
V22.0480-002 – Advanced Operating Systems

Instructor: David Mazières
715 Broadway, #708

TA: Jinyuan Li
719 Broadway, #714

Staff Email: <os-staff@scs.cs.nyu.edu>

Administrivia

• All assignments are on the web page
http://www.scs.cs.nyu.edu/aos/

• Part of each class will be spent discussing papers
- Read the papers before class

• Grading based on three factors
- Participation in discussion (so read the papers before class!)

- Midterm and Final Quiz

- Lab assignments

Handouts today

• Account information form
- Will give you access to dedicated class machines for lab

- Accounts will be created by tomorrow

- Email me if you don’t hear from me by Friday

• Access form for 7th floor of 715 Broadway
- So you can come to my office hours

- Only if you don’t already have access

• First lab goes on-line soon

Course topics

• User/kernel APIs

• Kernel architectures

• Virtual memory

• Threads

• IPC & Synchronization

• Scheduling

• I/O implementation

• File systems

• OS security

Lab assignments

• Build a UNIX shell

• Build minimal OS for PC hardware
- Bootstrap code

- Memory management

- Processes

- Context switches/IPC

- File system

• Port your shell to your operating system

• Demo your OS in last class

OS Platform

• Your OS will run on a standard PC
- x86 architecture (Pentium, Athlon, etc.)

- IDE disk, standard console, etc.

• Developed mostly in C, some assembly language
- Use GCC asm extension for inline assembly

• Class web page contains many references for PC
hardware

• Will test and run code using bochs
- Faithful PC hardware simulator

- Much easier to debug on than real hardware

- But what runs on Bochs will run on real hardware

What is an operating system?

• Makes hardware useful to the programmer

• Provides abstractions for applications
- Manages and hides details of hardware

- Accesses hardware through low/level interfaces
unavailable to applications

• Provides protection
- Prevents one process/user from clobbering another

Why study operating systems?

• Operating systems are a maturing field
- Most people use a handful of mature OSes

- Hard to get people to switch operating systems

- Hard to have impact with a new OS

• High-performance servers are an OS issue
- Face many of the same issues as OSes

• Resource consumption is an OS issue
- Battery life, radio spectrum, etc.

• Security is an OS issue
- Hard to achieve security without a solid foundation

• New “smart” devices need new OSes

Typical OS structure

IPC

user
kernel

driver
device

P1 P2 P3 P4

sockets
TCP/IP

system
file

console disk

device
driver driver

device

network

VM
scheduler

• Most software runs as user-level processes

• OS kernel handles “privileged” operations
- Creating/deleting processes

- Access to hardware

The different Unix contexts

• User-level

• Kernel “top half”
- System call, page fault handler, kernel-only process, etc.

• Software interrupt

• Device interrupt

• Timer interrupt (hardclock)

• Context switch code

Transitions between contexts

• User → top half: syscall, page fault

• User/top half → device/timer interrupt: hardware

• Top half → user/context switch: return

• Top half → context switch: sleep

• Context switch → user/top half

Top/bottom half synchronization

• Top half kernel procedures can mask interrupts

int x = splhigh ();

/* ... */

splx (x);

• splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, . . .

• Masking interrupts in hardware can be expensive
- Optimistic implementation – set mask flag on splhigh,

check interrupted flag on splx

Kernel Synchronization
• Need to relinquish CPU when waiting for events

- Disk read, network packet arrival, pipe write, signal, etc.

• int tsleep(void *ident, int priority, ...);

- Switches to another process

- ident is arbitrary pointer—e.g., buffer address

- priority is priority at which to run when woken up

- PCATCH, if ORed into priority, means wake up on signal

- Returns 0 if awakened, or ERESTART/EINTR on signal

• int wakeup(void *ident);

- Awakens all processes sleeping on ident

- Restores SPL a time they went to sleep
(so fine to sleep at splhigh)

V22.0480-002 Kernel

• Asynchronous interface, not like UNIX
- Only one kernel stack

- Interrupts always disabled in kernel (except in idle loop)

- Kernel never sleeps (except in idle loop)

• Why do away with threads in kernel?
- Vastly complicates programming (more error-prone)

