
Intro to Threads

• Threads: most popular abstraction for concurrency

- Lighter-weight abstraction than processes

- All threads in one process have same memory, file

descriptors, etc.

- Allows one process to use multiple CPUs

• Example: threaded web server:

- Service many clients simultaneously

for (;;) {

fd = accept_client ();

thread_create (service_client, &fd);

}

How to share CPU amongst threads

• Each thread has execution state:

- Stack, program counter, registers, condition codes, etc.

• Switch the CPU amongst the threads

- Save away execution state of one, load up that of next

• When to switch?

- Current thread can no longer use the CPU (waiting for I/O)

- Current thread has had CPU for too long (preemption)

- Scheduler maintains lists of runnable/running/waiting

threads

Thread package API

• tid create (void (*fn) (void *), void *arg);

- Create a new thread, run fn with arg

• void exit ();

- Destroy current thread

• void join (tid thread);

- Wait for thread thread to exit

Synchronization primitives

• void lock (mutex t m);

void unlock (mutex t m);

- Only one thread acuires m at a time, others wait

- All global data must be protected by a mutex!

• void wait (mutex t m, cond t c);

- Atomically unlock m and sleep until c signaled

• void signal (cond t c);

void broadcast (cond t c);

- Wake one/all users waiting on c

Example: Taking job from work queue

job *job_queue;

mutex_t job_mutex;

cond_t job_cond;

void workthread (void *) {

job *j;

for (;;) {

lock (job_mutex);

while (!(j = job_queue))

wait (job_mutex, job_cond);

job_queue = j->next;

unlock (job_mutex);

do (j);

}

}

Example: Adding job to work queue

void addjob (job *j) {

lock (job_mutex);

j->next = job_queue;

job_queue = j;

signal (job_cond);

unlock (job_mutex);

}

• Atomic release/wait necessary in workthread, otherwise:

- workthread checks queue, releases lock

- addjob adds job to queue, signals job mutex

- workthread waits for signal that was already delivered

Other thread package features

• Alerts – cause exception in a thread

• Trylock – don’t block if can’t acquire mutex

• Timedwait – timeout on condition variable

• Shared locks – concurrent read accesses to data

• Thread priorities – control scheduling policy

• Thread-specific global data

Implementing shared locks

struct sharedlk {

int i; mutex_t m; cond_t c;

};

void AcquireExclusive (sharedlk *sl) {

lock (sl->m);

while (sl->i) { wait (sl->m, sl->c); }

sl->i = -1;

unlock (sl->m);

}

void AcquireShared (sharedlk *sl) {

lock (sl->m);

while (sl->i < 0) { wait (sl->m, sl->c); }

sl->i++;

unlock (sl->m);

}

shared locks (continued)

void ReleaseShared (sharedlk *sl) {

lock (sl->m);

if (!--sl->i) signal (sl->c);

unlock (sl->m);

}

void ReleaseExclusive (sharedlk *sl) {

lock (sl->m);

sl->i = 0;

broadcast (sl->c);

unlock (sl->m);

}

• Must deal with starvation

Deadlock

• Mutex ordering:

- A locks m1, B locks m2, A locks m2, B locks m1

- How to avoid?

• Similar deadlock with condition variables

- Suppose resource 1 managed by c1, resource 2 by c2

- A has 1, waits on c2, B has 2, waits on c1

• Mutex/condition variable deadlock:

- lock (a); lock (b); while (!ready) wait (b, c);

unlock (b); unlock (a);

- lock (a); lock (b); ready = true; signal (c);

unlock (b); unlock (a);

Bad to hold locks when crossing abstraction barriers!

Detecting deadlock

• Static approaches (hard)

• Threads package can keep track of locks held

• Program grinds to a halt

- Examine with debugger, find lock order problem

• Threads package can deduce partial order

- For each lock acquired, order with other locks held

- If cycle occurs, abort with error

- Detects potential deadlocks even if they do not occur

Data races

• Example: modify global ++x without mutex

- Might compile to: load, add 1, store

- Bad interleaving changes result: load, load, . . .

• Even single instructions can have races

- E.g., addl $1, x

- Not atomic on MP without lock prefix!

