at calls
that follow another st at system call to afile from the
same directory to be 98% for INS and RES, 67% for
WEB, and 97% for NT. The percentage of st at calls
that are followed within five minutes by an open to the
same file is 23% for INS, 3% for RES, 38% for WEB,
and only 0.7% for NT.



TABLE 1. Trace Event Summary

INS RES WEB NT Sprite
hosts 19 13 1 8 55
users 326 50 7 8 76

days 31 31 24 31 8
data read (MB) 94619 52743 327838 125323 42929
data written (MB) 16804 14105 960| 19802 9295
read:write ratio 5.6 3.7| 3415 6.3 4.6
all events (thousands) 317859 112260 11226Q 145043 4602
fork (thousands) 4275 1742 196 NA NA
exec (thousands) 2020 779 319 NA NA
exit (thousands) 2107 867 328 NA NA
open (thousands) 39879 4972 6459 21583 1190
close (thousands) 40511 5582 6470, 21785 1147
read (thousands) 71869 9433 9545 39280 1662

write (thousands) 4650 2216 779 7163| 455
mem. map (thousandg) 7511 2876 1856 614 NA
stat (thousands) 135884 7983 3078 37035 NA

get attr (thousands) 1175 826 15 36 NA
set attr (thousands) 467 160 23 273 NA
chdir (thousands) 1262 348 80 NA NA
read dir (thousands) 4009 1631 172| 12486 NA
unlink (thousands) 490 182 2 285 106
truncate (thousands) 37 4 0 1981 42
fsync (thousands) 514 420 2 1533 NA
sync (thousands) 3 71 0 NA NA

This table summarizes the number eémts for the time
period indicated for each traceorFall workloads, the
above calls representver 99% of all traced calls. The ge
attribute  catgory includes getacl, fgetacl,
access, andget access. The set attribte catgory
includeschnod, chown, uti e, f chnod, f chown,
setacl, andf setacl . The number of users is esti
mated from the number of unique user identifiers se
This may be anwerestimate since some user identifie
are simply administrate. For the NT tracesexec and
chdi r calls were not recorded, and process forks ¢
exits were recorded only periodically during the N
traces.

load is important in determining appropriate write delay
times and in deciding how long to wait before reorganiz-
ing data on disk. Our method of calculating lifetime dif-
fers from that used in the Sprite study, and, in some
cases, results in significantly longer lifetimes. We find
that most blocks live longer than 30 seconds—the stan-
dard write-delay used in many file systems. In particular,
blocks created in the NT workload tend to be long-lived.
Most blocks die by being overwritten, and these blocks
are often overwritten many times.

4.2.1 Create-based Method

We calculate lifetime by subtracting a block’s creation
time from its deletion time. This is different from the
delete-based method used by [Bake91] in which they
track all deleted files and calculate lifetime by subtract-
ing the file's creation time from its deletion time. In our
create-based method, a trace is divided into two parts.
We collect information about blocks created within the
first part of the trace. We call the second part of the trace
the end margin. If a tracked block is deleted during
either part of the trace, we calculate its lifetime by sub-
tracting the creation time from the deletion time. If a
tracked block is not deleted during the trace, we know
the block has lived for at least the end margin.

The main difference between the create-based and
delete-based methods is the set of blocks that we use to
generate the results. Because the delete-based method
bases its data on blocks that are deleted, one cannot gen-
eralize from this data the lifetime distribution of newly
created blocks. Because that is the quantity which inter-
ests us, we use the create-based algorithm for all results
in this paper. One drawback of this approach is that it
only provides accurate lifetime distributions for life-
times less than the end margin, which is necessarily less
than the trace duration. However, since our traces are
long-term, we are able to acquire lifetime data sufficient

Since this system call is so common, it would be worthfor our purposes; we use an end margin of one day for all
while to optimize its performance. Since it is most com+esults in this section. Figueshows the difference in

monly invoked near othest at calls in the same

results of create-based and delete-based methods on one

directory, storing the attribute data structures togethesf the Sprite traces. Due to the difference in sampled
with those from the same directory [McKu84] or within files, the delete-based method calculates a shorter life-
the directory structure [Gang97] may provide better pertime than the create-based method.

formance than storing each file’s attribute information

with its data blocks.

4.2 DatalLifetime

In this section, we examine block lifetime, which we
define to be the time between a block’s creation and it4

If the traces collected reflect random samples of the
steady state of creation and deletion, the principal differ-
ence between the methods would result from blocks that
are created and never deleted. As a result of this differ-
ence, the create-based method predicts that disk space
sed will tend to increase with time—something disk

deletion. Knowing the average block lifetime for a work-Sales confirm.
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points in each cue. The end main is set to 1 day for
these results.

this trace shwed the most diérence between the ¢
methods of all the Sprite traces. Umlikhe result
reported in [Bak91], these results include bloc
overwritten in files that were not deleted,wawer this
difference has only minorfetts on the results.

4.2.3 Lifetime L ocality

By recording whether blocks die due to file deletion,
truncation, or overwriting, we observe that most blocks
die due to overwrites. For INS, 51% of blocks that are
created and killed within the trace die due to overwrit-

Using the create-based metric for both our traces and tHe: for. RE.S,f91(;/\<IJTare8 g{;erwrltten; for .WEB’ Ag 70|A) are
Sprite traces, we calculate block lifetimes using a bIocI?VGrW”tte.n’ or ’ o are ovt_arwntten. closer
size of 512 bytes. Figui shows these results. Block examination Of. the data shows a h|ghldegree of locality
lifetime for a combination of the Sprite traces is included” ovErwntten files. For INSbf%; of allll files crgated_lijhur-
for comparison. Because most activity occurred durin 'Ig the trace are responsible for ? 1gv§rwrltes. h (Ia:se
the second trace, this trace dominates Sprite’s lifetim es are overwritten an average ot . t|mgs each. ~or
results. The graph shows a knee in the WEB workloafRES: 2% of created files are overwritten, with each file
that is mainly due to database working space files angverwnttgn an average.of 160 times. For WEB, 5% of
ht t p log files. RES has a knee at ten minutes caused pﬁfeate‘?' files are over\_/vrlttc_an, and the average number of
marily by periodic updates to Netscape database fileQVerwrites for these files is over 6,300. For NT, 2% of

The Sprite trace has a knee just before five minutes cofsreated files are overwritten; these files are overwritten

tributed mainly by activity in the second trace. Since th@"n average of 251 times each. In general, a relatively

Sprite traces do not include information on filenames, wéMall set of files are repeatedly overwritten, causing
do not know which files were deleted at that time. Nei"any of the new writes and deletions.

ther INS nor NT has a knee; instead, bIock_Iifetimes grada, important result from this section is that average
ually decrease after one second. Unlike the othgscy jifetime is longer than delete-based lifetime esti-
workloads, NT shows a bimodal distribution pattern—mates would predict. For some workloads, average
nearly all blocks either die within a second or live longet, o fifetime is significantly longer than the standard

than a day. Although only 30% of NT block writes die e 5y stem write delay of 30 seconds. Since it is unrea-
within a day, 86% of newly created files die within thatggnahe to leave data volatile for a longer period of time,

timespan, so many of the long-lived blocks belong G ystem designers will need to explore alternatives
large files. Some of the largest files resulted from ”er¥hat will support fast writes for short-lived data. Some
installed software. Others were in temporary direcmrieﬁossibilities are NVRAM [Bake92] [Hitz94], reliable

or in the recycle bins on hosts where the bin is not emgﬁemory systems [Chen96], backing up data to the mem-
tied immediately. Of the short—liveq blocks, many t_)elongOr of another host, or logging data to disk. Most file
to browser cache and database files, system registry aBFgcks die in overwrites, and the locality of overwrites

!og file§, and files in the rgcycle bin on hosts where USelStfers some predictability that may prove useful to the
immediately empty the bin. file system in determining its storage strategy.

4.2.2 Block Lifetime
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warmed with a day of traces before generating results.

4.3 Effect of Write Delay

Since newly written blocks often live longer than thirty
seconds, increasing the write delay period should reduce
disk write traffic. However, two factors limit the effec-
tiveness of increasing write delay. First, user requests to
sync and fsync cause data to be written to disk
whether or not thewrite delay period has passed. Second,
the operating system may limit the amount of dirty data
that may be cached. This limit is generally imposed so
that reading a new page into the cache is not slowed by
the need to write out the old page first. On systems with
NVRAM, the size limit is simply imposed by the
NVRAM capacity. In either case, we refer to the space
allocated to dirty pages as the write buffer.

In order to measure the effectiveness of increasing write
delay, we simulated a write buffer and measured the
resultant disk bandwidth while varying the write delay
and the capacity of the buffer. Figure 3 shows the results
using a16MB buffer. For these results, weignore calsto
sync and f sync. As expected, the efficacy of increas-
ing write delay is strongly related to the average block
lifetime for each workload. Since RES has many blocks
that live less than one hour, a one-hour write delay sig-
nificantly throttles disk write traffic. On the other hand,
the NT workload contains more long-lived blocks, so
even write delays of aday have little effect.

To estimate the memory capacity needed to increase
write delay, we tested write buffers of size 4MB and
16MB, and an infinitely-sized write buffer. For all work-
loads, the 16MB buffer closely approximates an infi-
nitely-sized write buffer. Infact, for all workloads except
Sprite, the 4MB write buffer also approximates an infi-
nitely-sized write buffer. Large simulations included in
the second Sprite trace (the third and fourth of the eight
days) are probably responsible for the large write band-

width. When these traces are omitted, the 4AMB write
buffer approximates an infinitely-sized buffer for the
Sprite workload as well.

The importance of user cals to sync and f sync to
flush datato reliabl e storage depends on the storage strat-
egy employed. For example, a file system using
NVRAM may ignore these calls since the dataiis already
reliably stored. On other systems, the longer the data is
kept in the write buffer, the stronger the impact of these
cals. In our study, the maximal impact would be to the
infinitely-sized write buffer with awrite delay period of
one day. For INS, calls to flush data increased writes to
disk by 8% at this point; for RES, these calls increased
write bandwidth by 6%. For NT, write bandwidth
increased by 9%, and for WEB there was no increase at
al.

In summary, the efficacy of increasing write delay
depends on the average block lifetime of the workload.
For nearly all workloads, a small write buffer is suffi-
cient even for write delays of up to aday. User calls to
flush datato disk have little effect on any workload.

4.4 Cache Efficacy

An important factor in file system performance is how
effectively the cache absorbs read requests. In particular,
we are interested in how effective caches are at reducing
disk seeks and how caching affects the balance between
disk reads and writes. In this section, we examine the
effect of cache size on read misses. Wefind that evenrel-
atively small caches absorb most read traffic, but there
are diminishing returns to using larger caches. We also
examine how caching affects the ratio of disk reads to
disk writes. In 1992, Rosenblum and Ousterhout claimed
that large caches would avert most disk reads, sofile sys-
tem layout should optimize for disk writes[Rose92]. We



find that the read to write ratio depends not only on the 100

cache size, but also on the write delay and workload. I web % ]

Finally, we examine how well caching works for mem- il ’

ory-mapped files. We find that because a small number o 6ol

of files tend to be memory-mapped by many processes, ¢ |

chances are high that these files will be cached. S a0

4.4.1 Effect of Cache Size e Bneey
1 2 4 8 16 32 64 128 256

Cache Size (MB)

We implemented a cache simulator to test the effective- ) , .
FIGURE 5. File Reads ersus Cache SizeThe miss rat

ness of different cache_3|zes on_read traffic. Both reads is the percentage of file read misses out of thenmbe
and writes enter blocks into the simulator, and blocks are ¢ fje reads. This graph swes the file miss rate fi
replaced in LRU order. For all results in this section, we  various cache sizes. The block size used by the

modeled a local cache, so each host maintains its own simulator is 4KB. The cacheas varmed with a day ¢
instance of the simulator. traces before results were collected.

