Review of assembly language

e Program “text” contains binary instructions
- CPU executes one instruction at a time
- Usually executes next sequential instruction in memory

- Branch/jump/call inst. specifies different next instruction

e Instructions typically manipulate

Registers — small number of values kept by processor

Memory

“Special” registers whose bits have particular significance

The instruction pointer (IP) — which inst. to execute next
I/0O devices

Review of x86 assembly

e Mostly two operand instructions

e Unfortunately two prevalent syntaxes

- “Intel syntax”: op dst, src

- "AT&T (gcc/gas) syntax”: op src, dst

- We will always use AT&T syntax

- But a lot of documentation uses Intel syntax

e Examples:

Assembly

movl Y,eax,’edx
movl $0x123, Yedx
movl 0x124, %edx
movl (Yebx), Jedx
movl 4(%ebx), %edx

C pseudo-code

edx
edx
edx
edx

edx

eax;

0x123;

((int32_t) 0x124);
((int32_t) ebx);
((1int32_t) (ebx+4));

Real vs. protected mode

e Real mode — 16-bit registers, 1 MB virtual mem

- Segment registers provide top 4 bits of physical address:
movw (%ax),’%dx means dx = *(int _32_t*)(16 x ds + ax)

- This is probably what you've used in earlier classes

e Protected mode — segment registers virtualized

Load segment registers from table of segment descriptors

Depending on %cs descriptor, default ops can be 32 bits

32-bit virtual address space, can optionally be paged

32- or 36-bit physical address space, depending on mode
o We will mostly use 32-bit protected mode

- All remaining examples will be 32-bit code
- 32-bit AT&T Instructions have 1 suffix, for long

More 32-bit instructions

e ALU ops: addl, subl, and], orl, xorl, not], ...

- incl, decl — add or subtract 1

- cmpl - like subl, but discards subtraction result

e Stack instructions:

Stack op equivalent

pushl Jeax subl $4,%esp
movl %eax, (%esp)

popl %eax movl (%esp),keax
addl $4,%esp

e Other stack instructions: pushfl, pushal

- leave means: movl %ebp,%esp; popl %ebp

Conditional branches

e Conditional branches based EFLAGS reg. bits
- CF (carry flag) set if op carried /borrowed — jc, jnc

- ZF (zero flag) set if result zero — jz/je, jnz/jne

- SF (sign flag) set to high bit of result — jn, jp

- OF (overflow flag) set if result to large — jo, jno

- jge — “Jump if greater or equal”, i.e., SF=OF

- jg — “Jump if greater”, i.e., SF=OF and ZF=0

¢ jmp unconditional jump, call/ret uses stack:

Stack op
call $0x12345

ret

psedo-asm equiv

pushl %eip
movl $0x12345,%eip

popl %eip

Example

for (i = 0; i < a; i++)

sum += 1;

L6:

L4 :

xorl Y%edx,%edx
cmpl Jecx,hedx
jge .L4

movl sum,’eax

addl %edx,%eax
incl Yedx

cmpl Jecx,hedx
il .L6

movl %eax,sum

H OH H H H

i = 0 (more compact than movl)
test (1 - a)
>= 0 7 jump to end

cache value of sum in register

sum += 1

i++

test (i - a)

< 07 go to top of loop

store value of sum back in memory

Assembler local 1abels

o Often want to define macros in assembly language

- Typically .S files are C-preprocessor source

e Problem: how to choose unique labels
- If there’s a loop in macro, and used multiple times

- You would have a duplicate label

e Solution: Numeric labels are local
- f suffix means forwards

- b suffix means backwards

Example w. local labels

for (i = 0; i < a; i++)

sum += 1;

xorl Y%edx,%edx
cmpl Jecx,hedx
jge 2f

movl sum,jeax

addl %edx,%eax
incl %edx

cmpl Jecx,hedx
il 1b

movl %eax,sum

H OH H OH H

i = 0 (more compact than movl)
test (1 - a)
>= 0 7 jump to end

cache value of sum in register

sum += 1

i++

test (i - a)

< 07 go to top of loop

store value of sum back in memory

32-bit protected-mode registers

Caller-saved:
Yeax
%edx

Yecx

Callee-saved:

%ebx
Y%esi
Y%edi

%hebp «—— frame pointer
hesp «— stack pointer

Special-purpose: eflags, %cr3, GDIR, IDTR, LDTR, TSS

Segment Registers: /.cs Yss %ds %es [/fs %gs]

INDEX

Tl

RPL

15

TTI:0 = global/1 = local table
RPL : Requestor privilege level (0-3)

Calling conventions

e GCC dictates how stack is used

o After call instruction:
- %esp points at return address

- Y%esp+4 points at first argument

o After ret:

- %esp points at arguments pushed by caller

called function may have trashed arguments

%eax contains return value (or trash if function is void)

%ecx, %edx may be trashed

%ebp, %ebx, %esi, %edi must have previous contents

Picture of stack

arg?

argl

return %eip
old %ebp

callee-saved
registers

%oebp =

Local vars
and temps

Yoesp =

e Code may push temp vars on stack at any time

- So refer to args and locals using %ebp

Typical function code

int main(void) { return f£(8)+1; }
int £(int x) { return g(x); }

int g(int x) { return x+3; }

pushl Yebp
movl Jesp,hebp

pushl $8
call f
incl %eax
leave

ret

code for f

int £(int x) { return g(x); }

pushl Yebp

movl hesp, hebp
subl $20, Yesp
pushl 8(%ebp)
call g

leave

ret

code for g

int g(int x) { return x+3; }

pushl Y%ebp

movl hesp, hebp
movl 8(%ebp), heax
addl $3, Yeax
leave

ret

Inline assembly language

o Large assembly language files are a pain
- Often want to write C, but need a particular asm instruction

- Thus, gcc provides asm extension

e Straw man, just inject assembly language:
- E.g., asm ("movl %esp,keax");
- But what if compiler needed value in %eax?

