A Low-bandwidth Network File System

Athicha Muthitacharoen, Benjie Chen, and David Mazieres
MIT Laboratory for Computer Science and NYU Department of Computer Science
{athicha,benjie} @Ics.mit.edu, dm@cs.nyu.edu

Abstract

Users rarely consider running network file systems over slow
or wide-area networks, as the performance would be unac-
ceptable and the bandwidth consumption too high. Nonethe-
less, efficient remote file access would often be desirable
over such networks—particularly when high latency makes
remote login sessions unresponsive. Rather than run interac-
tive programs such as editors remotely, users could run the
programs locally and manipulate remote files through the file
system. To do so, however, would require a network file sys-
tem that consumes less bandwidth than most current file sys-
tems.

This paper presents LBFS, a network file system designed
for low-bandwidth networks. LBFS exploits similarities be-
tween files or versions of the same file to save bandwidth.
It avoids sending data over the network when the same data
can already be found in the server’s file system or the client’s
cache. Using this technique in conjunction with conventional
compression and caching, LBFS consumes over an order of
magnitude less bandwidth than traditional network file sys-
tems on common workloads.

1 Introduction

This paper describes LBFS, a network file system designed
for low-bandwidth networks. People typically run net-
work file systems over LANs or campus-area networks with
10 Mbit/sec or more bandwidth. Over slower, wide-area
networks, data transfers saturate bottleneck links and cause
unacceptable delays. Interactive programs freeze, not re-
sponding to user input during file I/O, batch commands can

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Space and Naval Warfare Systems Center, San
Diego, under contract N66001-00-1-8927.

take many times their normal execution time, and other less
aggressive network applications are starved for bandwidth.
Users must therefore employ different techniques to accom-
plish what over the LAN they would do through the file sys-
tem.

People often have occasion to work over networks slower
than LANs. Even with broadband Internet access, a person
working from home usually only has a fraction of a Mbit/sec
of upstream bandwidth. A company with offices in sev-
eral cities may have many users collaborating over a single
1.5 Mbit/sec T1 line. A consultant constantly traveling be-
tween various sites may want to sit down and access the same
project files from every location.

In the absence of a network file system, people generally
resort to one of two methods of accessing remote data. They
either make and edit local copies of files, running the risk
of an update conflict, or else they use remote login to view
and edit files in place on another machine. If the network
has long latency, remote login is particularly frustrating as
interactive applications are slow in responding to user input.
Worse yet, many graphical applications, such as figure edi-
tors and postscript previewers, consume too much bandwidth
to run practically over the wide-area network.

Network file systems have the potential to alleviate the in-
conveniences associated with remote data access. In addi-
tion to offering the interface people already prefer for local-
area networks, a file system can provide tight consistency,
avoiding the problem of conflicts when two people update
the same file. File systems can also better tolerate network
latency than remote login sessions. By running interactive
programs locally and accessing remote data through a file
system, one avoids the overhead of a network round trip on
every user input event.

To be practical over the wide-area network, however, a
file system must consume significantly less bandwidth than
most current file systems, both to maintain acceptable per-
formance and to avoid monopolizing network links in use
for other purposes. Unfortunately, application writers com-
monly assume that file 1/0 will be no slower than a megabyte
or so per second. For instance, an interactive editor will stop
to write out 100 KByte “auto-save” files without worrying
about delaying a user’s typing or consuming significant re-
sources. A traditional file system transmits the entire con-

tents of such files over the network, blocking the editor for
the duration of the transfer. In contrast, LBFS often trans-
mits far less data than applications write, greatly reducing
the time spent waiting for file /0.

To reduce its bandwidth requirements, LBFS exploits
cross-file similarities. Files written out by applications often
contain a number of segments in common with other files
or previous versions of the same file. Auto-save files are
only one example. Object files output by compilers, tempo-
rary files used by the RCS revision control system, postscript
files, and word processing documents often contain substan-
tial similarity from one revision to the next. Any copying
or concatenation of files, such as when building program li-
braries out of object files, also leads to significant duplication
of contents.

To exploit these inter-file similarities, the LBFS file server
divides the files it stores into chunks and indexes the chunks
by hash value. The LBFS client similarly indexes a large
persistent file cache. When transferring a file between the
client and server, LBFS identifies chunks of data that the re-
cipient already has in other files and avoids transmitting the
redundant data over the network. In conjunction with con-
ventional compression, this technique saves over an order of
magnitude of communications bandwidth on many common
workloads.

LBFS provides traditional file system semantics and con-
sistency. Files reside safely on the server once closed, and
clients see the server’s latest version when they open a file.
Thus, LBFS can reasonably be used in place of any other
network file system without breaking software or disturbing
users. Other file systems have dealt with slow and even in-
termittent network connectivity by relaxing file system con-
sistency. These techniques largely complement LBFS’s, and
could be combined with LBFS for even greater bandwidth
savings. However, since altered semantics may not be suit-
able for all purposes, we chose to focus on reducing band-
width to see just how much we could save without changing
accepted consistency guarantees.

The next section describes related work. Section 3 gives
LBFS’s algorithm for finding commonality between files and
explains how the LBFS protocol takes advantage of it. Sec-
tion 4 describes the implementation of LBFS. Section 5
shows how effective LBFS’s technique for compressing file
traffic can be. Finally, Section 6 concludes.

2 Reated Work

Past projects have attacked the problem of network file sys-
tems on slow networks from several angles. LBFS comple-
ments most previous work. Because it provides consistency
and does not place significant hardware or file system struc-
ture requirements on the server, LBFS’s approach can unob-
trusively be combined with other techniques to get additional
savings in network bandwidth.

A number of file systems have properties that help them
tolerate high network latency. AFS [9] uses server callbacks
to inform clients when other clients have modified cached
files. Thus, users can often access cached AFS files with-
out requiring any network traffic. Leases [7] are a modifica-
tion to callbacks in which the server’s obligation to inform
a client of changes expires after a certain period of time.
Leases reduce the state stored by a server, free the server
from contacting clients who haven’t touched a file in a while,
and avoid problems when a client to which the server has
promised a callback has crashed or gone off the network. The
NFS4 protocol [20] reduces network round trips by batching
file system operations. All of the above techniques are ap-
plicable to LBFS. In fact, LBFS currently uses leases and
a large, persistent cache to provide AFS-like close-to-open
consistency.