Figure4 shows the cache miss bandwidth for reads fomates of seeks than block miss counts.

various cache sizes. For all workloads, the curves have a

knee showing the working set size, and there are dimin/hen multiple hosts share a single file system, a strict
ishing benefits to increasing the cache size beyond thgomputation of the file read count requires interleaving
point. The WEB workload has the largest working sethe traces for those hosts. Because the INS and RES clus-
size; its read bandwidth does not reach the point ofrs share file servers for most of their file system activ-
diminishing returns until a cache size of 64MB. Some ofty, we were able to estimate the effect of file server
its poor performance may be due to the LRU replacemersharing on file reads by running our measurements on
policy interacting poorly with the database engine. Fothese workloads using both a single interleaved trace for
the other workloads, even a 1MB cache reduces read! hosts together and separate traces for each host. These
bandwidth by 65-90%. For these workloads, there is littwo methods show at most a 2% difference in file read
tle benefit to increasing the cache beyond 16MB. Th&ounts and no difference at all when the cache size is
BSD study predicted that in the future larger cache§ver 16MB. This may be because file system traffic
would significantly reduce disk reads. However, severalends to be bursty[Grib98]—bursts of activity from sin-
years later, the Sprite study found that despite its larggle streams may cause a series of cache misses near
caches, read misses did not decrease as much @gough to each other in time that there are few interven-
expected. Our results show that even very large cach#g cache misses from other processes in the same time
have limited effectiveness in reducing read misses.  period.

Since disk bandwidth is improving faster than diskIn Figure5, we show the effectiveness of different cache
latency, a critical metric in evaluating cache performancéizes on reducing the number of file read misses, using
is the number of seeks caused by cache misses. Most fifgerleaved traces when applicable. The graph shows that
systems attempt to store blocks from the same file coreven a 1MB cache is sufficient to more than halve the
secutively on disk. For example, FFS specifically allo-number of file read misses for all workloads. At the 1MB
cates new file blocks as closely as possible to previougache size, the WEB workload has many fewer file read
file blocks [McV091]. In LFS, blocks are laid out in the misses than block read misses, which indicates that many
order they are written [Rose92]. Since most files are writblock misses are part of larger files.

ten sequentially (as we show in Sectib6), file blocks

tend tp be aIIocaFed consecutlwely on disk. If f||§ blocks4_4.2 Read and Write Taffic

are laid out on disk consecutively, a rough estimate for

the number of seeks incurred is a count of the disk reaq_sII tems | t data on disk t timize for read
to different files. We call this metrfide read misses and € systems lay out data o sk 1o op € for reads

calculate it as follows. Within a stream of cache misses[i}tf]?é(hu?‘l]eogfvrrrggisc Esﬁigﬁzgo[ggﬁgtge/ggnvcvjénﬁa?,g
if a cache miss is to the same file as the previous cach yp y :

miss, we count no file read miss: otherwise, we incref”ﬁready shown, the amount of disk write traffic depends

ment the number of file read misses by one. We deﬁnlargely on the write delay and the amount of read traffic

thefilewrite miss metric analogously. Although these are 8?npoeunndtsoforneatgear::;wr(ietestlfaef.ﬁcmwc:erdeexrartr?infeotr\?v 'ﬁivre
crude metrics, we believe they are more accurate esft '



TABLE 2. 1/0 Count TABLE 3. Process /O

| INS | RES | WEB | NT INS RES WEB NT

ITmpoverished Environment Processes that 209050 103331 8236 1933

Block Reads| 4,417,055] 1,043,728| 70,658,318] 2,820,438 Read (10%)  (12%)  (9%)]  (36%)

- Processes that 110009 80426 18505| 1182

Block Writes| 909,120 2,970,596 1,646,023 3,420,874 Write (5%) (9%) 0%  (229%)

