Error detection

e Transmission errors occur
- Cosmic rays, radio interference, etc.

- If error probability is 272Y, that’s 1 error per 128 MB!

e Idea: Detect errors with error-detecting code
- Include extra, redundant bits with each message

- If message changes, extra bits likely to be wrong

e Examples:
- IP, TCP checksums
- MAC layer error-detection (Ethernet, AAL-5)

Parity

e Simplest scheme: Parity
- For each 7-bits transmitted, transmit an 8th parity bit
- Even parity means total number of 1 bits even

- Odd parity means total number of 1 bits odd
e Detects any single-bit error (good)
e Only detects odd # of bit errors (not so good)

e Common errors not caught

- E.g., error induces bunch of zeros, valid even parity

e Can we somehow have multiple parity bits?

Background: Finite field notation

o Let Z, designate field of integers modulo 2
- Two elements are 0 and 1, so an element is a bit

- Can perform addition and multiplication, just reduce mod 2
- Example:1-1=1,1+41=2mod 2 =0

e Let Z,|z| be polynomials w. coefficients in Z,
- Le.,apz™ + a2z '+ +a,_ 1z +a, fora; € Zy = {0,1}

- Each q; is a bit, so can represent polynomial compactly

e We can multiply, add, subtract polynomials
- Example 1: (z+ 1)(z+1) =2’ +x+ax+1=2?+1
(recall1+1=0 (mod 2),s0(1+ 1)x =0)

- Example 2: (23 +2° + 1)+ (#* +2) =2 + o+ 1
- Note addition & subtraction are both just XOR

Hamming codes

e Idea: Use multiple parity bits over subsets of input
- Will allow you to detect multiple errors

- Technique is used by ECC memory

e Notation: View data as a vector
-D=(dy dy d3 dy ---)

- View encoding as multiplication by matrix G = (I A)
(where [is the identity matrix)

- A is specifying how to generate redundant bits

- Encoded bits E = D x G

Hamming code example

D = (dl dz d3 d4)

/1000 1 1 1\
o _ o100 01
0010 101
\0 0001 1 1 0/
[d
ds
d3
EF = DxG= dy
dy + ds + dy
dy + dy + dy

\di + dy + d3)

Checking hamming codes
e Check using H = (A" 1I): Syndrome s = H x E

()

do
1 0 1 1 1 0 O ds 0
s=|1 1 0 1 O 1 O da =10
1 1 1 O 0 0 1 dy + ds + dy 0
dy 4+ do + dy
\d1+d2—|—d3)

e Can detect any two bad bits (if s # 0)

e Can even recover from one incorrect bit!
- If one extra bit is 1, it is wrong
- If two extra bits are 1, ds, d3, or d4 is wrong

- If all 3 extra bits are 1, d; is wrong

2D parity
o Better if error-detection covers whole message

o Idea: Take 2D parity
- Catches any 2-bit error, Catches any 1-byte error

Parity
bits
Y { 0101001 |1

1101001 | O

1011110 |1

Data

0001110 |1

0110100 |1

1011111 | O

y

Parity 997011 |0
byte

e Drawback of all parity schemes: Bandwidth

Fixed-length codes

e Idea: Fixed-length code for arbitrary-size message

Calculate code, append to message

If code “mixes up the bits” enough, will detect many errors

n-bit code should catch all but 2" faction of errors

But want to make sure that includes all common errors

e Example: IP checksum

u_short
cksum (u_short *buf, int count)
{

u_long sum = O;

while (count--)

if ((sum += *buf) & Oxffff) /* carry */
sum = (sum & Oxffff) + 1;
return ~(sum & Oxffff);

How good is IP checksum?

e 16 bits is not very long (misses 1/65K errors)
e Checksum does catch any 1-bit error

e But not any two-bit error

- E.g., increment one word ending 0, decrement one ending 1

e Checksum also optional on UDP
- All Os means no checksum calculated

- If checksum word gets wiped to 0 as part of error, bad news

Error-detection with polynomials

e Consider a message to be a polynomial in Z,|x|
- Each bit corresponds to one coefficient

- E.g., message 10011010 = m(z) = 2" + z* + 23 + x

e Can reduce one polynomial modulo another
- Let n(xz) = m(x)x3. Let C(z) = 2% + 22 + 1.
- Find ¢(x) and r(z) such that n(x) = q(x)C(z) + r(x) and the
degree of r(x) < degree of C'(x).

- Analogous to computing 11 mod 5 =1

Polynomial division example

o Just long division, but addition/subtraction is XOR

11111001

Generator —= 1101)10011010000 <— Message
1101*

1001
1101

1000
1101v
1011
1101v
1100

11017VV

1000
1101

101 <«— Remainder

Cyclic Redundancy Check (CRC)

e Select a divisor polynomial C'(z) of degree k

- C(x) should be irreducible—not expressible as product of
two lower-dgree polynomials in Zs ||

e Add k bits to message to make it divisible by C'(x)
- Let n(x) = m(x)z" (message as polynomial w. k 0s added)
- Compute r(z) < n(x) mod C(x)
- Compute n(x) <« n(x) — r(z), will be divisible by C(X)
(Note subtraction is XOR, with 0s just setting lower bits)

e Checking CRC is easy

- Reduce message by C(z), make sure remainder is 0

Why is this good?

e Suppose you send m(x), recipient gets m/(x)
- Exact error E(x) = m/(x) — m(x) (all the incorrect bits)
- If CRC fails to catch error, C(z) divides m/(x)
- Therefore, if CRC fails to catch, C'(z) must divide E(x)

e Chose C(z) that doesn’t divide any common errors!

All single-bit errors caught if 2%, 2° coefficients in C(x) are 1

All 2-bit errors caught if at least 3 terms in C'(x)

Any odd # errors caught if last two terms x + 1

Any error burst of less than length k£ caught

CRC in hardware

e Recall from long division
Always XOR C'(x) with left of message to make first bit 0

Build hardware with shift registers

Shift in bits starting with highest term coefficient of m(x)

When top coefficient non-zero, XOR in polynomial

Le., put XOR before x? box if ¢ is term in C(x)

e CRC with 23 + 2? + 1:
Message

Error correction

e Already saw how hamming codes can correct bits

e More often interested in recovering lost messages
- Can detect bad packets using CRC and discard

- Might like to recover from lost packets automatically

e Technique known as erasure codes
- Le., recover from erased blocks, not corrupt ones
- Sender just sends more than n pkts for n-pkt message

- Therefore also known as forward error correction

Polynomial interpolation

e Break message into elements of a finite field F
- Eg.,apn,an,_1,...ap—each a; might be 16 bits
- Only one degree-n polynomial m(z) € F[z] will satisfy

m(0) = ag,m(1) = a1,...,m(n) =ay,
- Use Lagrange interpolation to compute m(x)
e Now evaluate m(z) for z > n—creates more blocks

- Receiver can interpolate m(x) given any n values

- Then get message by computing m(n), m(n —1),...m(0)

e Problem: Slow for large messages (O(n?))

Efficient codes

e Recent erasure codes much more
efficient—O(nlogn) and O(n)
- Tornado codes, LT-codes, Raptor codes, On-line codes

- Require slightly more than n blocks to reconstruct

e Compute check blocks as XOR of message blocks
- But XOR graph structure surprisingly irregular & tricky

C1 Cq C7
Cl1 =1 DTy
a1 Qo Cy = T2 D T3 Dai
7 C7 = I5

Precoded Message

When to use error detection & correction

e At data-link layer, bad to deliver corrupt packets
- Actually, theoretically should be fine

- But IP checksums are not good

e Often not worth reconstructing packets
- Example: Say 1 in 10° packets corrupted
- Retransmission requires negligible bandwidth

- But sending redundancy for every packet not negligible

e Want to avoid noticeable loss fraction
- Recall TCP uses packet loss as a sign of congestion

- High loss because of transmission failure hurts performance

Quiz Review

e Open book
- Bring text and papers, you will need them!
- All class notes on line, feel free to print and bring

- Books & papers only; no laptops, cell phones, ...

e Topics:
- Most of chapters 1-6 in text + section 9.1
exact chapters on syllabus web page

- Lectures 1-13
- All papers, except TCP in ANSNET

Bandwidth

e Data units (using K = 1,024 = 2'9):
1 Byte = 8 bits

1 KByte = 1,024 Bytes

1 MByte = 1,024 x1,024 Bytes

1 GByte = 1,024x1,024x1,024 Bytes

e Clock rates use K = 1000 = 10°:
- 1 KHz =1,000 Hz, 1 Mhz = 1,000,000 Hz, etc.

e Bandwidth usually uses clock rates:
- 1 Mbps = 1 Mega-(bit-per-second) = 1,000,000 bits/sec

- Note b in Mbps can also mean bytes
In this class, will use b for bit, B for byte

Latency

e Latency=Propagation-+Transmission+Queing
- Propagation=Distance /SpeedOfLight

- Transmission=Size /Bandwidth

e Transmit 1 Byte @1 Gbps over 1,000 km fiber
- Speed of light in fiber is 2 - 10° km/s
10° km
10° km/s
- Transmission = 8 - 10~ sec (negligible)

—5-107° sec = 5 msec

- Propagation

e Transmitting 1 GB over same channel

- Transmission time & sec, dominates

Possible quiz questions

e What is latency of transmitting message over
particular channel?

e What is latency of sending when using some
particular flow control protocol?
- Recall sliding window protocol

- May not be able to use full link bandwidth, waiting for
acknowledgment

e Why do you need certain features of sliding
window protocol?

- Example: Here’s a broken protocol, show a scenario in
which recipient misinterprets packets

OSI layers

End host End host

One or more nodes
within the network

Physical layer topics

e How to transmit a bit

- NRZ - simplest 0 = 0, 1 = 1, but baseline wander & clock
recovery problems

- Manchester, 4B/5B, NRZI

e Framing
- Sentinel based, used character & bit stuffing

- Counter (length in header); framing errors

- Clock-based (SONET) — sync with repeated header

Data-link layer

e Medium Access Control (MAC)
- CSMA /CD - Ethernet reacts to collisions

- Token ring

e Possible questions: Why are systems as they are?

- E.g., Monitor delays bits to ensure token rotation time is
less than transmission time. .. what if it didn’t?

- Answer: When no one is transmitting, need enough storage
in the ring to hold token

e Implementation and driver issues (Afterburner)

Switching

e Circuit switched vs. packet switched

e Source routing

e Avoiding loops (should be familiar by now...)

e Also, learning bridges to avoid unnecessary traffic

e ATM cells 53-bytes, connection oriented
- CS5-PDUs: AAL4 and AALS. Why is AALS better?

- Answer: Uses less overhead, catches as many (more) errors
with single bigger checksum

TCP/IP topics

e Structure of an IP address
- Classes & CIDR aggregation

e IP header fields (how does traceroute work)

e TCP and UDP

- Headers & Port numbers, how do applications use

- Hint: Figure 5.7 in textbook should make sense

o ICMP

e How does IP work over Ethernet
- ARP protocol translates IP to Ethernet addresses

¢ DNS (domain name system)
- How name www.nyu. edu gets mapped to 128.122.108.74

Routing

e Distance Vector
- Ways of avoiding loops
e Link state

- Dijkstra’s algorithm

e Possible questions:
- How will particular system stabilize?

- What is damage a bad router can do with either approach?

e BGP concepts

- Autonomous Systems (ASes)

More TCP

e How TCP flow control works (advertised window)

e How TCP congestion control works
- AIMD Sawtooth pattern
- Slow start

- Fast retransmit

e Routers: Scheduling discipline & Drop policy
- Fair queuing, RED, FPQ

e Possible questions:
- What happens to TCP with high transmission error rate?

- Why are extensions needed for high bandwidth xdelay
networks?