Many file systems use write-behind to tolerate latency.
Echo [14] performs write-behind of metadata operations, al-
lowing immediate completion of operations that traditionally
require a network round trip. In JetFile [8], the last machine
to write a file becomes the file’s server, and can transmit its
contents directly to the next reader.

The CODA file system [10] supports slow networks and
even disconnected operation. Changes to the file system
are logged on the client and written back to the server in
the background when there is network connectivity. To
implement this functionality, CODA provides weaker-than-
traditional consistency guarantees. It allows update con-
flicts, which users may need to resolve manually. CODA
saves bandwidth because it avoids transferring files to the
server when they are deleted or overwritten quickly on the
client. LBFS, in contrast, simply reduces the bandwidth re-
quired for each file transfer. Thus, LBFS could benefit from
CODA-style deferred operations, and CODA could benefit
from LBFS file transfer compression.

Bayou [18] further investigates conflict resolution for op-
timistic updates in disconnected systems, but unlike CODA,
it does not provide a file system. Rather, Bayou supplies an
API with which to implement application-specific merging
and conflict resolution. OceanStore [2] applies Bayou’s con-
flict resolution mechanisms to a file system and extends it
to work with untrusted servers that only ever see data in en-
crypted format. TACT [25] explores the spectrum between
absolute consistency and Bayou’s weaker model.

Lee et. al. [12] have extended CODA to support operation-
based updates. A proxy-client strongly connected to the
server duplicates the client’s computation in the hopes of du-
plicating its output files. Users run a modified shell that bun-
dles up commands for the proxy-client to reexecute. Using
forward error correction, the client and proxy-client can even
patch up small glitches in the output files, such as different
dates. When successful, operation-based updates deliver a
tremendous bandwidth savings. However, the technique is
fairly complementary to LBFS. LBFS works well with in-

teractive applications such as editors that would be hard to
reexecute on a proxy-client. Operation-based updates can
reduce communications bandwidth with command-line util-
ities such as image converters for which LBFS offers no sav-
ings. Operation-based updates require a dedicated proxy-
client machine, making them a bit cumbersome to set up.
Perhaps for this reason the technique is not in widespread
use by any file system today.

Spring and Wetherall have proposed a protocol-
independent technique for eliminating redundant network
traffic [21]. They assume two cooperating caches at either
end of a slow network link. Both caches store identical
copies of the last n Megabytes of network traffic (for values
of n up to 100). When one end must send data that already
exists in the cache, it instead sends a token specifying where
to find the data in the cache. To identify redundant traffic,
the two ends index cache data by 64-byte anchors [13],
randomly chosen based on hash value. When data to be
sent has a 64-byte anchor in common with previous traffic,
the matching region is expanded in both directions to elide
the greatest amount of data. LBFS’s approach is similar
in spirit to the Spring and Wetherall technique. However,
LBFS supports multiple clients accessing the file file system
and even local users changing the file system underneath the
server. Thus, it cannot assume that the client and server have
identical state.

Rsync [23] copies a directory tree over the network onto
another directory tree containing similar files—typically
from a previous version of the same tree. Rsync saves band-
width by exploiting commonality between files. The prob-
lem is similar to synchronizing a client’s file cache with the
server or vice versa. In fact, Tridgell suggests applying rsync
to a file system in his thesis. Though rsync was one of the
inspirations for LBFS, file caching in real time is somewhat
different from directory tree mirroring. LBFS thus uses a
different algorithm. We discuss the rsync algorithm in more
detail and compare it to our approach in Section 3.1.

A number of Unix utilities operate on differences between
files. diff computes the difference between two text files.
patch applies the output of diff to transform one file into
the other. There have been studies of the problem of de-
scribing one file in terms of a minimal set of edits to an-
other [22]. Mogul et. al. [17] have investigated transmit-
ting such deltas to save bandwidth when updating cached
web pages. The CVS [1] version management system ships
patches over the network to bring a user’s working copy of a
directory tree up to date. Unlike CVS, however, a file system
cannot store a complete revision history for all files. There-
fore, the LBFS server will typically not have an exact old
version from which to compute differences.

3 Design

LBFS is designed to save bandwidth while providing tradi-
tional file system semantics. In particular, LBFS provides

close-to-open consistency. After a client has written and
closed a file, another client opening the same file will always
see the new contents. Moreover, once a file is successfully
written and closed, the data resides safely at the server. These
semantics are similar to those of AFS. Other work exploring
relaxed consistency semantics may apply to LBFS, but we
wished to build a file system that could directly substitute
for a widely accepted network file system in use today.

To save bandwidth, LBFS uses a large, persistent file
cache at the client. LBFS assumes clients will have enough
cache to contain a user’s entire working set of files (a reason-
able assumption given the capacities of cheap IDE disks to-
day). With such aggressive caching, most client—server com-
munication is solely for the purpose of maintaining consis-
tency. When a user modifies a file, the client must transmit
the changes to the server (since in our model the client might
crash or be cut from the network). Similarly, when a client
reads a file last modified by a different client, the server must
send it the latest version of the file.

LBFS reduces bandwidth requirements further by exploit-
ing similarities between files. When possible, it reconsti-
tutes files using chunks of existing data in the file system
and client cache instead of transmitting those chunks over
the network. Of course, not all applications can benefit from
this technique. A worst case scenario is when applications
encrypt files on disk, since two different encryptions of the
same file have no commonality whatsoever. Nonetheless,
LBFS provides significant bandwidth reduction for common
workloads.

For the remainder of this section, we first discuss the is-
sues involved in indexing chunks of the file system and cache
data. We describe the advantages and disadvantages of sev-
eral approaches, including LBFS’s particular solution. Then,
we describe the actual LBFS protocol and its use of chunk
indexes.

3.1 Indexing

On both the client and server, LBFS must index a set of files
to recognize data chunks it can avoid sending over the net-
work. To save chunk transfers, LBFS relies on the collision-
resistant properties of the SHA-1 [6] hash function. The
probability of two inputs to SHA-1 producing the same out-
put is far lower than the probability of hardware bit errors.
Thus, LBFS follows the widely-accepted practice of assum-
ing no hash collisions. If the client and server both have
data chunks producing the same SHA-1 hash, they assume
the two are really the same chunk and avoid transferring its
contents over the network.

The central challenge in indexing file chunks to identify
commonality is keeping the index a reasonable size while
dealing with shifting offsets. As an example, one could index
the hashes of all aligned 8 KByte data blocks in files. To
transfer a file, the sender would transmit only hashes of the
file’s blocks, and the receiver would request only blocks not

a c1 § C2 % CE Cy4 § Cs5 % C6 % c7

b. C1 § C2 % CE Cs % Cs § Ce % C7
C. c1 § C2 % C:E g % Cy § C10§ Cp % c7
d. C1 § C11 § Cg % C9 % C10§ Ce % C7

Figure 1: Chunks of a file before and after various edits. Horizontal stripes show 48-byte regions with magic hash values creating
chunk boundaries. Gray shading shows regions of the file that were changed by an edit.

already in its database. Unfortunately, a single byte inserted
at the start of a large file would shift all the block boundaries,
change the hashes of all the file’s blocks, and thereby thwart
any potential bandwidth savings.

As an alternative, one might index files by the hashes of all
(overlapping) 8 KByte blocks at all offsets. Such a scheme
would require storage many times the size of the indexed
files (almost one index entry per byte of file data). The size
in itself might be tolerable given large enough disks, but ev-
ery file modification might require thousands of index inser-
tions. The cost of performing so many updates to an index in
secondary storage would be prohibitive.

Rsync more practically tackles this problem by consider-
ing only two files at a time. When transferring file £ from
machine A to machine B, if B already has a file £’ by the
same name, rsync guesses the two files may be similar and
attempts to exploit that fact. A simplified version of the
rsync algorithm proceeds as follows. First, the recipient, B,
breaks its file F’ into non-overlapping, contiguous, fixed-
size blocks. B transmits hashes of those blocks to A. A in
turn begins computing the hashes of all (overlapping) blocks
of F. If any of those hashes matches one from F’, A avoids
sending the corresponding sections of F', instead telling B
where to find the data in F”.

A couple of complications arise when trying to apply the
rsync algorithm to a file system, however. First, rsync’s
choice of F’ based on filename is too simple. For exam-
ple, when editing file foo, emacs creates an auto-save file
named #foo#. RCS uses even less suggestive temporary
file names such as _1v22825. Thus, the recipient would
have to choose £ using something other than file names. It
might select F’ based on a fixed-size “sketch” of F’, using
Broder’s resemblance estimation technique [4]. However,
even ignoring the additional cost of this approach, some-
times F' can best be reconstructed from chunks of multiple
files—consider ar, which outputs software libraries contain-
ing many object files.

3.1.1 LBFSSolution

In order to use chunks from multiple files on the recipient,
LBFS takes a different approach from that of rsync. It con-
siders only non-overlapping chunks of files and avoids sen-
sitivity to shifting file offsets by setting chunk boundaries
based on file contents, rather than on position within a file.
Insertions and deletions therefore only affect the surround-
ing chunks. Similar techniques have been used successfully
in the past to segment files for the purpose of detecting unau-
thorized copying [3].

To divide a file into chunks, LBFS examines every (over-
lapping) 48-byte region of the file and with probability 213
over each region’s contents considers it to be the end of a data
chunk. LBFS selects these boundary regions—called break-
points—using Rabin fingerprints [19]. A Rabin fingerprint
is the polynomial representation of the data modulo a pre-
determined irreducible polynomial. We chose fingerprints
because they are efficient to compute on a sliding window
in a file. When the low-order 13 bits of a region’s finger-
print equal a chosen value, the region constitutes a break-
point. Assuming random data, the expected chunk size is
213 = 8192 = 8 KBytes (plus the size of the 48-byte
breakpoint window). As will be discussed in Section 5.1,
we experimented with various window sizes and found that
48 bytes provided good results (though the effect of window
size was not huge).

Figure 1 shows how LBFS might divide up a file and what
happens to chunk boundaries after a series of edits. a. shows
the original file, divided into variable length chunks with
breakpoints determined by a hash of each 48-byte region.
b. shows the effects of inserting some text into the file. The
text is inserted in chunk ¢4, producing a new, larger chunk
cg. However, all other chunks remain the same. Thus, one
need only send cg to transfer the new file to a recipient that
already has the old version. Modifying a file can also change
the number of chunks. c. shows the effects of inserting data
that contains a breakpoint. Bytes are inserted in c5, split-
ting that chunk into two new chunks cg and ¢q¢. Again, the

file can be transfered by sending only the two new chunks.
Finally, d. shows a modification in which one of the break-
points is eliminated. Chunks ¢, and c3 of the old file are now
combined into a new chunk, c¢;1, which must be transmitted
to compose the new file.

3.1.2 Pathological Cases

Unfortunately, variable-sized chunks can lead to some patho-
logical behavior. If every 48 bytes of a file happened to be a
breakpoint, for instance, the index would be as large as the
file. Worse yet, hashes of chunks sent over the wire would
consume as much bandwidth as just sending the file. Con-
versely, a file might contain enormous chunks. In particular,
the Rabin fingerprint has the property that a long extent of
zeros will never contain a breakpoint. As discussed later in
Section 3.2, LBFS transmits the contents of a chunk in the
body of an RPC message. Having arbitrary size RPC mes-
sages would be somewhat inconvenient, since most RPC li-
braries hold messages in memory to unmarshal them.

To avoid the pathological cases, LBFS imposes a mini-
mum and maximum chunk size. The minimum chunk size
is 2K. Any 48-byte region hashing to a magic value in the
first 2K after a breakpoint does not constitute a new break-
point. The maximum chunk size is 64K. If the file con-
tents does not produce a breakpoint every 64K, LBFS will
artificially insert chunk boundaries. Such artificial suppres-
sion and creation of breakpoints can disrupt the synchroniza-
tion of file chunks between versions of a file. The risk, if
this occurs, is that LBFS will perform no better than an or-
dinary file system. Fortunately, synchronization problems
most often result from stylized files—for instance a long run
of zeros, or a few repeated sequences none of which has a
breakpoint—and such files do well under conventional com-
pression. Since all LBFS RPC traffic gets conventionally
compressed, pathological cases do not necessarily translate
into slow file access.

3.1.3 Chunk Database

LBFS uses a database to identify and locate duplicate data
chunks. It indexes each chunk by the first 64 bits of
its SHA-1 hash. The database maps these 64-bit keys to
(file, offset, count) triples. This mapping must be updated
whenever a file is modified. Keeping such a database in sync
with the file system could potentially incur significant over-
head. Moreover, if files exported through LBFS are modi-
fied by other means—for instance by a local process on the
server—LBFS cannot prevent them from growing inconsis-
tent with the database. Even on the client side, an inoppor-
tune crash could potentially corrupt the contents of the disk
cache.

To avoid synchronization problems, LBFS never relies on
the correctness of the chunk database. It recomputes the
SHA-1 hash of any data chunk before using it to reconstruct

a file. LBFS also uses the recomputed SHA-1 value to detect
hash collisions in the database, since the 64-bit keys have
a low but non-negligible probability of collision. Not rely-
ing on database integrity also frees LBFS from the need to
worry about crash recovery. That in turn saves LBFS from
making expensive synchronous database updates. The worst
a corrupt database can do is degrade performance.

3.2 Protocol

The LBFS protocol is based on NFS version 3 [5]. NFS
names all files by server-chosen opaque handles. Opera-
tions on handles include reading and writing data at spe-
cific offsets. LBFS adds extensions to exploit inter-file com-
monality during reads and writes. Most NFS clients poll
the server on file open to check permissions and validate
previously cached data. For recently accessed files, LBFS
saves this round trip by adding leases to the protocol. Unlike
many NFS clients, LBFS also practices aggressive pipelin-
ing of RPC calls to tolerate network latency. The system
uses an asynchronous RPC library that efficiently supports
large numbers of simultaneously outstanding RPCs. Finally,
LBFS compresses all RPC traffic using conventional gzip
compression.

3.2.1 FileConsistency

The LBFS client currently performs whole file caching
(though in the future we would like to cache only portions
of very large files). When a user opens a file, if the file is not
in the local cache or the cached version is not up to date, the
client fetches a new version from the server. When a process
that has written a file closes it, the client writes the data back
to the server.

LBFS uses a three-tiered scheme to determine if a file is
up to date. Whenever a client makes any RPC on a file in
LBFS, it gets back a read lease on the file. The lease is a
commitment on the part of the server to notify the client of
any modifications made to that file during the term of the
lease (by default one minute, though the duration is server-
configurable). When a user opens a file, if the lease on the
file has not expired and the version of the file in cache is up
to date (meaning the server also has the same version), then
the open succeeds immediately with no messages sent to the
server.

If a user opens a file and the lease on the file has expired,
then the client asks the server for the attributes of the file.
This request implicitly grants the client a lease on the file.
When the client gets the attributes, if the modification and
inode change times are the same as when the file was stored
in the cache, then the client uses the version in the cache
with no further communication to the server. Finally, if the
file times have changed, then the client must transfer the new
contents from the server.

Client
File not in cache
Send GETHASH

shal not in database, send normal read
sha2 not in database, send normal read
sha3 in database

Put shal in database
Put sha2 in database
File reconstructed. return to user

Server

Break up file into chunks, @offset+count

Return data associated with shal
Return data associated with sha2

Figure 2: Reading a file using LBFS

Because LBFS only provides close-to-open consistency, a
modified file does not need to be written back to the server
until it is closed. Thus, LBFS does not need write leases on
files—the server never demands back a dirty file. Moreover,
when files are written back, they are committed atomically.
Thus, if a client crashes or is cut from the network while
writing a file, the file will not get corrupted or locked—other
clients will simply continue to see the old version. When
multiple processes on the same client have the same file open
for writing, LBFS writes data back whenever any of the pro-
cess closes the file. If multiple clients are writing the same
file, then the last one to close the file will win and over-
write changes from the others. These semantics are similar
to those of AFS.

3.2.2 FileReads

File reads in LBFS make use of one RPC procedure not in
the NFS protocol, GETHASH.

GETHASH retrieves the hashes of data chunks in a file,
so0 as to identify any chunks that already exist in the client’s
cache. GETHASH takes the same arguments as a READ
RPC, namely a file handle, offset, and size (though in
practice the size is always the maximum possible, because
the client practices whole file operations). Instead of re-
turning file data, however, GETHASH returns a vector of
(SHA-1 hash, size) pairs.

Figure 2 shows the use of GETHASH. When download-
ing a file not in its cache, the client first calls GETHASH to
obtain hashes of the file’s chunks. Then, for any chunks not
already in its cache, the client issues regular READ RPCs.
Because the READ RPCs are pipelined, downloading a file
generally only incurs two network-round trip times plus the
cost of downloading any data not in the cache. For files larger

than 1,024 chunks, the client must issue multiple GETHASH
calls and may incur multiple round trips. However, network
latency can be overlapped with transmission and disk 1/0.

3.2.3 FileWrites

File writes proceed somewhat differently in LBFS from
NFS. While NFS updates files at the server incrementally
with each write, LBFS updates them atomically at close
time. There are several reasons for using atomic updates.
Most importantly, the previous version of a file often has
many chunks in common with the current version. Keeping
the old version around helps LBFS exploit the commonal-
ity. Second, LBFS’s file reconstruction protocol can signif-
icantly alter the order of writes to a file. Files being written
back may have confusing intermediary states (for instance
an ASCII file might temporarily contain blocks of 0s). Fi-
nally, atomic updates limit the potential damage of simulta-
neous writes from different clients. Since two clients writing
the same file do not see each other’s updates, simultaneously
changing the same file is a bad idea. When this does occur,
however, atomic updates at least ensure that the resulting file
contains the coherent contents written by one of the clients,
rather than a mishmash of both versions.

LBFS uses temporary files to implement atomic updates.
The server first creates a unique temporary file, writes the
temporary file, and only then atomically commits the con-
tents to the real file being updated. While writing the tempo-
rary file, LBFS uses chunks of existing files to save band-
width where possible. Four RPCs implement this update
protocol: MKTMPFILE, TMPWRITE, CONDWRITE, and
COMMITTMP.

MKTMPFILE creates a temporary file for later use in an
atomic update. MKTMPFILE takes two arguments: first,

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha2 into database
write data into tmp file

No error, copy data from tmp file
into target file

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.

TMPWRITE is similar to a WRITE RPC. The only dif-
ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITESs to update a
file created with MKTMPFILE.

CONDWRITE is similar to a TMPWRITE RPC. The ar-
guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.

COMMITTMP commits the contents of a temporary file
to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.

Figure 3 shows the file write protocol in action. When
a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITES returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.

Pipelining of writes occurs in two stages. First, the client
pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.24 Security Considerations

Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

TCP

chunk LBFS

index client
xfs

client

LBFS chunk

server index
NFS ____

server

Figure 4: Overview of the LBFS implementation.

wider range of attacks. LBFS uses the security infrastruc-
ture from SFS [16]. Every server has a public key, which
the client administrator specifies on the command line when
mounting the server. In the future, we intend to embed pub-
lic keys in pathnames as SFS does and to integrate LBFS
into SFS’s auto-mounting system so that unprivileged users
on clients can access any server. The entire LBFS proto-
col, RPC headers and all, is passed through gzip compres-
sion, tagged with a message authentication code, and then
encrypted. At mount time, the client and server negotiate a
session key, the server authenticates itself to the user, and the
user authenticates herself to the client, all using public key
cryptography.

Finally, we note that LBFS may raise some non-network
security issues. When several users share the same file sys-
tem, LBFS could leak information about files a user is not
allowed to read. Specifically, through careful use of COND-
WRITE, a user can check whether the file system contains a
particular chunk of data, even if the data resides in a read-
protected file. Though CONDWRITE will fail on chunks the
user cannot read, subtle timing differences may still let the
user infer that the database contained the hash of the chunk.
Nonetheless, LBFS should provide more than adequate secu-
rity for most purposes, particularly given how widely users
accept file systems that do not even encrypt network traffic.

4

Figure 4 shows the architecture of the LBFS implementa-
tion. Both the client and server run at user-level. The client
implements the file system using xfs, a device driver bun-
dled with the ARLA [24] file system. The server accesses
files through NFS. The client and server communicate over
TCP, using Sun RPC. We used the asynchronous RPC li-
brary from the SFS toolkit [15] both for the server’s NFS
client and for LBFS client—server communication. The RPC
library already had support for authenticating and encrypt-
ing traffic between a client and server. We added support for
compression.

Implementation

41 Chunk Index

The LBFS client and server both maintain chunk indexes,
the server indexing file system contents and the client its lo-
cal cache. The two share the same indexing code, imple-

mented using the B-tree from SleepyCat software’s Berke-
leyDB package. Since LBFS never relies on chunk database
correctness, it also does not concern itself with crash recov-
erability. LBFS avoids any synchronous database updates,
and the server always replies to clients before inserting new
chunks in its database. If the database loses a few hashes,
clients will simply use more bandwidth until the database
comes back up to date. There is a utility, mkdb, which builds
a file system’s database from scratch. However, if an LBFS
server is run without a database, the server simply creates the
database and populates it as users access files.

The one database operation on the critical path for clients
is the lookup done as part of a CONDWRITE RPC. How-
ever, for all but the smallest files, CONDWRITEs are
pipelined deeply enough to overlap database lookups with
the transmission of any write data not found in the chunk
index. For 8 KByte or smaller files, LBFS avoids COND-
WRITEs and simply writes the files directly to the server in
a single RPC. The overhead of multiple round trip times
overshadows any potential bandwidth savings on such small
files.

4.2 Server Implementation

Our main goal for the LBFS server implementation, other
than saving bandwidth and providing acceptable perfor-
mance, was to build a system that could unobtrusively be
installed on an already running file system. This both iso-
lates LBFS’s benefits from physical file system layout and
lets users take immediate advantage of LBFS on existing
files without dedicating a disk or partition to it.

The LBFS server accesses the file system by pretending to
be an NFS client, effectively translating LBFS requests into
NFS. Building the LBFS server as an NFS client lets LBFS
serve any file system for which an NFS server exists, which
includes most file systems on most Unix operating systems.

Of course, the server might alternatively have been imple-
mented using regular system calls to access the file system.
However, NFS offers several advantages over the traditional
system call interface. First, it simplifies the implementation,
since the LBFS protocol is based on NFS. Second, NFS
saved the LBFS server from the need to implement access
control. The server simply maps LBFS requests to user IDs
and tags the resulting NFS requests with those IDs, letting
the NFS server decide whether or not to grant access. Fi-

nally, NFS allows the chunk index to be more resilient to
outside file system changes. When a file is renamed, its NFS
file handle remains the same and thus the chunk index does
not need to be updated.

The LBFS server creates a “trash directory,” .1lbfs.
trash, in the root directory of every file system it exports.
The trash directory contains temporary files created by MK-
TMPFILE RPCs. As explained below, after a COMMIT-
TMP RPC, the LBFS server does not delete the committed
temporary file. Rather, if space is needed, it garbage-collects
a random file in the trash directory. A background thread
purges the database of pointers to deleted files.

421 Statici-number Problem

The one major disadvantage to using NFS is the lack of low-
level control over file system data structures. In particular,
Unix file system semantics dictate that a file’s i-number not
change when the file is overwritten. Thus, when the server
commits a temporary file to a target file, it has to copy the
contents of the temporary file onto the target file rather than
simply rename the temporary file into place, so as to pre-
serve the target file’s i-number. Not only is this gratuitously
inefficient, but during the copy other clients cannot access
the target file. Worse yet, a server crash will leave the file
in an inconsistent state (though the client will restart the file
transfer after the COMMIT fails).

A related problem occurs with file truncation. Applica-
tions often truncate files and then immediately overwrite
them with similar versions. Thus, LBFS would benefit from
having the previous contents of a truncated file when recon-
structing the new contents. The obvious solution is to move
truncated files into the trash directory and replace them with
new, zero-length files. Unfortunately, the NFS interface will
not let the server do this without changing the truncated file’s
i-number. To avoid losing the contents of trucated files, then,
LBFS delays the deletion of temporary files after COMMIT-
TMP RPCs. Thus, many truncated files will still have copies
in the trash directory, and new versions can be reconstituted
from those copies.

It is worth noting that the static i-number problem could
be solved given a file system operation that truncates a file A
to zero length and then atomically replaces the contents of a
second file B with the previous contents of A. We can even
afford to lose the original contents of A after an inoppor-
tune crash. In the case of COMMITTMP, the lost data will
be resent by the client. Such a “truncate and update” opera-
tion would be efficient and easy to implement for most Unix
physical file system layouts. It might in other situations serve
as a more efficient alternative to the rename operation for
atomically updating files. Unfortunately, the current LBFS
server must make do without such an operation.