Flle Reads] 620,752] 199,436] 2.389988] 330,528 Processes that 1525704 584465 37466 4609

File Writes | 524,551 247,960 144,155 341,581 Memory Map (72%) (68%) (39%) (85%)

Enriched Environment ] ]

Block Reads| 2,114,001  613,077] 6,544,037] 1,761,339 Processes are traak viaf or k andexit system calls
Block Writes | 1,510,163| 585,768| 1,483,862 3,155,584 For all workloads, more processes use memory-maj
Fle Reads. 277 155 70,078 980,018 144575 files than read or write. Because the NT traces do not
Fnewntesl 209113] 101621 64.246 248883 tinuously record all fork andxé& information, the NT

results are based on a subset of the traces.

In the impawerished evironment, read results are based ¢

an 8MB local cache and write results are based on a 16 TABLE 4. Memory-mapped File Usage

write buffer with a 30 second write delayn the enriched

ervironment, read results are based on a 64MB local cac INS RES WEB

and write results are based on a 16MB writldy with a 1 Avg. Mapped Files 33 76 =

hour delay In both emironments, the block size is 4KB. Max. Mapped Files o1 77 10

and calls teync andf sync flush the appropriate blocks Avg. Cache Space 232 MB 76 MB > A MB

to disk whether or not the write delay has elapsed. Max. Cache Space 112 MB 192 VB 30MB
Cache Miss Rate 0.5% 1.5% 1.0%

ronments. The first environment has 8MB of local cache
and a write delay of 30 seconds; we refer to this as the
impoverished environment. The second, the enriched
environment, has 64MB of local cache and a write delay
of 1 hour. Read and write traffic for each environment are

shown in Tabl€. By looking at the number of blocks _
read and written, we see that reads dominate writes in diffect of memory-mapped files. Over the last few years,

cases for the WEB workload. For the INS workload, theemory mapping has become a common method to
number of read blocks is almost five times the number oficcess files, espeglally shared libraries. To see the impact
write blocks in the impoverished environment but is only®f memory mapping on process 1/O, we counted the
about 50% greater in the enriched environment. For thBUmber of processes that memory-map files and the
RES workload, writes dominate the impoverished envi"Umber that perform reads and writes. Taébgimma-
ronment. In the enriched environment, there are mor&Z€s these results. For all workloads, a greater number of
block reads than block writes but fewer file reads tharProcesses memory-map files than perform reads or
writes. This is most likely caused by the large number ofVrites. With such a high number of processes accessing
small writes made to various log files on the RES hostgl€mory-mapped files, people designing or evaluating
For the NT workload, writes dominate reads in all casedile systems should not ignore the effect of these files on
However, most of the write traffic is caused by a singleth® 1/O system.

host. When this host is removed, reads dominate write,

for all categories except file operations in the enrichetf
environment.

For this data, each host maintains igno(unlimited size)
cache of memory-mapped files, and only processes:
on that host can f&fct the cache.

ecause our traces only monitor calls to map and unmap
iles, we do not have information on how programs
access these files. For example, the traces do not indicate

Whether reads or writes dominate disk traffic varies sigWhich parts of a mapped file the program accesses via
nificantly across workloads and environments. Based of€mory loads. Although we do not have the precise
these results, any general file system design must tal@FCess patterns, we estimate the effect of memory

into consideration the performance impact of both disknapped files on the cache based on process calls to
reads and disk writes. nmap, nmunmap, fork, and exit. Unfortunately,

because our traces do not contain a complete record for

forks and exits for the NT workload, we cannot perform
4.4.3 Effect of Memory Mapping an accurate estimate for the NT workload. For the UNIX

workloads, we estimated the effect of memory-mapped
Another important factor in cache performance is thdfiles on the cache by keeping a list of all files that are
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mapped either explicitly through a call torap or  the other traces are an order of magnitude larger: from
implicitly when a forked process inherits a file descriptor244MB (WEB) to 419MB (INS and NT).

