
Ptrace

• pid t waitpid (pid t wpid, int *stat, int opt);

- System call also returns when debugged process stops

• int ptrace(int request, pid t pid,

caddr t addr, int data);

- Somewhat OS specific; this describes OpenBSD

- PT TRACE ME – when process stopped/signaled, parent gets

control via wait; also stops after execve

- PT READ D, PT WRITE D – read/write mem in traced process

- PT CONTINUE – resume stopped process (addr can specify a PC

address; data can specify signal)



More ptrace requests

- PT ATTACH – start tracing a process

- PT DETACH – continue program w/o debugging

- PT GETREGS/PT SETREGS – manipulate registers

- PT GETFPREGS/PT SETFPREGS – manipulate registers

• ktrace – trace a process’s system calls to disk

• systrace – trace a process’s system calls and enforce

policy



Why are systems so insecure?



Sources of security holes

• Insecure network protocols

• Pitfalls of C and libc (gets, sprintf, etc.)

• Inadequate operating systems

- Require many processes to be privileged,

- Push access and sanity decisions to user level,

- Don’t provide safe ways to make such decisions.

• Each problem worse in presence of the others



Inadequate operating systems

• Encourage security holes

1. Use all available privilege on system calls

2. Decouple the namespace from underlying files

3. Limited process-to-process authentication

4. Violate the principle of least privilege

• Careful programming is not the answer

- Correct code must often be convoluted

- History shows fixes never catch up with bugs



1. System calls use all available privilege

• Example: Wu-ftpd 2.4 (a popular ftp server)

• Catches SIGPIPE signal

- Raise privilege level to root

- Write log file (as root)

- Exit

• Catches SIGURG signal

- Read command after out-of-band data

- If “ABOR” longjmp out of current transfer

• SIGPIPE + SIGURG gives root



2. Namespace decoupled from actual files

• Example: Root deletes old temp. files nightly:

find /tmp -atime +3 -exec rm -f -- {} \;

• An attack deletes any file on the system:

creat (“/tmp/etc/passwd”)

readdir (“/tmp”) = “etc”

lstat (“/tmp/etc”) = DIRECTORY

readdir (“/tmp/etc”) = “passwd”

rename (“/tmp/etc” → “/tmp/x”)

symlink (“/etc”, “/tmp/etc”)

unlink (“/tmp/etc/passwd”)



3. No process to process authentication

• No authenticated IPC

• No way to grant credentials

• Setuid used instead of client/server model

• Example: Anything setuid in FreeBSD 2.1.6

- crt0 calls setlocale()

- PATH_LOCALE environment variable causes buffer overrun

- Attacker can arbitrarily corrupt stacks of setuid programs



4. Least privilege difficult to achieve

• Even unprivileged accounts have a lot of power

• Many applications must run as superuser

- login, su, ftpd, mountd, sshd, popd, imapd, cvs, . . .

- A bug in any one of these completely compromises a system

• Simple example: old AIX and Linux login

- Rlogind and login both have root privilege

- Rlogind gives login -f flag if user already authenticated

- Logging in as user -froot gives root without password

- Login never should have been root in the first place!



Correct code must often be convoluted

• Example: SSH 1.2.12

• Reads root files and writes user files

• To avoid complex race conditions:

- Reads root-owned secret key file first

- Drops all privileges before writing user file

• Dropping privs allows user to “debug” SSH

- Secret host key could be compromised

• The fix is painful: restructure into 3 processes!

• Newer SSH daemons separate privilege even more

- Requires re-creating one process’s heap in another



This is a fundamental problem!

• Can’t just blame application writers

• Operating systems deficiencies

- Require many processes to be privileged,

- Push access & sanity decisions to user level,

- Don’t provide safe ways to make such decisions.

• The result

- Correct code must often be convoluted

- Can’t reuse code developed for untrusted applications

(where improbable case can be ignored)

- Authentication happens in many places on one machine

(login, su, sshd, popd, imapd, cvs, etc.)



On-going research at NYU, MIT, UCLA



Motivation

• Most software cannot be trusted

- Built on error-prone OS interfaces

- Not written by security-conscious programmers

- Massive, complex systems no one fully understands

- Privilege hungry—easier to implement as trusted

• Yet this is what people develop and want to run

• Can such software be secured?