4.3 Client Implementation

The LBFS client uses the xfs device driver. xfs lets user-
level programs implement a file system by passing messages
to the kernel through a device node in /dev. We chose xfs
for its suitability to whole-file caching. The driver notifies
the LBFS client whenever it needs the contents of a file a
user has opened, or whenever a file is closed and must be
written back to the server. The LBFS client is responsible for
fetching remote files and storing them in the local cache. It
informs xfs of the bindings between files users have opened
and files in the local cache. xfsthen satisfies read and write
requests directly from the cache, without the need to call into
user-level code each time.

5 Evaluation

This section evaluates LBFS using several experiments.
First, we examine the behavior of LBFS’s content-based
breakpoint chunking on static file sets. Next, we measure
the bandwidth consumption and network utilization of LBFS
under several common workloads and compare it to that of
CIFS, NFS version 3 and AFS. Finally, we show that LBFS
can improve end-to-end application performance when com-
pared with AFS, CIFS, and NFS.

Our experiments were conducted on identical 1.4 GHz
Athlon computers, each with 256 MBytes of RAM and a
7,200 RPM, 8.9 ms Seagate ST320414A IDE drive. The IDE
drives are slower than common SCSI drives, which penal-
izes LBFS for performing more disk operations than other
file systems. Except where otherwise noted, all file system
clients ran on OpenBSD 2.9 and servers on FreeBSD 4.3.
The AFS client was the version of ARLA bundled with
BSD, configured with a 512 MByte cache. The AFS server
was openafs 1.1.1 running on Linux 2.4.3. For the Mi-
crosoft Word experiments, we ran Office 2000 on a 900 MHz
IBM ThinkPad T22 laptop with 256 MBytes of RAM, Win-
dows 98, and openafs 1.1.1 with a 400 MByte cache.

The clients and servers in our experiments were connected
by full-duplex 100 Mbit Ethernet through the Click [11]
modular router, which can be configured to measure traffic
and impose bandwidth limitations, delay, and loss. Click ran
on a Linux 2.2.18 Athlon machine.

5.1 Repeated Datain Files

LBFS’s content-based breakpoint chunking scheme reduces
bandwidth only if different files or versions of the same file
share common data. Fortunately, this occurs relatively fre-
quently in practice. Table 1 summarizes the amount of com-
monality found between various files.

We examined emacs to see how much commonality there
is between files under a software development workload.
The emacs 20.7 source tree is 52.1 MBytes. However, if
a client already has source for emacs 20.6 in its cache, it

Data Given Datasize Newdata Overlap
emacs 20.7 source emacs 20.6 52.1 MB 12.6 MB 76%
Build tree of emacs 20.7 — 20.2 MB 12.5 MB 38%
emacs 20.7 + printf executable emacs 20.7 6.4 MB 2.9 MB 55%
emacs 20.7 executable emacs 20.6 6.4 MB 5.1 MB 21%
Installation of emacs 20.7 emacs 20.6 43.8 MB 16.9 MB 61%
Elisp doc. + new page original postscript 4.1 MB 0.4 MB 90%
MSWord doc. + edits original MSWord 1.4 MB 0.4 MB 68%

Table 1: Amount of new data in a file or directory, given an older version.

only needs to download 12.6 MBytes to reconstitute the
20.7 source tree—a 76% savings. An emacs 20.7 build
tree consumes 20.2 MBytes of disk space, but only con-
tains 12.5 MBytes of unique chunks. Thus, writing a build
tree, LBFS will save 38% even if the server starts with an
empty chunk database. When adding a debugging printf to
emacs 20.7 and recompiling, changing the size of the exe-
cutable, the new binary has 55% in common with the old
one. Between emacs-20.6 and 20.7, the two executables
have 21% commonality. A full emacs 20.7 installation con-
sumes 43.8 MBytes. However, 61% of this would not need
to be transferred to a client that already had emacs 20.6 in its
cache.

We also examined two document preparation workloads.
When adding a page to the front of the emacs lisp manual,
the new postscript file had 90% in common with the previ-
ous one. Unfortunately, if we added two pages, it changed
the page numbering for more than the first chapter, and the
commonality disappeared. From this we conclude that LBFS
is suitable for postscript document previewing—for instance
tuning a TEX document to get an equation to look right—
but that between substantial revisions of a document there
will be little commonality (unless the pages are numbered
by chapter). We also used Microsoft Word to sprinkle refer-
ences to LBFS in a paper about Windows 2000 disk perfor-
mance, and found that the new version had 68% overlap with
the original.

To investigate the behavior of LBFS’s chunking algorithm,
we ran mkdb on the server’s /usr/local directory, using an
8 KByte chunk size and 48-byte moving window. /usr/
local contained 354 MBytes of data in 10,702 files. mkdb
broke the files into 42,466 chunks. 6% of the chunks ap-
peared in 2 or more files. The generated database consumed
4.7 MBytes of space, or 1.3% the size of the directory. It
took 9 minutes to generate the database. Figure 5 shows
the distribution of chunk sizes. The median is 5.8K, and
the mean 8,570 bytes, close to the expected value of 8,240
bytes. 11,379 breakpoints were suppressed by the 2K mini-
mum chunk size requirement, while 75 breakpoints were in-
serted because of the 64K maximum chunk size limit. Note
that the database does contain chunks shorter than 2K. These
chunks come from files that are shorter than 2K and from the
ends of larger files (since an end of file is always a chunk

10

900 -4

800 r
700
600
500
400
300
200
100

0

Number of chunks

I . U U T
0 10 20 30 40 50 60 70
Chunk size (KBytes)

Figure 5: Distribution of chunk sizes in the /usr/local
database. X-axis represents chunk sizes, in KBytes. Y-axis
shows the number of chunks having that size.

% of data in shared chunks
24 B window | 48 B window

Exp chunk size

2 KB 21.33% 21.30%
4 KB 19.29% 19.65%
8 KB 17.01% 18.01%

Table 2: Percentage of bytes in shared chunks in /usr/local
for various chunk and window sizes. Minimum chunk size was
always 1/4 the expected chunk size.

boundary).

Table 2 shows the amount of data in /usr/local that
appears in shared chunks for various expected chunk sizes
and breakpoint window sizes. As expected, smaller chunks
yield somewhat greater commonality, as smaller common
segments between files can be isolated. However, the in-
creased cost of GETHASH and CONDWRITE traffic asso-
ciated with smaller chunks outweighed the increased band-
width savings in tests we performed. Window size does not
appear to have a large effect on commonality.