to a mapped file. We remove files from the list when no N S S

processes have the file mapped. Considering the numbé @ddition to dynamic file size distribution, we exam-
of nmap system calls, the average number of mappeﬂ‘ed unique file size distribution. By this we mean a dis-
files is quite low. The average and maximum number offibution computed by counting each file that occurs in
files is shown in Tabld, along with the average and the trace only once. Of course, this does not include any
maximum space that would be required to keep the entifé€S that are never accessed, since they are not recorded
files in memory. We found that the same files tend to b&? the traces. This distribution reflects the range of file
mapped by many processes simultaneously. In fact, if théiZ€S stored on disk that are actively accessed. Figure
system kept each file in memory as long as at least orshows the results. Assuming a disk block size of 8KB

process mapped it, then cache miss rates for requestsdgd an inode structure with twelve direct data pointers,
map a file would only be about 1%. files over 96KB must use indirect pointers. The percent-

age of files over 96KB is 4% for INS, 3% for RES, 1%

. . for WEB, 7% for NT, and 4% for Sprite.
45 FileSize ° ° P

) o o o The WEB workload has many files in the 1-10KB range.
Knowing the distribution of file sizes is important for 5 large number of these are image files. Because these
designing metgdata structures 'that efficiently support thﬁnages are exported over the Internet, the WEB admin-
range of file sizes commonly in use. The Sprite studygirators limit the size of these files to keep access
found that most accessed files were small, but that thﬁtency small. Except for the NT workload, the unique
size of the largest files had increased since the BSR size distribution has not become more skewed
study. Our results show that this trend has continued. qwards larger files since the time of Sprite. Although
the NT traces are two years younger than the UNIX
traces, we believe its larger files are due to differences in
Ighe operating system and applications rather than the
gime difference since the six years between the UNIX
nd Sprite traces show no appreciable effect.

In Figure6, we show the file sizes across our workloads
In this graph, file size is determineginamically—that

is, file size is recorded for files as they are closed. Wit
this methodology (also used in the Sprite study), file
opened and closed multiple times are counted muItipr.‘

Like the Sprite study, we find that small files still com- ajthough the size of the largest files has increased ten-
prise a large number of file accesses. The percentage @y since the Sprite study, the unique file distribution
dynamically accessed files that are under 16KB is 88%,jcates that, except for the NT workload, the percent-
for INS, 60% for RES, 63% for WEB, 24% for NT, and 44 of arge files has not increased since the Sprite study.
86% for Sprite. At the other end of the spectrum, th¢jopever, the dynamic distribution indicates that large

number of accesses to large files has increased since fgs are accessed a greater percentage of the time. As a
Sprite study. The number of files over 100KB accessethgy|t, the number of file accesses that require indirect

in Sprite is 4%, for INS it is 6%, for RES it is 20%, for yointers has increased. Since this trend is likely to con-

WEB it is 14%, and for NT it is 21%. The largest file {inye it may be worthwhile to redesign the inode struc-
accessed in the Sprite traces is 38MB; the largest files in



ture to more efficiently support access to large files.
However, since most files are still small, their data struc-
tures must still efficiently handle file sizes for a broad

spectrum of sizes. File systems that use extent-based or

multiple block sizes [Powe77] [Hitz94] may be more
efficient at handling the range of file sizes in use today.

4.6 File Access Patterns

In this section, we examine file access patterns—that is,
whether afile is read or written and the order in which its

bytes are accessed. Knowing common access patterns is . total (1)

crucial to optimizing file system performance. For exam-
ple, knowing that most files are read in their entirety,
many file systems implement a simple prefetching strat-
egy that prefetches blocks in sequential order.

4.6.1 Run Patterns

We define arun as the accesses to a file that occur
between its open and close. We classify runs into three
categories. We classify a runantireif it reads or writes

a file once in order from beginning to emsdguential if

it accesses the file sequentially but not from beginning to
end, andandom otherwise.

Table5 compares file access patterns across workloads.
Like Sprite and BSD, the majority of runs are reads and
only a small percentage of runs contain both reads and
writes. Also like the previous studies, most files are read
in their entirety and most write runs are either entire or
sequential. However, a higher percentage of runs are
read-only in the HP-UX workloads than in NT, Sprite, or
BSD. Also, our workloads tend to have a larger percent-
age of random reads than Sprite or BSD (the only excep-
tion being that BSD has a higher percentage of random
runs than INS).

We examined random read patterns more closely and
discovered a correlation between read pattern and file
size. In Figure3, we show the number of bytes trans-
ferred in entire, sequential, and random runs versus the
size of the file being accessed. The graphs show that files
that are less than 20KB are typically read in their
entirety. For the Sprite workload, nearly all bytes are
transferred in entire runs—even from very large files.
However, for our workloads, large files tend to be read
randomly. For INS, WEB, and NT, the majority of bytes
from files over 100KB are accessed randomly. For RES,
both entire runs and random runs are well-represented in
bytes read from large files.

Most file systems are designed to provide good perfor-
mance for sequential access to files. Prefetching strate-
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only point. Note that while the percentage of files in this

TABLE 5. File Access Patterns category is small, these files have many runs each. Files
INS | RES |WEB| NT |Sprite| BSD that are both read and written have a read-run percentage

Reads (% total runs) 98.7] 91.0] 99.7 73.8] 835 645 between 0% and 100%; however, as the number of runs
Entire (% read runs) 86.3| 53.0] 68.2| 64.6] 72.5 67.1 increases, fewer files fall into these middle categories.
Seq. (% read runs) 5.9 23.2| 17.5| 7.1| 25.4| 24.0

Rand. (% read runs) 7.8 23.8 14.3] 28.3 2.1 8.9
Writes (% total runs) 1.1 29[ 0.0] 235 154 275 5 COﬂClUgonS

Entire (% write runs) 84.7| 81.0| 32.1| 41.6/ 67.0f 82.5

Seq. (% write runs) 93| 165 66.1 57.1 289 172 We collected file system traces from several different
Rand. (% write runs) 6.0 25| 1.8 13| 40 03 environments, consisting of an instructional workload, a
Read-Write (% total runs) | 0.2] 6.1 03] 27| 11| 7.9 research workload, a web workload, and a Windows NT
Entire (% read-write runs) | 0.1] 0.0] 0.0| 159 01| NA personal computer workload. We used these traces to
Seq. (% read-write runs) 02 03 00 03 00 NA compare the file system behavior of these systems to
Rand. (% read-write runs) | 99.6) 99.7] 100] 83.8] 99.9 751  each other and to systems studied in past research. Based

A run is defined to be the read and write accesses on this analysis, we draw the following conclusions.
occur between an open and close .pBBD results are

from [Oust85]. First, different systems show different I/O load. The
WEB workload has far more read bandwidth than any
gies often simply prefetch blocks of files that are beingyther workload but has relatively little write bandwidth.

accessed sequentially [McVo91] [Sand85]. This pro-The NT workload has more than twice the read and write
vides little benefit to small files since there will not be handwidth as the other workloads.

many blocks to prefetch. If large files tend to be accessed

randomly, this prefetching scheme may prove ineffectivésecond, we found that average block lifetime, and even
for large files as well, so more sophisticated prefetchinghe distribution of block lifetimes, varies significantly
techniques are necessary. Without effective prefetchingicross workloads. In the UNIX workloads, most newly
the increasing number of randomly read files may resultreated blocks die within an hour. In contrast, in the NT
in poor file system response time. workload, newly created blocks that survive one second
are likely to remain alive over a day. However, common
to all workloads are that 1) overwrites cause the most
significant fraction of deleted blocks, and 2) overwrites