- Don’t try to reason about how the application works

- Reason about its interaction with the rest of the system



Analogy: Firewalls

Hopelessly
Insecure
Server

attacker

attacker

• Your machine is hopelessly insecure

- Can’t fix software

- Can reason about network traffic

• Block interaction with network attackers

• Popular example of securing insecure components

- Of course, we know the limitations. . . domino effect



Asbestos

proc device file system Ethernet

application

interposition
agentagent

interpositionapplicationapplication

Asbestos kernel

• Push the firewall principle to individual processes

- Control the damage a process can do by limiting interactions

• . . . We’ve just re-stated the princ. of least privilege

- But use simple Interposition agents to achieve it



System call interposition

• A promising approach to controlling software

• Carries a performance penalty on today’s OSes

• Q: How to understand intercepted system calls?

- E.g., what does unlink ("tmp/etc/passwd") mean?

- Call relies on implicit state (e.g., current working directory)

• Q: How to know what you are allowing?

- Meaning of call can change by the time agent executes it

• Q: How to give agents least privilege?

- Agents should require all privileges

- Combine multiple agents & not worry about order/trust?

• Q: How to craft policies across resource types?



Goals of an interposition-friendly OS

• How to design syscall interface for least privilege?

• Unambiguous operations

- Effects of an intercepted operation must be clear, immutable

• Uniform naming and interfaces for all resources

- Files, sockets, signals, devices, processes (think Plan9)

• Must be able to interpose on any system request

- Nonbypassable, transparent

- Object-level granularity (e.g., not servers on ports)

• Least privilege for interposer & apps both

- Sometimes agent must make access control decisions

- Better if agent’s task is to satisfy privilege hungry application

w/o privileges, through virtualization



Asbestos interface

• Every interaction is a message sent to a device

- Every resource is a device—even uesr processes

- Messages like a network file system protocol

• Messages are addressed to handles

- Many-to-one mapping of handles onto devices

(Think V object IDs or Plan9 files)

- Each process possesses some set of handles, tracked by OS

(Like capabilities)

• Message format: 〈dest, type, data, grant[], show[] 〉

- grant transfers handles between procs

- show proves possession (for credentials)

Handle possession rule: A process must possess all the

handles included in each message it sends.



Mount device

• Don’t want to interpose on every system call

• May want to combine multiple interpositions

- Order shouldn’t matter for non-overlapping goals

• Each process has a mount table

- Contains mappings handle→ 〈device, target-handle〉

- Any time handle is received in grant or show, kernel

substitutes target-handle

- Must possess both handles to install or remove mount entry

• Allows surgical insertion of interposition agents

- Cut a process off from resources it shouldn’t access

- Emulate ones it wants but doesn’t have access to



Example: Confining applications

• Want to restricting program to certain directories

• Current solution: chroot

- Somewhat effective (but interaction w. signals, sockets?)

- Must be root to use it, heavy weight

- Most applications won’t work well, too privilege hungry

• Asbestos solution: Stitch together environment

- Launch process with its own RAM FS for root handle

- mount handles it should have access to

E.g., /tmp/sandbox, /usr/lib for shared libs, /proc/self

• Can only access functionality with handles

- Can’t even exit w/o handle for right control node in /proc



Example: Blocking single-vector worms

• Sever listening on TCP port n

- Often doesn’t need to make outgoing connections to port n

• Want to enforce w/o being on critical path

- Interposing on all socket I/O too expensive

• Mount interposition agent on /dev/tcp

- But not in the loop for most operations

- (Grants handles for kernel TCP device)

• Least privilege for interposition agent

- Can give up its own ability to connect to port n after

application listens



Example: Unprivileged login

user/group IDs

user
password

password
user,

login

authserv

handles for

• Begin with no interesting handles

• Get username and password from user

• Acquire handles from authentication server

• Present handles in show arguments of requests

- Recipients can talk ask authserv what handles mean



Summary

• Horrible, disgusting software is a fact of life

• Changing programmers is not the answer

- People just want to get their software working

- Not interested in restricted programming environments,

factoring applications for least privilege

• But can change interfaces people program to

- Interposition-friendly interfaces facilitate “bolt-on” security

- Must avoid turning people off with inconvenience

• Asbestos – interposition-friendly OS interface

- Goal: Understand app’s security w/o understanding app

- Reason about interactions via small interposition agents

- Challenge: Can this be done hospitably to programmers?