- And what if you need some value the compiler has?
(remember how gcc cached value of sum in %eax)

GCC inline assembly language

e Specify values needed, output, and clobbered

asm ("statements" : output_values

: input_values : clobbered);

e Example:

u_int32_t stkp;
asm ("movl %esp,%0" : "=r" (stkp) ::);
printf ("The stack pointer is Ox%x\n", stkp);

e Notes:

["_J77

r” means any register, or can specifty w. a/b/c/d/S/D

174

“m” means memory, “g” general, I small constant

If in/out value same, specity, e.g., “0” for in value

clobbered may need “memory” and/or “flags”

I/O instructions

e How to interact with devices?

e PC design — use special I/O space
- special instructions inb /inw, outb /outw (for 8/16 bits)
- Load and store bytes & words, like normal memory

- But special processor I/0 pin says “this is for I/O space”

e To access from C code:

static inline u_char inb (int port) {
u_int8_t data;

asm volatile("inb %w1,%0" : "=a" (data) : "d" (port));
return data;

+

static inline void outb(int port, u_int8_t data) {
asm volatile("outb %0,%wl" :: "a" (data), "d" (port));

x86 hardware tables

LDT/GDT. Descriptor tables, indexed by segment registers.
IDT. Vectors for 256 exceptions, interrupts, and user traps.

TSS. Task state segment.
e Stack pointers for privilege increases.
o I/O-space permissions with byte granularity (allows c11i).

Page Directory/Tables. Two-level page tables in hardware.

DIR TABLE OFFSET

VA:

31 ... 22 21 ... 12 11 0
Special register %cr3 points to page directory.

x86 segments

32 types of segments: 16/32-bit, expand-up/down, read /write,
code/data, conforming/non-conforming,
call/trap /interrupt/task gate, available /busy TSS, LDT.

e user segments. 32-bit base, 16-bit limit (granularity byte/4K).
RPL bits of %cs and %ss determine current privilege level.

o trap gates. 16-bit segment selector, 32-bit offset.

e interrupt gates. Same as trap gates, but disables interrupts.
Loading segments:

e direct load, far jump, int: MIN(CPL, RPL) < DPL
e exception, interrupt: DPL not checked
o all gates: adjust CPL to DPL of designated segment.

Segments are mostly a pain

e Segment base + offset known as linear address

e Usually don’t want to worry about segments

- But can’t disable segmentation hardware

e Solution: Flat model - offset=linear address
- Give all segments a base address of 0

- Now mostly don’t have to worry about segments

e However, still need segments for interrupts/traps

x86 paging

e Translation occurs on linear address output of
segmentation.

e 4K pages.
e PTEs have the following options:

- writeable. Disables user and kernel (486+) mode writes.
- user. Access with CPL = 3 when set, otherwise just 0-2.
- cache disable bit, cache write-through bit

- dirty bit, accessed bit, present bit.

e J.cr3 designates address space by selecting page
directory. Loading ’cr3 flushes the TLB.

Linear Address

4-KByte Page

31 22 21 12 11 0)
Directory Table Offset
A 12
/10 A10 Page Table >

Page Directory

' Page-Table Entry

Physical Address

4
—~—>

Directory Entry >

32*

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

20

1024 PDE x 1024 PTE = 22° Pages

Page-Table Entry (4KByte Page)
12 11 9876543210

P|P
Page Base Address Avail |G|A|D|A|C|W|/|/]|P
DI|T

Available for system programmer’s use 4|

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Interrupts and traps

e CPU supports 256 interrupts
- IDT contains segment descriptors for each int
- Trap gate says what code segment / offset to use

- Interrupt gate like trap gate, but disables interrupts

e How does CPU vector to IDT entry?

- int, int3, into instructions

- Built-in trap (e.g., page fault, trap numbers hard-coded
0-19)

- Interrupt from external device (8-bit interrupt number
supplied on CPU pins)

Trap frame

ss
esp
eflags
cs
Yoesp > =P
. [error code]
%esp if errcode =

e Only some traps have error codes

e Interrupts do not cause error code to be pushed

Example: page fault — 14

e Has error code, bits mean:
- bit 0 — O=page not present, 1=protection violation
- bit 1 — O=access was read, 1=access was write

- bit 2 — O=fault in user mode, 1=supervisor mode

¢ In addition, special register /,cr2 holds faulting
virtual address

Discussion

e Why might page fault occur in supervisor mode?

e Where does stack pointer come from after trap?

- Why is this important?
e What happens if user code calls int 14?
e WAX
e 8259A