- Ill-suited to certain user-level applications

- Conversely, can simulate traditional synchronous kernel
interface at user-level in terms of asynchronous interface

System calls

• Goal: invoke kernel from user-level code
- Like a library call, but into more privileged OS code

• Applications request operations from kernel

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, gets, etc. all user-level code

• Example: POSIX/UNIX interface (rest of lecture)
- Your kernel system call interface will be lower-level

- But can build POSIX-like functions in libraries

I/O through the file system

• Applications “open” files/devices by name
- I/O happens through open files

• int open(char *path, int flags, ...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file

Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure
- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");

→ “initfile: No such file or directory”

Device nodes

• File namespace also gives access to some devices
- Open what looks like a file, to gain access to device

• Examples (on my machine, others will vary):
- /dev/null – reads like EOF, writes like a data sink

- /dev/zero – reads like an infinite stream of 0 bytes

- /dev/tty – reads from or writes to current terminal

- /dev/rwd0c – access raw disk sectors

- /dev/rcd0c – CD-ROM device

- /dev/audio – send audio samples to sound card

- /dev/wsmouse – mouse

- /dev/bpf – lets you snoop packets on the network

Permissions

• Not every process can open every file

• Each process has a set of credentials
- User ID (typically 32-bit number, unique per login account)

- Group ID, group list (32-bit numbers)

• Files have permissions, too. E.g.,:
- (Link count = 1), User ID is 0, group ID 7

-r-xr-xr-x 1 0 7 79 Apr 14 10:32 /usr/bin/true

• Three sets of “rwx” bits, for user, group, and other
- read/write/execute on normal files

- on directories, “x” means traverse (cd or access any file)

- on dirs, must have “w” to create, rename, or delete files

Unix root user

• Unix user ID 0 is privileged “root” user
- Can perform most system calls without access checks

- E.g., open any file

- Can change owner of files

- Can Change its own UID or group list

• Not to be confused with privileged kernel
- Kernel runs with CPU in special “privileged” mode

- Allows access to special instructions, I/O registers, etc.

- root-owned processes are still just regular user processes

Example: Unix login process

• Login process runs with UID 0 (root)

• Asks for username and password
- Checks against system password file

- Keeps asking until valid password supplied

• Once password matches
- Look up numeric UID and GIDs in system files

- Set the GID list

- Set the UID (this drops privileges)

- Execute the user’s shell

Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
- Returns previous file offset, or -1 on error

• int close (int fd);

• int fsync (int fd);

- Guarantee that file contents is stably on disk

File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal

The rename system call

• int rename (const char *p1, const char *p2);

- Changes name p2 to reference file p1

- Removes file name p1

• Guarantees that p2 will exist despite any crashes
- p2 may still be old file

- p1 and p2 may both be new file

- but p2 will always be old or new file

• fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#

- Calls fsync on file descriptor

- rename (".#file#", "file");

Creating processes

• int fork (void);

- Create new process that is exact copy of current one

- Returns process ID of new proc. in “parent”

- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any

- stat – will contain exit value, or signal

- opt – usually 0 or WNOHANG

- Returns process ID or -1 on error

Deleting processes

• void exit (int status);

- Current process ceases to exist

- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run

- argv – argument vector that gets passed to main

- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions

• int execvp (char *prog, char **argv);

- Search PATH for prog

- Use current environment

• int execlp (char *prog, char *arg, ...);

- List arguments one at a time, finish with NULL

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor

- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(lseek on one will affect both)

• int fcntl (int fd, F SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0

- Makes file descriptor non-inheritable by spawned programs

Example: run prog w. /dev/null stdin

if (!(pid = fork ())) {

int fd = open ("/dev/null", O_RDONLY);

if (fd > 0) {

dup2 (fd, 0);

close (fd);

}

execlp ("prog", "prog", "arg1", NULL);

perror ("prog");

_exit (1);

}

waitpid (pid, &stat, 0);

printf ("prog exited %snormally\n", stat ? "ab" : "");

[note: no error checking here]

Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]

- Writes to fds[1] will be read on fds[0]

- When last copy of fds[1] closed, fds[0] will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files

- When fds[1] closed, read(fds[0]) returns 0 bytes

- When fds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE

