V22.0480-002 — Advanced Operating Systems

Instructor: David Mazieres
715 Broadway, #708

TA: Jinyuan Li
719 Broadway, #714

Staff Email: <os-staff@scs.cs.nyu.edu>

Administrivia

o All assignments are on the web page
http://www.scs.cs.nyu.edu/aos/

e Part of each class will be spent discussing papers

- Read the papers before class

¢ Grading based on three factors
- Participation in discussion (so read the papers before class!)
- Midterm and Final Quiz

- Lab assignments

Handouts today

e Account information form
- Will give you access to dedicated class machines for lab
- Accounts will be created by tomorrow

- Email me if you don’t hear from me by Friday

e Access form for 7th floor of 715 Broadway
- So you can come to my office hours

- Only if you don’t already have access

e First lab goes on-line soon

Course topics

e User/kernel APIs

e Kernel architectures

e Virtual memory

e Threads

e IPC & Synchronization
e Scheduling

¢ I/O implementation

e File systems

e OS security

Lab assignments

e Build a UNIX shell
e Build minimal OS for PC hardware

- Bootstrap code

Memory management
Processes

Context switches/IPC

File system
e Port your shell to your operating system

e Demo your OS in last class

OS Platform

e Your OS will run on a standard PC
- x86 architecture (Pentium, Athlon, etc.)

- IDE disk, standard console, etc.

e Developed mostly in C, some assembly language

- Use GCC asm extension for inline assembly

e Class web page contains many references for PC
hardware

e Will test and run code using bochs
- Faithtul PC hardware simulator
- Much easier to debug on than real hardware

- But what runs on Bochs will run on real hardware

What is an operating system?

e Makes hardware useful to the programmer

e Provides abstractions for applications
- Manages and hides details of hardware

- Accesses hardware through low /level interfaces
unavailable to applications

e Provides protection

- Prevents one process/user from clobbering another

Why study operating systems?

e Operating systems are a maturing field
- Most people use a handful of mature OSes
- Hard to get people to switch operating systems

- Hard to have impact with a new OS

e High-performance servers are an OS issue

- Face many of the same issues as OSes

e Resource consumption is an OS issue

- Battery life, radio spectrum, etc.

e Security is an OS issue

- Hard to achieve security without a solid foundation

e New “smart” devices need new OSes

Typical OS structure

P1 P2 P3 P4

user

| kernel VM IPC file
sockets scheduler sysiem

TCP I d d de
/TP (eiee) (Gerice

] \

network console disk

e Most software runs as user-level processes

e OS kernel handles “privileged” operations
- Creating/deleting processes

- Access to hardware

The different Unix contexts

e User-level

e Kernel “top halt”

- System call, page fault handler, kernel-only process, etc.
e Software interrupt
e Device interrupt
e Timer interrupt (hardclock)

e Context switch code

Transitions between contexts

e User — top half: syscall, page fault

e User/top half — device/timer interrupt: hardware
e Top half — user/context switch: return

e Top half — context switch: sleep

o Context switch — user/top half

Top/bottom half synchronization

e Top half kernel procedures can mask interrupts

int x = splhigh ();
/* ... *x/
splx (x);

e splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, ...

e Masking interrupts in hardware can be expensive

- Optimistic implementation — set mask flag on splhigh,
check interrupted flag on splx

Kernel Synchronization

e Need to relinquish CPU when waiting for events

- Disk read, network packet arrival, pipe write, signal, etc.

e int tsleep(void *ident, int priority, ...);

- Switches to another process

ident is arbitrary pointer—e.g., buffer address

priority is priority at which to run when woken up

PCATCH, if ORed into priority, means wake up on signal
Returns 0 if awakened, or ERESTART /EINTR on signal

e int wakeup(void *ident);
- Awakens all processes sleeping on ident

- Restores SPL a time they went to sleep
(so fine to sleep at splhigh)

V22.0480-002 Kernel

e Asynchronous interface, not like UNIX
- Only one kernel stack
- Interrupts always disabled in kernel (except in idle loop)

- Kernel never sleeps (except in idle loop)

e Why do away with threads in kernel?
- Vastly complicates programming (more error-prone)
- Ill-suited to certain user-level applications

- Conversely, can simulate traditional synchronous kernel
interface at user-level in terms of asynchronous interface

System calls

e Goal: invoke kernel from user-level code
- Like a library call, but into more privileged OS code

e Applications request operations from kernel

e Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

e Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

e Example: POSIX/UNIX interface (rest of lecture)

- Your kernel system call interface will be lower-level

- But can build POSIX-like functions in libraries

I/O through the file system

e Applications “open” files/devices by name

- 1/0 happens through open files

e int open(char *path, int flags, ...);

flags: 0_RDONLY, 0_WRONLY, 0_RDWR

0_CREAT: create the file if non-existent

0_EXCL: (w. 0_CREAT) create if file exists already
0_TRUNC: Truncate the file

0_APPEND: Start writing from end of file

mode: final argument with 0_CREAT

e Returns file descriptor—used for all I/O to file

Error returns

e What if open fails? Returns -1 (invalid fd)

e Most system calls return -1 on failure

- Specitic kind of error in global int errno

e #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

e perror function prints human-readable message

- perror ("initfile");

