
Process scheduling

• Goal: High throughput
- Minimize context switches to avoid wasting CPU, TLB

misses, cache misses, even page faults.

• Goal: Low latency
- People typing at editors want fast response

- Network services can be latency-bound, not CPU-bound

• BSD time quantum: 1/10 sec (since ∼1980)
- Empirically longest tolerable latency

- Computers now faster, but job queues also shorter

• Solaris SVR4: 1/100 sec



Scheduling algorithms

• Round-robin

• Priority scheduling

• Shortest process next (if you can estimate it)

• Fair-Share Schedule (try to be fair at level of users,
not processes)

• Fancy combinations of the above (e.g., SMART)



Real-time scheduling

• Two categories:
- Soft real time—miss deadline and CD will sound funny

- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., procs A, B, C must be scheduled every 100, 200,

500 msec, require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period
≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first (works if schedulable)



Multiprocessor scheduling issues

• For TLB and cache, care about which CPU
- Affinity scheduling—try to keep threads on same CPU

• Want related processes scheduled together
- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often
(otherwise would spend all their time waiting)

• Gang scheduling—schedule all CPUs
synchronously

- With synchronized quanta, easier to schedule related
processes/threads together



Multilevel feeedback queues (BSD)

• Every runnable proc. on one of 32 run queues
- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

• Idea: Favor interactive jobs that use less CPU



Process priority

• p nice – user-settable weighting factor

• p estcpu – per-process estimated CPU usage
- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p estcpu←

(

2 · load

2 · load + 1

)

p estcpu + p nice

• Run queue determined by p usrpri/4

p usrpri← 50 +
(

p estcpu

4

)

+ 2 · p nice

(value clipped if over 127)



Sleeping process increases priority

• p estcpu not updated while asleep
- Instead p slptime keeps count of sleep time

• When process becomes runnable

p estcpu←

(

2 · load

2 · load + 1

)p slptime

× p estcpu

- Approximates decay ignoring nice and past loads



Discussion

• Do 10 people running vi have 1 sec latency?

• How do UNIX signals work?
- What if signal arrives while process in “top half”

• Does UNIX kernel suffer from priority inversion?



Limitations of BSD scheduler

• Hard to have isolation / prevent interference
- Priorities are absolute

• Can’t transfer priority (e.g., to server on RPC)

• No flexible control
- E.g., In monte carlo simulations, error is 1/sqrt(N) after N trials

- Want to get quick estimate from new computation

- Leave a bunch running for a while to get more accurate results

• Multimedia applications
- Often fall back to degraded quality levels depending on

resources

- Want to control quality of different streams



Lottery scheduling [Waldspurger]

• Issue lottery tickets to processes
- Let pi have ti tickets, let T =

∑

i

ti

- Chance of winning next quantum is ti/T .

• Control avg. proportion CPU for each process
- Can also group processes hierarchically for control

- Subdivide lottery tickets allocated to a particular process

- Modeled as currencies, funded through other currencies

• Can transfer tickets to other processes
- Perfect for IPC

- Avoids priority inversion with mutexes



Compensation tickets

• What if proc. only uses fraction f of quantum
- Say A and B have same number of lottery tickets

- Proc. A uses full quantum, proc. B uses f fraction

- Each wins the lottery as often

- B gets fraction f of B’s CPU time. No fair!

• Solution: Compensation tickets
- If B uses f of quantum, inflate B’s tickets by 1/f until it

next wins CPU

- E.g., process that uses half of quantup gets schecules twice
as often



Limitations of lottery scheduling

• Expected error O(sqrt(na)) for na allocations
- E.g., process A should have had 1/3 of CPU yet after 1

minute has had only 19 seconds

• Unpredictable latencies

• Idea: Apply ideas from weighted fair queuing
- Used for scheduling network routing

- Can achieve similar goals to lottery scheduling

- But done deterministically



Fair Queuing (FQ)

• Which network packet to send next over a link?

• Ideally, would send one bit from each flow
- In weighted fair queuing (WFQ), more bits from some flows

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

• Complication: must send whole packets



FQ Algorithm

• Suppose clock ticks each time a bit is transmitted

• Let Pi denote the length of packet i

• Let Si denote the time when start to transmit packet i

• Let Fi denote the time when finish transmitting packet i

• Fi = Si + Pi

• When does router start transmitting packet i?
- If arrived before router finished packet i− 1 from this flow, then

immediately after last bit of i− 1 (Fi−1)

- If no current packets for this flow, then start transmitting when
arrives (call this Ai)

• Thus: Fi = max(Fi−1, Ai) + Pi



FQ Algorithm (cont)

• For multiple flows
- Calculate Fi for each packet that arrives on each flow

- Treat all Fis as timestamps

- Next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example:

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1
(arriving)

Flow 2
(transmitting)


