Error detection

• Transmission errors occur

- Cosmic rays, radio interference, etc.
- If error probability is 2^{-20} , that's 1 error per 128 MB!

• Idea: Detect errors with error-detecting code

- Include extra, redundant bits with each message
- If message changes, extra bits likely to be wrong

• Examples:

- IP, TCP checksums
- MAC layer error-detection (Ethernet, AAL-5)

Parity

- Simplest scheme: Parity
 - For each 7-bits transmitted, transmit an 8th parity bit
 - *Even* parity means total number of 1 bits even
 - Odd parity means total number of 1 bits odd
- Detects any single-bit error (good)
- Only detects odd # of bit errors (not so good)
- Common errors not caught
 - E.g., error induces bunch of zeros, valid even parity
- Can we somehow have multiple parity bits?

Background: Finite field notation

• Let Z₂ designate field of integers modulo 2

- Two elements are 0 and 1, so an element is a bit
- Can perform addition and multiplication, just reduce mod 2
- Example: $1 \cdot 1 = 1, 1 + 1 = 2 \mod 2 = 0$
- Let $\mathbf{Z}_2[x]$ be polynomials w. coefficients in \mathbf{Z}_2
 - I.e., $a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ for $a_i \in \mathbb{Z}_2 = \{0, 1\}$
 - Each a_i is a bit, so can represent polynomial compactly

• We can multiply, add, subtract polynomials

- Example 1: $(x + 1)(x + 1) = x^2 + x + x + 1 = x^2 + 1$ (recall $1 + 1 \equiv 0 \pmod{2}$, so (1 + 1)x = 0)
- Example 2: $(x^3 + x^2 + 1) + (x^2 + x) = x^3 + x + 1$
- Note addition & subtraction are both just XOR

Hamming codes

• Idea: Use multiple parity bits over subsets of input

- Will allow you to detect multiple errors
- Technique is used by ECC memory
- Notation: View data as a vector
 - $D = (d_1 \quad d_2 \quad d_3 \quad d_4 \quad \cdots)$
 - View encoding as multiplication by matrix G = (I A) (where I is the identity matrix)
 - *A* is specifying how to generate redundant bits
 - Encoded bits $E = D \times G$

Hamming code example

$$D = (d_1 \ d_2 \ d_3 \ d_4)$$

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$E = D \times G = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_1 + d_3 + d_4 \\ d_1 + d_2 + d_4 \end{pmatrix}$$

Checking hamming codes

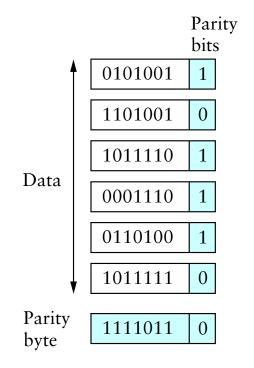
• Check using $H = (A^T \ I)$: Syndrome $s = H \times E$

$$s = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \\ d_3 \\ \\ d_4 \\ \\ d_1 + d_3 + d_4 \\ \\ d_1 + d_2 + d_4 \\ \\ d_1 + d_2 + d_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{pmatrix}$$

- Can detect any two bad bits (if $s \neq \vec{0}$)
- Can even recover from one incorrect bit!
 - If one extra bit is 1, it is wrong
 - If two extra bits are 1, d_2 , d_3 , or d_4 is wrong
 - If all 3 extra bits are 1, d_1 is wrong

2D parity

- Better if error-detection covers whole message
- Idea: Take 2D parity
 - Catches any 2-bit error, Catches any 1-byte error



• Drawback of all parity schemes: Bandwidth

Fixed-length codes

• Idea: Fixed-length code for arbitrary-size message

- Calculate code, append to message
- If code "mixes up the bits" enough, will detect many errors
- *n*-bit code should catch all but 2^{-n} faction of errors
- But want to make sure that includes all common errors

• Example: IP checksum

```
u_short
cksum (u_short *buf, int count)
{
    u_long sum = 0;
    while (count--)
        if ((sum += *buf) & Oxffff) /* carry */
            sum = (sum & Oxffff) + 1;
        return ~(sum & Oxffff);
}
```

How good is IP checksum?