— “initfile: No such file or directory”

Device nodes

e File namespace also gives access to some devices

- Open what looks like a file, to gain access to device

e Examples (on my machine, others will vary):
- /dev/null — reads like EOF, writes like a data sink

- /dev/zero —reads like an infinite stream of 0 bytes

/dev/tty — reads from or writes to current terminal
/dev/rwdOc — access raw disk sectors

/dev/rcd0c — CD-ROM device

/dev/audio — send audio samples to sound card

/dev/wsmouse — mouse

/dev/bpf — lets you snoop packets on the network

Permissions

e Not every process can open every file

e Each process has a set of credentials
- User ID (typically 32-bit number, unique per login account)
- Group ID, group list (32-bit numbers)

e Files have permissions, too. E.g.,
- (Link count = 1), User ID is 0, group ID 7

-r-xr-xr-x 1 0 7 79 Apr 14 10:32 /usr/bin/true

e Three sets of “rwx” bits, for user, group, and other
- read/write/execute on normal files

- on directories, “x” means traverse (cd or access any file)

- on dirs, must have “w” to create, rename, or delete files

Unix root user

e Unix user ID 0 is privileged “root” user
- Can perform most system calls without access checks
- E.g., open any file
- Can change owner of files

- Can Change its own UID or group list

e Not to be confused with privileged kernel
- Kernel runs with CPU in special “privileged” mode
- Allows access to special instructions, I/O registers, etc.

- root-owned processes are still just regular user processes

Example: Unix login process

e Login process runs with UID 0 (root)

e Asks for username and password
- Checks against system password file

- Keeps asking until valid password supplied

e Once password matches

- Look up numeric UID and GIDs in system files

- Set the GID list
- Set the UID (this drops privileges)

- Execute the user’s shell

Operations on file descriptors

int read (int fd, void *buf, int nbytes);
- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

off t lseek (int fd, off_t pos, int whence);

- whence: 0 —start, 1 — current, 2 — end
- Returns previous file offset, or -1 on error

int close (int fd);

int fsync (int £fd);

- Guarantee that file contents is stably on disk

File descriptor numbers

e File descriptors are inherited by processes

- When one process spawns another, same fds by default

e Descriptors 0, 1, and 2 have special meaning
0 — “standard input” (stdin in ANSI C)
1 — “standard output” (stdout, printf in ANSIC)

2 — “standard error” (stderr, perror in ANSI C)

Normally all three attached to terminal

The rename system call

e int rename (const char *pl, const char *p2);
- Changes name p2 to reference file p1

- Removes file name p1

e Guarantees that p2 will exist despite any crashes
- p2 may still be old file
- pl and p2 may both be new file

- but p2 will always be old or new file

e fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#
- Calls fsync on file descriptor

- rename (".#file#", "file");

Creating processes

e int fork (void);
- Create new process that is exact copy of current one
- Returns process ID of new proc. in “parent”

- Returns 0 in “child”

e int waitpid (int pid, int *stat, int opt);

- pid — process to wait for, or -1 for any

stat — will contain exit value, or signal

opt —usually 0 or WNOHANG

Returns process ID or -1 on error

Deleting processes

e void exit (int status);
- Current process ceases to exist
- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error

e int kill (int pid, int sig);
- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

Running programs

e int execve (char *prog, char **argv, char **envp);
- prog — full pathname of program to run
- argv —argument vector that gets passed to main

- envp — environment variables, e.g., PATH, HOME
e Generally called through a wrapper functions

e int execvp (char *prog, char **argv);
- Search PATH for prog

- Use current environment

e int execlp (char *prog, char *arg, ...);

- List arguments one at a time, finish with NULL

Manipulating file descriptors

e int dup2 (int oldfd, int newfd);
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(1seek on one will affect both)

e int fcntl (int fd, F_SETFD, int val)
- Sets close on exec flag if val =1, clears if val =0

- Makes file descriptor non-inheritable by spawned programs

Example: run prog w. /dev/null stdin

if (' (pid = fork ())) {
int fd = open ("/dev/null", O_RDONLY);
if (£d > 0) {
dup2 (£fd, 0);
close (fd);
+
execlp ("prog", "prog", "argl", NULL);
perror ("prog");
_exit (1);
+
waitpid (pid, &stat, 0);
printf ("prog exited Y%snormally\n", stat 7 "ab" : "");

[note: no error checking here]

Pipes

e int pipe (int fds[2]);

Returns two file descriptors in fds [0] and fds [1]
Writes to fds[1] will be read on fds [0]
When last copy of £ds[1] closed, £ds [0] will return EOF

Returns 0 on success, -1 on error

e Operations on pipes
- read/write/close — as with files
- When fds[1] closed, read (£ds [0]) returns O bytes

- When £ds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE

