
Anatomy of a disk

• Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM

- Drives speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly

- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- Arms contain disk heads–one for each recording surface

- Heads read and write data to platters



Storage on a magnetic platter

• Platters divided into concentric tracks

• A stack of tracks of fixed radius is a cylinder

• Heads record and sense data along cylinders

- Significant fractions of encoded stream for error correction

• Generally only one head active at a time

- Disks usually have one set of read-write circuitry

- Must worry about cross-talk between channels

- Hard to keep multiple heads exactly aligned



Disk positioning system

• Move head to specific track and keep it there

- Resist physical socks, imperfect tracks, etc.

• A seek consists of up to four phases:

- speedup–accelerate arm to max speed or half way point

- coast–at max speed (for long seeks)

- slowdown–stops arm near destination

- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)

• Short (200-400 cyl.) seeks dominated by speedup

- Accelerations of 40g



Seek details

• Head switches comparable to short seeks

- May also require head adjustment

- Settles take longer for writes than reads

• Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- 500 ms recalibration every 25 min, bad for AV

• “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk,



Sectors

• Disk interface presents linear array of sectors

- Generally 512 bytes, written atomically

• Disk maps logical sector #s to physical sectors

- Zoning–puts more sectors on longer tracks

- Track skewing–sector 0 pos. varies for sequential I/O

- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector

mapping

- Larger logical sector # difference means larger seek

- Highly non-linear relationship (and depends on zone)

- OS has no info on rotational positions

- Can empirically build table to estimate times



Disk interface

• Controls hardware, mediates access

• Computer, disk often connected by bus

- Example: IDE (you saw in bootloader lab)

- Most high-performance systems use SCSI (will discuss)

• Command queuing: Give disk multiple requests

- Disk can schedule them using rotational information

• Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution

- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching

- But data not stable—not suitable for all requests



Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages

- Easy to implement

- Good fairness

• Disadvantages

- Cannot exploit request locality

- Increases average latency, decreasing throughput



Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages

- Easy to implement

- Good fairness

• Disadvantages

- Cannot exploit request locality

- Increases average latency, decreasing throughput



Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages

- Exploits locality of disk requests

- Higher throughput

• Disadvantages

- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF

- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:

Teff = Tpos − W · Twait



Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages

- Exploits locality of disk requests

- Higher throughput

• Disadvantages

- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF

- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:

Teff = Tpos − W · Twait



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages

- Takes advantage of locality

- Bounded waiting

• Disadvantages

- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• Variant CSCAN: Only sweep in one direction

Very commonly used algorithm in Unix



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages

- Takes advantage of locality

- Bounded waiting

• Disadvantages

- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction

Very commonly used algorithm in Unix



VSCAN(r)

• Continuum between SPTF and SCAN

- Like SPTF, but slightly uses “effective” positioning time

If request in same direction as previous seek: Teff = Tpos

Otherwise: Teff = Tpos + r · Tmax

- when r = 0, get SPTF, when r = 1, get SCAN

- E.g., r = 0.2 works well

• Advantages and disadvantages

- Those of SPTF and SCAN, depending on how r is set



SCSI overview

• SCSI domain consists of devices and an SDS

- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices–e.g., SCSI bus

• SCSI-2 bus (SDS) connects up to 8 devices

- Controllers can have > 1 “logical units” (LUNs)

- Typically, controller built into disk and 1 LUN/target, but

“bridge controllers” can manage multiple physical devices

• Each device can assume role of initiator or target

- Traditionally, host adapter was initiator, controller target

- Now controllers act as initiators (e.g., COPY command)

- Typical domain has 1 initiator, ≥ 1 targets



SCSI requests

• A request is a command from initiator to target

- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect

(very important for multiple targets or even multitasking)

• Commands contain the following:

- Task identifier—initiator ID, target ID, LUN, tag

- Command descriptor block—e.g., read 10 blocks at pos. N

- Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE

- Optional: output/input buffer, sense data

- Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . .



Executing SCSI commdns

• Each LUN maintains a queue of tasks

- Each task is DORMANT, BLOCKED, ENABLED, or ENDED

- SIMPLE tasks are dormant until no ordered/head of queue

- ORDERED tasks dormant until no HoQ/more recent ordered

- HOQ tasks begin in enabled state

• Task management commands available to initiator

- Abort/terminate task, Reset target, etc.

• Linked commands

- Initiator can link commands, so no intervening tasks

- E.g., could use to implement atomic read-modify-write

- Intermediate commands return status byte INTERMEDIATE



SCSI exceptions and errors

• After error stop executing most SCSI commands

- Target returns with CHECK CONDITION status

- Initiator will eventually notice error

- Must read specifics w. REQUEST SENSE

• Prevents unwanted commands from executing

- E.g., initiator may not want to execute 2nd write if 1st fails

• Simplifies device implementation

- Don’t need to remember more than one error condition

• Same mechanism used to notify of media changes

- I.e., ejected tape, changed CD-ROM



But back in the 80s. . .

• Disks spin at 3,600 RPM

- 17 ms/Rotation (vs. 4 ms on fastest disks today)

• Fixed # sectors/track (no zoning)

• Head switching free (?)

• Requests issued one at a time

- No caching in disks

- Head must pass over sector after getting a read

- By the time OS issues next request, too late for next sector

• Slower CPUs, memory

- Noticeable cost for block allocation algorithms