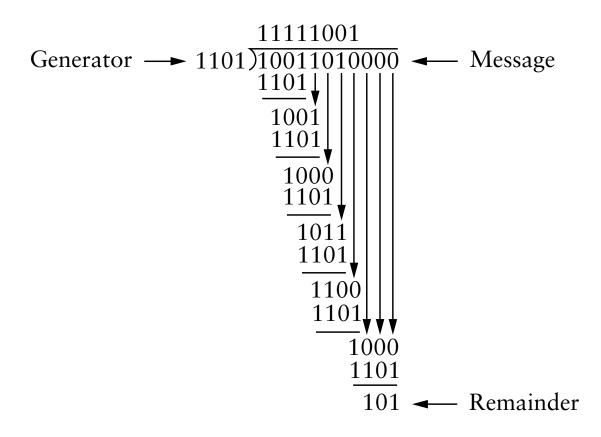
- 16 bits is not very long (misses 1/65K errors)
- Checksum does catch any 1-bit error
- But not any two-bit error
 - E.g., increment one word ending 0, decrement one ending 1
- Checksum also optional on UDP
 - All 0s means no checksum calculated
 - If checksum word gets wiped to 0 as part of error, bad news

Error-detection with polynomials

- Consider a message to be a polynomial in $Z_2[x]$
 - Each bit corresponds to one coefficient
 - E.g., message $10011010 \Longrightarrow m(x) = x^7 + x^4 + x^3 + x$
- Can reduce one polynomial *modulo* another
 - Let $n(x) = m(x)x^3$. Let $C(x) = x^3 + x^2 + 1$.
 - Find q(x) and r(x) such that n(x) = q(x)C(x) + r(x) and the degree of r(x) <degree of C(x).
 - Analogous to computing $11 \mod 5 = 1$

Polynomial division example

• Just long division, but addition/subtraction is XOR



Cyclic Redundancy Check (CRC)

- Select a divisor polynomial C(x) of degree k
 - C(x) should be *irreducible*—not expressible as product of two lower-dgree polynomials in $\mathbf{Z}_2[x]$
- Add k bits to message to make it divisible by C(x)
 - Let $n(x) = m(x)x^k$ (message as polynomial w. k 0s added)
 - Compute $r(x) \leftarrow n(x) \mod C(x)$
 - Compute $n(x) \leftarrow n(x) r(x)$, will be divisible by C(X)(Note subtraction is XOR, with 0s just setting lower bits)
- Checking CRC is easy
 - Reduce message by C(x), make sure remainder is 0

Why is this good?

- Suppose you send m(x), recipient gets m'(x)
 - Exact error E(x) = m'(x) m(x) (all the incorrect bits)
 - If CRC fails to catch error, C(x) divides m'(x)
 - Therefore, if CRC fails to catch, C(x) must divide E(x)

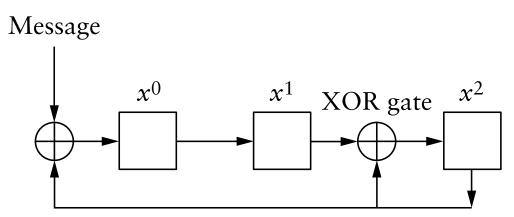
• Chose C(x) that doesn't divide any common errors!

- All single-bit errors caught if x^k , x^0 coefficients in C(x) are 1
- All 2-bit errors caught if at least 3 terms in C(x)
- Any odd # errors caught if last two terms x + 1
- Any error burst of less than length *k* caught

CRC in hardware

• Recall from long division

- Always XOR C(x) with left of message to make first bit 0
- Build hardware with shift registers
- Shift in bits starting with highest term coefficient of m(x)
- When top coefficient non-zero, XOR in polynomial
- I.e., put XOR before x^d box if x^d is term in C(x)
- **CRC with** $x^3 + x^2 + 1$:



Error correction

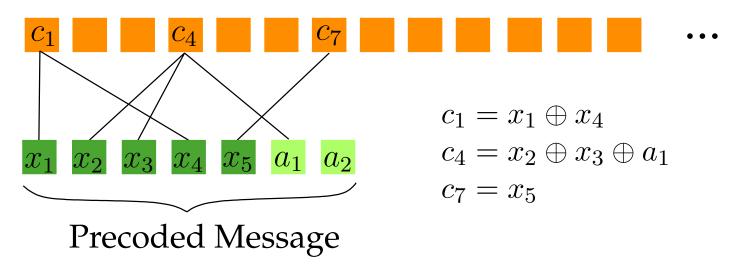
- Already saw how hamming codes can correct bits
- More often interested in recovering lost messages
 - Can detect bad packets using CRC and discard
 - Might like to recover from lost packets automatically
- Technique known as *erasure codes*
 - I.e., recover from erased blocks, not corrupt ones
 - Sender just sends more than *n* pkts for *n*-pkt message
 - Therefore also known as *forward error correction*

Polynomial interpolation

- Break message into elements of a finite field *F*
 - E.g., $a_n, a_{n-1}, \ldots a_0$ —each a_i might be 16 bits
 - Only one degree-*n* polynomial $m(x) \in F[x]$ will satisfy $m(0) = a_0, m(1) = a_1, \dots, m(n) = a_n$
 - Use Lagrange interpolation to compute m(x)
- Now evaluate m(x) for x > n—creates more blocks
 - Receiver can interpolate m(x) given any n values
 - Then get message by computing $m(n), m(n-1), \dots, m(0)$
- **Problem: Slow for large messages (** $O(n^2)$ **)**

Efficient codes

- Recent erasure codes much more efficient— $O(n \log n)$ and O(n)
 - Tornado codes, LT-codes, Raptor codes, On-line codes
 - Require slightly more than n blocks to reconstruct
- Compute check blocks as XOR of message blocks
 - But XOR graph structure surprisingly irregular & tricky



When to use error detection & correction

- At data-link layer, bad to deliver corrupt packets
 - Actually, theoretically should be fine
 - But IP checksums are not good
- Often not worth reconstructing packets
 - Example: Say 1 in 10⁶ packets corrupted
 - Retransmission requires negligible bandwidth
 - But sending redundancy for every packet not negligible
- Want to avoid noticeable loss fraction
 - Recall TCP uses packet loss as a sign of congestion
 - High loss because of transmission failure hurts performance

Quiz Review

• Open book

- Bring text and papers, you will need them!
- All class notes on line, feel free to print and bring
- Books & papers only; no laptops, cell phones, ...

• Topics:

- Most of chapters 1–6 in text + section 9.1 exact chapters on syllabus web page
- Lectures 1–13
- All papers, *except* TCP in ANSNET

Bandwidth

- Data units (using $K = 1,024 = 2^{10}$):
 - 1 Byte = 8 bits
 - 1 KByte = 1,024 Bytes
 - 1 MByte = 1,024×1,024 Bytes
 - 1 GByte = 1,024×1,024×1,024 Bytes
- Clock rates use $K = 1000 = 10^3$:
 - 1 KHz = 1,000 Hz, 1 Mhz = 1,000,000 Hz, etc.
- Bandwidth usually uses clock rates:
 - 1 Mbps = 1 Mega-(bit-per-second) = 1,000,000 bits/sec
 - Note *b* in Mbps can also mean *bytes* In this class, will use b for bit, B for byte

Latency

• Latency=Propagation+Transmission+Queing

- Propagation=Distance/SpeedOfLight
- Transmission=Size/Bandwidth

• Transmit 1 Byte @1 Gbps over 1,000 km fiber

- Speed of light in fiber is $2\cdot 10^5~{\rm km/s}$

- Propagation
$$\frac{10^3 \text{ km}}{10^5 \text{ km/s}} = 5 \cdot 10^{-3} \text{ sec} = 5 \text{ msec}$$

- Transmission = $8 \cdot 10^{-9}$ sec (negligible)

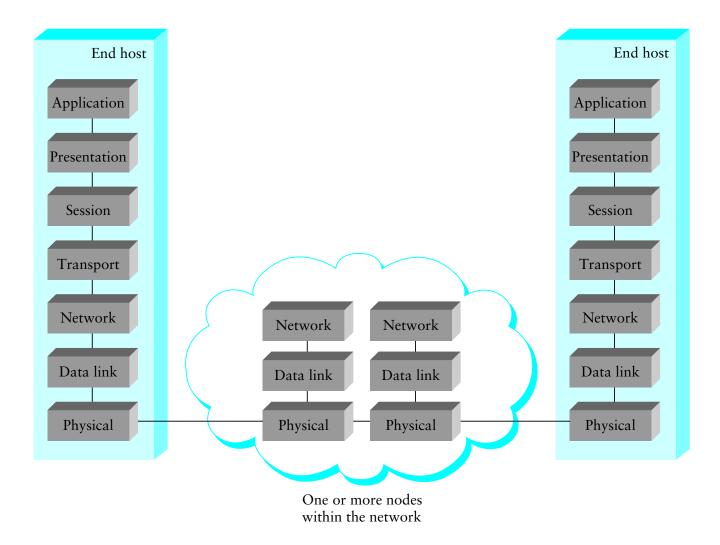
• Transmitting 1 GB over same channel

- Transmission time 8 sec, dominates

Possible quiz questions

- What is latency of transmitting message over particular channel?
- What is latency of sending when using some particular flow control protocol?
 - Recall sliding window protocol
 - May not be able to use full link bandwidth, waiting for acknowledgment
- Why do you need certain features of sliding window protocol?
 - Example: Here's a broken protocol, show a scenario in which recipient misinterprets packets

OSI layers



Physical layer topics

• How to transmit a bit

- NRZ simplest 0 = 0, 1 = 1, but baseline wander & clock recovery problems
- Manchester, 4B/5B, NRZI

• Framing

- Sentinel based, used character & bit stuffing
- Counter (length in header); framing errors
- Clock-based (SONET) sync with repeated header

Data-link layer

• Medium Access Control (MAC)

- CSMA/CD Ethernet reacts to collisions
- Token ring

• Possible questions: Why are systems as they are?

- E.g., Monitor delays bits to ensure token rotation time is less than transmission time...what if it didn't?
- Answer: When no one is transmitting, need enough storage in the ring to hold token
- Implementation and driver issues (Afterburner)

Switching

- Circuit switched vs. packet switched
- Source routing
- Avoiding loops (should be familiar by now...)
- Also, learning bridges to avoid unnecessary traffic
- ATM cells 53-bytes, connection oriented
 - CS-PDUs: AAL4 and AAL5. Why is AAL5 better?
 - Answer: Uses less overhead, catches as many (more) errors with single bigger checksum

TCP/IP topics

- Structure of an IP address
 - Classes & CIDR aggregation
- IP header fields (how does traceroute work)
- TCP and UDP
 - Headers & Port numbers, how do applications use
 - Hint: Figure 5.7 in textbook should make sense
- ICMP
- How does IP work over Ethernet
 - ARP protocol translates IP to Ethernet addresses
- DNS (domain name system)
 - How name www.nyu.edu gets mapped to 128.122.108.74

Routing

- Distance Vector
 - Ways of avoiding loops
- Link state
 - Dijkstra's algorithm
- Possible questions:
 - How will particular system stabilize?
 - What is damage a bad router can do with either approach?

• BGP concepts

- Autonomous Systems (ASes)

More TCP

- How TCP flow control works (advertised window)
- How TCP congestion control works
 - AIMD Sawtooth pattern
 - Slow start
 - Fast retransmit
- Routers: Scheduling discipline & Drop policy
 - Fair queuing, RED, FPQ
- Possible questions:
 - What happens to TCP with high transmission error rate?
 - Why are extensions needed for high bandwidth×delay networks?