• Even reads dangerous on some architectures

• But sometimes cheating buys efficiency

if (!initialized) {

lock (m);

if (!initialized) { initialize (); initialized = 1; }

unlock (m);

}

Detecting data races

• Static methods (hard)

• Debugging painful—race might occur rarely

• Instrumentation—modify program to trap memory

accesses

• Lockset algorithm (eraser) particularly effective:

- For each global memory location, keep a “lockset”

- On each access, remove any locks not currently held

- If lockset becomes empty, abort: No mutex protects data

- Catches potential races even if they don’t occur

Implementing user-level threads

• Allocate a new stack for reach thread create

• Keep a queue of runnable threads

• Replace networking system calls (read/write/etc.)

- If operation would block, switch and run different thread

• Schedule periodic timer signal (setitimer)

- Switch to another thread on timer signals (preemption)

Example

• Per-thread state in thread control block structure

typedef struct tcb {

unsigned long md_esp; /* Stack pointer of thread */

char *t_stack; /* Bottom of thread’s stack */

/* ... */

};

• Machine-dependent thread-switch function:

- void thread md switch (tcb *current, tcb *next);

• Machine-dependent thread initialization function:

- void thread md init (tcb *t,

void (*fn) (void *), void *arg);

i386 thread md switch

pushl %ebp; movl %esp,%ebp # Save frame pointer

pushl %ebx; pushl %esi; pushl %edi # Save callee-saved regs

movl 8(%ebp),%edx # %edx = thread_current

movl 12(%ebp),%eax # %eax = thread_next

movl %esp,(%edx) # %edx->md_esp = %esp

movl (%eax),%esp # %esp = %eax->md_esp

popl %edi; popl %esi; popl %ebx # Restore callee saved regs

popl %ebp # Restore frame pointer

ret # Resume execution

i386 thread md init

void thread_md_init (tcb *t, void (*fn) (void *), void *arg) {

u_long *sp = (u_long *) (t->t_stack + thread_stack_size);

/* Set up a callframe to thread_begin */

*--sp = (u_long) arg; *--sp = (u_long) fn;

*--sp = (u_long) t; *--sp = 0; /* No return address */

/* Now set up saved registers for switch.S */

--sp = (u_long) thread_begin; / return address */

--sp = 0; / ebp */ *--sp = 0; /* ebx */

--sp = 0; / esi */ *--sp = 0; /* edi */

t->t_md.md_esp = (mdreg_t) sp;

}

• Swich will call thread begin (fn, arg);

Implementing synchronization

• Can “cheat” on uniprocessor

- Set “do not interrupt” bit

- If timer interrupt arrives, set “interrupted” bit

- Manipulate mutex data structure

- Clear DNI bit

- If interrupted bit set, yield

• Note: Only works if one kernel thread for all user

threads

For MP, need hardware support

• Need atomic read-write or read-modify-write:

• Example: int test and set (int *lockp);

- Sets *lockp = 1 and returns old value

• Now can implement spinlocks:

#define lock(lockp) while (test_and_set (lockp))

#define unlock(lockp) *lockp = 0

• When more threads than processors, don’t just spin

- Wastes CPU when other runnable work exists

Especially if thread holding lock doesn’t have a CPU

• But gratuitous context switch has cost

- Good plan: spin for a bit, then yield

Synchronization on i386

• xchg instruction, exchanges reg with mem

_test_and_set:

movl 8(%esp), %edx

movl $1,% eax

xchg %eax,(%edx)

ret

• CPU locks memory system around read and write

- I.e., xchgl always acts like it has lock prefix

- Prevents other uses of the bus (e.g., DMA)

• Operates at memory bus speed, not CPU speed

- Much slower than cached read/buffered write

Synchronization on alpha

• ldl l – load locked

stl c – store conditional

_test_and_set:

ldq_l v0, 0(a0)

bne v0, 1f

addq zero, 1, v0

stq_c v0, 0(a0)

beq v0, _test_and_set

mb

addq zero, zero, v0

1:

ret zero, (ra), 1

Implementing kernel level threads

• Plan9 gave a good example of how to do this

• Start with process abstraction in kernel

• Strip out unnecessary features

- Same address space

- Same file table

- (Plan9’s rfork actually allowed individual control)

• Faster than a process, but still very heavy weight

