
Memory Consistency
after Advi & Gharachorloo



Program A

int flag1, flag2;

void p1 () {

flag1 = 1;

if (!flag2) { /* critical section */ }

}

void p2 () {

flag2 = 1;

if (!flag1) { /* critical section */ }

}



Program B

int data, ready;

void p1 () {

data = 2000;

ready = 1;

}

void p2 () {

while (!ready)

;

use (data);

}



Program C

int a, b;

void p1 () { a = 1; }

void p2 () {

if (a == 1)

b = 1;

}

void p3 () {

if (b == 1)

use (a);

}



Sequential Consistency

• Sequential consistency: The result of execution is as if all

operations were executed in some sequential order, and the

operations of each processor occurred in the order specified by

the program. [Lamport]

• Boils down to two requirements:

1. Maintaining program order on individual processors

2. Ensuring write atomicity



S.C. thwarts hardware optimizations

• Write buffers

• Overlapping write operations

- Coalescing writes to same cache line

• Non-blocking reads

• Cache coherence

- Write completion only after invalidation/update

- Can’t have overlapping updates (Program C)



S.C. thwarts compiler optimizations

• Code motion

• Caching value in register

- E.g., ready flag in Program B

• Common subexpression elimination

• Loop blocking

• Software pipelining



Possible optimizations

• “Prefetch” writes

- Invalidate memory in other CPU’s caches while waiting for

previous reads to complete

• Speculatively execute reads (optimistically)

- If program order violated, roll back state



Relaxed Consistency Models

• Relax program order

- Relax Write to Read order

E.g., Re-order read wrt. writes from same proc, breaks A

- Relax Write to Read and Write to Write order

E.g., Read own writes before other people

- Relax Read to Read and Read to Write order

• Relax write atomicity

- Read others’ writes early

• Relax both

- Read own writes early (in conjunction with other

relaxation)



Weak ordering

• Define two classes of memory operation

- data

- synchronization

• System can reorder any operations between sync

references

• Easy to implement:

- Processor keeps counter of outstanding operations



How to classify memory accesses?

• Find variables that race under S.C.:

- Two operations access variable

- At least one is a write

- No intervening references (in S.C.)

• E.g., in Prog B, ready races, not data



Release consistency

• 4 types of memory operation:

- ordinary, nsync, acquire, release

• Preserve the following orderings [RCsc]:

- acquire → all

- all → release

- {release, nsync} → {acquire, nsync}

• Perfect for data protected by mutexes