5.2 Practical Workloads

We use three workloads to evaluate LBFS’s ability to re-
duce bandwidth. In the first workload, MSWord, we open
a 1.4 MByte Microsoft Word document, make the same ed-

1.0+

0.5+

Normalized bandwidth

0.0-

CIFS

NFS

[AFS

[Leases+Gzip
LBFS, new DB
Il LBFS

ed

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.! For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.?
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

11

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization

Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

[ZA CIFSLAN

CIFS
W NFSLAN
°E" 10— 101 1312 NES 1830 100% —
c 08— EmAFS S 80%
2 il [Leases+Gzip = i
g 06 LBFS, new DB N 60%
5 R
3 044 < 40%
N | =]
E 024 S 20%
56 4 4
Z 0.0- —
MSword gce ed MSword gce
a) b)

Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gcc benchmarks.

chunking scheme come not only from commonality between
the old and new versions of the document, but also from
commonality with large temporary files that Word creates
during saves. LBFS is able to reduce the upstream band-
width by 15 times over Leases+Gzip, 16 times over AFS, and
20 times over CIFS. More careful analysis reveals that the
Unix Samba server closes then reopens temporary files, re-
quiring them to be transferred multiple times. These multiple
transfers largely negate the benefits of gzip compression in
Leases+Gzip. In contrast, LBFS exploits the files’ common
contents from one close to the next, consuming very little
unnecessary traffic. AFS uses only slightly more bore band-
width than Leases+Gzip, either because the extra closes are
an artifact of the Unix Samba server, or perhaps because the
Windows AFS implementation performs partial file caching.

For the gcc benchmark, the savings provided by the
chunking scheme come from the fact that many of the com-
piled object files, libraries, and executables are similar or
identical to files in the server’s trash directory. Chunks only
need to be written to the server where object files differ or
files have been evicted from the trash directory. In this case,
LBFS was able to reduce the upstream bandwidth by 15
times over Leases+Gzip, 46 times over AFS, and more than
64 times over NFS. Even without the benefit of old object
files in the database, LBFS still reduces upstream bandwidth
utilization because many object files, libraries, and executa-
bles share common data. When started with a new and empty
chunk database, LBFS still used 30% less upstream band-
width than Leases+Gzip.

In the ed case, the savings provided by the chunking
scheme come from writing versions of files that share com-
mon chunks with older revisions. LBFS was able to reduce
the upstream bandwidth by more than a factor of 2 over
Leases+Gzip and 8 over AFS and NFS.

12

5.4 Application Performance

Figure 7a shows the normalized end-to-end application per-
formance of the three workloads on a simulated cable mo-
dem link, with 1.5 Mbit/sec downstream bandwidth from
server to client, 384 Kbit/sec upstream bandwidth from client
to server, and 30 ms of round-trip latency. The execution
times are normalized against CIFS or NFS results. For com-
parison, we also show the execution times of the native file
system on a 100 Mbit/sec full-duplex LAN.

For the MSWord workload, LBFS was able to reduce
the execution times from a potentially unusable 101 sec-
onds with CIFS to a much more tolerable 16 seconds, more
than 6 times faster. In fact, AFS takes 16 seconds to run
the benchmark on a LAN, though CIFS takes only 6 sec-
onds. The gcc workload took 113 seconds under LBFS with
a populated database, 1.7 times faster than Leases+Gzip, 4
times faster than AFS, almost 12 times faster than NFS,
and 18% faster than NFS on a LAN. With a new server
database, LBFS still reduces the execution time by 6% over
Leases+Gzip, though it is 32% slower than NFS on a LAN.

For both the MSWord and gcc workloads, Figure 7b shows
that LBFS reduces network utilization, or the percentage of
available bandwidth used by the file system. Over LBFS,
gcc used only used only 9.5% of the 384 Kbit per second up-
stream link. In contrast, gcc under NFS used 68% and under
AFS used 96%. For the MSWord benchmarks, LBFS was
able to reduce the upstream network utilization from 87%
and 96% with AFS and CIFS to 29%.

Figure 8 examines the effects of available network band-
width on the performance of the gcc workload over LBFS,
Leases+Gzip, and AFS. In these experiments, the simulated
network has a fixed round trip time of 10 ms. This graph
shows that LBFS is least affected by a reduction in avail-
able network bandwidth, because LBFS reduces the read and

1600 T
AFS -+
1400 Leases+Gzip - -
LBFS —&—
1200 B
1000 - b
800 - b
600 [B
400 BN N
200 ey

Execution time (s)

mx
i
Mo+
1)

0.1 1
Bandwidth (Mbps)

Figure 8: Performance of the gcc workload over various band-
widths with a fixed round-trip time of 10 ms.

AFS -t

400
Leases+Gzip ---x---
350 - LBFS —e— |
300 B
"
250 .
200) B

150
100 b _&-
50 F R

Execution time (s)

40 60
Round trip time (ms)

Figure 9: Performance of the gcc workload over a range of
round-trip times with fixed 1.5 Mbit/sec symmetric links.

write bandwidth required by the workload to the point where
CPU and network latency, not bandwidth, become the limit-
ing factors.

Figure 9 examines the effects of network latency on LBFS,
Leases+Gzip, and AFS performance. In these experiments,
the simulated network has symmetric 1.5 Mbit per second
links. Although the gcc workload uses more bandwidth over
Leases+Gzip, the performance of the workload over LBFS
and Leases+Gzip are roughly the same because the avail-
able network bandwidth is high enough. On the other hand,
because gcc over AFS uses significantly more bandwidth,
it performs worse than both LBFS and Leases+Gzip. This
graph shows that the execution time of the gcc workload de-
grades similarly on all three file systems as latency increases.

Figure 7a also shows LBFS’s performance on the ed
benchmark, a 6% improvement over Leases+Gzip, 67% over
AFS, and 83% over NFS. However, execution time is not
the best measure of performance for interactive workloads.
Users care about delays of over a second, but cannot differ-
entiate much smaller ones that nonetheless affect the run-
time of a scripted benchmark. Long delays are most often
caused by TCP entering the backoff state. We therefore ran a
shortened version of the ed benchmark over a network with

13

2000 ‘
ssh -—-6--
AFS -+
Leases+Gzip ---x---
z 15001 LBFS —&— |
£
c 1000 - g
S -
5
[8) L
2 500 b L :
.- o7
o
e 2 —
O #®—&—= ¥ ‘ i

0% 2% 4% 6% 8%

Loss rate

Figure 10: Performance of a shortened ed benchmark over var-
ious loss rates, on a network with fixed 1.5 Mbit/sec symmetric
links and a fixed round-trip time of 10 ms.

simulated packet loss, comparing the performance of the net-
work file systems with the ssh remote login program.
Figure 10 compares file systems to ssh under various loss
rates. With no packet loss, ssh is slower than any file sys-
tem, but the difference would not affect performance at the
rate users type. However, as the loss rate increases, delays
are imposed by TCP’s backoff mechanism. As ssh never
has more than a few packets in flight, every lost packet puts
TCP into backoff, imposing a delay of one or more seconds
while the user waits for typed characters to echo. The file
systems outperform ssh for several reasons. First, LBFS
and Leases+Gzip experience fewer losses by sending fewer
total packets than ssh; the file systems both consume less
bandwidth and send more data per packet. Second, when file
systems transfer large files, TCP can get four or more pack-
ets in flight, allowing it to recover from a single loss with fast
retransmission and avoid backoff. AFS uses UDP rather than
TCP, and does not appear to reduce its sending rate as precip-
itously as TCP in the face of packet loss. We conclude that
for the kind of editing in this benchmark, it is far preferable
to use a network file system then to run an editor remotely.

6 Summary

LBFS is a network file system that saves bandwidth by taking
advantage of commonality between files. LBFS breaks files
into chunks based on contents, using the value of a hash func-
tion on small regions of the file to determine chunk bound-
aries. It indexes file chunks by their hash values, and subse-
quently looks up chunks to reconstruct files that contain the
same data without sending that data over the network.
Under common operations such as editing documents and
compiling software, LBFS can consume over an order of
magnitude less bandwidth than traditional file systems. Such
a dramatic savings in bandwidth makes LBFS practical for
situations where other file systems cannot be used. In many
situations, LBFS makes transparent remote file access a vi-

able and less frustrating alternative to running interactive
programs on remote machines.

7 Acknowledgments

We thank Chuck Blake, Frans Kaashoek, Butler Lampson,
Robert Morris, Marc Waldman, and the anonymous review-
ers for their feedback and suggestions. We thank Chuck
Blake and Frank Dabek for help with hardware, Nicko-
lai Zeldovich for setting up AFS, and Chuck Blake, Frank
Dabek, and Bryan Ford for assistance with xfs.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Brian Berliner. CVS II: Parellizing software development. In
Proceedings of the Winter 1990 USENIX Technical Confer-
ence, Colorado Springs, CO, 1990.

David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ra-
makrishna Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, Westley Weimer, Christopher Wells, Ben
Zhao, and John Kubiatowicz. Oceanstore: An exteremely
wide-area storage system. In Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 190-201, Boston,
MA, November 2000.

Sergey Brin, James Davis, and Hector Garcia-Molina. Copy
detection mechanisms for digital documents. In Proceedings
of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, pages 398-409, San Jose, CA, May 1995.

Andrei Broder. On the resemblance and containment of doc-
uments. Compression and Complexity of Sequences, pages
21-29, 1997.

B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3
protocol specification. RFC 1813, Network Working Group,
June 1995.

FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I1.S.T., National Technical Information Service,
Springfield, VA, April 1995.

Cary G. Gray and David R. Cheriton. Leases: An effi-
cient fault-tolerant mechanism for distributed file cache con-
sistency. In Proceedings of the 12th ACM Symposium on Op-
erating Systems Principles, pages 202-210, Litchfield Park,
AZ, December 1989.

Bjorn Gronvall, Assar Westerlund, and Stephen Pink. The de-
sign of a multicast-based distributed file system. In Proceed-
ings of the Third Symposium on Operating System Design and
Implementation, pages 251-264, New Orleans, LA, February
1999.

John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and performance in a dis-
tributed file system. ACM Transactions on Computer Systems,
6(1):51-81, February 1988.

James J. Kistler and M. Satyanarayanan. Disconnected oper-
ation in the coda file system. ACM Transactions on Computer
Systems, 10(1):3-25, February 1992.

14

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Transac-
tions on Computer Systems, 18(4):263-297, November 2000.

Yui-Wah Lee, Kwong-Sak Leung, and M. Satyanarayanan.
Operation-based update propagation in a mobile file system.
In Proceedings of the 1999 USENIX Technical Conference,
Monterey, CA, June 1999.

Udi Manber. Finding similar files in a large file system. In
Proceedings of the Winter 1994 USENIX Technical Confer-
ence, San Francisco, CA, January 1994.

Timothy Mann, Andrew D. Birrell, Andy Hisgen, Chuck Je-
rian, and Garret Swart. A coherent distributed file cache with
directory write-behind. ACM Transactions on Computer Sys-
tems, 12(2):123-164, May 1994.

David Maziéres. A toolkit for user-level file systems. In Pro-
ceedings of the 2001 USENIX Technical Conference, Boston,
MA, June 2001.

David Maziéres, Michael Kaminsky, M. Frans Kaashoek, and
Emmett Witchel. Separating key management from file sys-
tem security. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles, pages 124-139, Kiawa Island,
SC, 1999.

Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Bal-
achander Krishnamurthy. Potential benefits of delta encod-
ing and data compression for http. In Proceedings of the
1997 ACM SIGCOMM Conference, pages 181-194, Cannes,
France, September 1997.

Karin Petersen, Mike J. Spreitzer, and Douglas B. Terry. Flex-
ible update propagation for weakly consistent replication. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles, pages 288-301, Saint-Malo, France, 1997.

Michael O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in Comput-
ing Technology, Harvard University, 1981.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. NFS version 4 protocol.
RFC 3010, Network Working Group, December 2000.

Neil T. Spring and David Wetherall. A protocol independent
technique for eliminating redundant network traffic. In Pro-
ceedings of the 2000 ACM SIGCOMM Conference, pages 87—
95, Stockholm, Sweden, August 2000.

Walter F. Tichy. The string-to-string correction problem
with block moves. ACM Transactions on Computer Systems,
2(4):309-321, November 1984.

Andrew Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National University,
April 2000.

Assar Westerlund and Johan Danielsson. Arla—a free AFS
client. In Proceedings of the 1998 USENIX, Freenix track,
New Orleans, LA, June 1998. USENIX.

Haifeng Yu and Amin Vahdat. Design and evaluation of a
continuous consistency model for replicated services. In Pro-
ceedings of the 4rd Symposium on Operating Systems Design
and Implementation, San Diego, CA, 2000.