) ) o show substantial locality. Due to this locality, a small
In Section4.2, we noted that overwrites have significant,yyite puffer is sufficient to absorb write traffic for nearly

locality—that is, the same files tend to get overwritteny)| \vorkloads. What differs from one workload to
multiple times. In examining file access patterns, Weynother is the ideal write delay: some workloads perform

noticed that read runs also have locality—that is, manye| with the standard 30-second write delay while oth-
files are repeatedly read without being written. To clarifyg s penefit from a slightly longer delay.
how files are read and written, we tabulated for each file

the number of runs that were read-only runs and the nurithird, we examined the effect of caching on read traffic.
ber that were write-only runs. (The number of read-writaNe found that even small caches can sharply decrease
runs is negligible.) For each file, we calculated the pereisk read traffic. However, our results do not support the
centage of its runs that were read-only. Files that are onlylaim that disk traffic is dominated by writes when large
read during the trace have 100% read runs, while filesaches are employed. Whether this claim holds depends
that are only written have 0% read runs. We rounded theot only on the cache size, but also on the workload and
percentage of read-runs to the nearest 10%; files havingrite delay.

fewer than five runs are not included. We then added up

the percentage of files that occurred in each percentag@urth, we determined that all modern workloads use
category. The results, shown in Fig@reindicate that Memory-mapping to a large extent. We examined how
files tend to have a bimodal access pattern—they af@emory-mapping is used in the UNIX workloads and
either read-mostly or write-mostly. Furthermore, thefound that a small number of memory-mapped files are
larger the number of runs for a particular file, the strongeghared among many active processes. From this we con-
the affiliation. Many files tend to be read-mostly. This isclude that if each file were kept in memory as long as it
evidenced by the large percentage of files that have 1008 Mmemory-mapped by any process, the miss rate for file
read runs. A small number of files are write-mostly. Thishap requests would be extremely low.

is shown by the slight rise in the graphs at the 0% read-

4.6.2 Read and Write Patterns



INS
100

5-10 runs %
11-100 runs >
over 100 runs —+—
80 | 1

60 -

40 -

Percentage of Files

20

X -
0 20 40 60
Percentage of Read-only Runs
RES
100 T
5-10 runs *
11-100 runs > 4
over 100 runs —+—
80 [ 1
o
2
w
5 60 rF
@
=
8
g 40
<
o
20 *
0 ) 3
0 20 40 60
Percentage of Read-only Runs
WEB
100 T
5-10 runs *
11-100 runs ---->¢-—-
over 100 runs —+—
80 |
»
2
w
w5 60 r
@
=
£
g 40t
7}
a
20 -
0 X X X X ¥ X X X >
0 20 40 60 80 100
Percentage of Read-only Runs
NT
100 T
5-10 runs *
11-100 runs -—-->¢-—--- o
over 100 runs —+—
80 - 1
o
2
iy
w5 60 rF
o
g
g 40
S
b}
a
20 -
OSN % X SRS
0 20 40 60

Percentage of Read-only Runs

FIGURE 9. Percentage of Runs that are Read-only.

Each line represents files agdeized by the number ¢
runs seen in the traces, where a run is defined to t
bytes transferred between the Bledpen and its clos:
The x-axis shas the percentage of runs that are re
only rounded to the nearest 10 percent.dach line, the
percentages across the x-axis add to 100. Because
runs are read-mostlyhe percentages are highest at
100 percent read point, especially for files with yn.
runs. A smaller number of files are write-mosfijese
files appear at the 0 percent read runs point on the x-

Fifth, we found that applications are accessing larger
files than previously, and the maximum file size has
increased in recent years. This is not surprising, as past
studies have seen increases in file sizes as years passed.
It might seem that increased accesses to large file sizes
would lead to greater efficacy for simple readahead
prefetching; however, we found that larger files are more
likely to be accessed randomly than they used to be, ren-
dering such straightforward prefetching less useful.

Finally, we found that for all workloads, file access pat-
terns are bimodal in that most files tend to be mostly-
read or mostly-written. We found this tendency to be
especially strong for the files that are accessed most fre-
qguently. We expect file systems can make use of this
knowledge to predict future file access patterns and opti-
mize layout and access strategies accordingly.
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