
The RPC abstraction

• Procedure calls well-understood mechanism
- Transfer control and data on single computer

• Goal: Make distributed programming look same
- Code libraries provide APIs to access functionality

- Have servers export interfaces accessible through local APIs

• Implement RPC through request-response
protocol

- Procedure call generates network request to server

- Server return generates response



RPC Failure

• More failure modes than simple procedure calls
- Machine failures

- Communication failures

• RPCs can return “failure” instead of results

• What are possible outcomes of failure?
- Procedure did not execute

- Procedure executed once

- Procedure executed multiple times

- Procedure partially executed

• Generally desired semantics: at most once



Implementing at most once semantics

• Danger: Request message lost
- Client must retransmit requests when it gets no reply

• Danger: Reply message may be lost
- Client may retransmit previously executed request

- Okay if operations are idempotent, but many are not
(e.g., process order, charge customer, . . . )

- Server must keep “replay cache” to reply to already
executed requests

• Danger: Server takes too long to execute procedure
- Client will retransmit request already in progress

- Server must recognize duplicate—can reply “in progress”



Server crashes

• Danger: Server crashes and reply lost
- Can make replay cache persistent—slow

- Can hope reboot takes long enough for all clients to fail

• Danger: Server crashes during execution
- Can log enough to restart partial execution—slow and hard

- Can hope reboot takes long enough for all clients to fail

• Can use “cookies” to inform clients of crashes
- Server gives client cookie which is time of boot

- Client includes cookie with RPC

- After server crash, server will reject invalid cookie



Parmeter passing

• Different data representations
- Big/little endian

- Size of data types

• No shared memory
- No global variables

- How to pass pointers

- How to garbage-collect distributed objects

• How to pass unions



Interface Definition Languages

• Idea: Specify RPC call and return types in IDL

• Compile interface description with IDL compiler.
Output:

- Native language types (e.g., C/Java/C++ structs/classes)

- Code to marshal (serialize) native types into byte streams

- Stub routines on client to forward requests to server

• Stub routines handle communication details
- Helps maintain RPC transparency, but

- Still have to bind client to a particular server

- Still need to worry about failures



Plan for rest of lecture

• Look at “fake” RPC protocol from textbook
- Has some nice properties neglected by SunRPC

• Gloss over a few standards

• Look at SunRPC, which you will use for next lab
- De facto standard for many protocols

- Has advantage of great simplicity



RPC Timeline

Client Server

Request

Reply

Computing

Blocked

Blocked

Blocked



RCP Components

• Protocol Stack
- BLAST: fragments and reassembles large messages

- CHAN: synchronizes request and reply messages

- SELECT: dispatches request to the correct process

• Stubs
Caller
(client)

Client
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
value

Arguments

ReplyRequest



Bulk Transfer (BLAST)

• Unlike AAL and IP, tries to re-
cover from lost fragments

• Strategy
- selective retransmission request (SRR)

- aka partial acknowledgments

Sender Receiver

Fragment 1
Fragment 2

Fragment 3

Fragment 5

Fragment 4

Fragment 6

Fragment 3
Fragment 5

SRR

SRR



BLAST Details

• Sender:
- After sending all fragments, set timer DONE

- If receive SRR, send missing fragments and reset DONE

- If timer DONE expires, free fragments



BLAST Details (cont)

• Receiver:
- when first fragments arrives, set timer LAST FRAG

- when all fragments present, reassemble and pass up

• If last fragment arrives but message not complete
- send SRR and set timer RETRY

• If timer LAST FRAG expires
- send SRR and set timer RETRY

• If timer RETRY expires for first or second time
- send SRR and set timer RETRY

• If timer RETRY expires a third time
- give up and free partial message



BLAST Header Format
• MID (message ID) must protect against

wrap around

• TYPE = DATA or SRR

• NumFrags indicates number of
fragments

• FragMask distinguishes among
fragments

- if Type=DATA, identifies this fragment

- if Type=SRR, identifies missing fragments

Data

ProtNum

MID

Length

NumFrags Type

FragMask

0 16 31



Request/Reply (CHAN)

• Guarantees message delivery

• Synchronizes client with server

• Supports at-most-once semantics
Simple case

Client Server

Request

ACK

Reply

ACK

Implicit ACKs
Client Server

Request 1

Request 2

Reply 2

Reply 1

…



Chan header

Data

Type

MID

BID

Length

ProtNum

CID

0 16 31

• Type = {REQ, REP, ACK, PROBE}



CHAN Details

• Lost message (request, reply, or ACK)
- Set RETRANSMIT timer

- Use message id (MID) field to distinguish

• Slow (long running) server
- Client periodically sends “are you alive” probe, or

- Server periodically sends “I’m alive” notice

• Want to support multiple outstanding calls
- Use channel id (CID) field to distinguish

• Machines crash and reboot
- Use boot id (BID) field to distinguish



Dispatcher (SELECT)

• Just includes appropriate procedure number

• Server dispatch to appropriate procedure

• Implement concurrency (open multiple CHANs)

• Why consider this a separate protocol?
- Might want to change procedure addressing w/o changing

protocol

• Address space approaches for procedures
- Flat: unique id for each possible procedure

- Hierarchical: program + procedure number



Summary

BLAST

ETH

IP

SELECT

CHAN



Serializing/marshaling data
• Several standard ways of specifying data formats

• ASN.1 – ISO standard. Horrible, horrible, horrible.
- Very hard (impossible) to compile automatically

- Only very expensive commercial compilers exist

- People compile by hand, get it wrong → buffer overruns

• XML – HTML-like, pseudo-human-readable
- Not self describing (external format specification)

- Hard to parse efficiently

• XDR – Used by SunRPC
- Simple! (my fancy XDR compiler ∼2,000 lines of code)

- Easy to understand, easy to parse quickly

- Not compatible with arbitrary protocols

- Not optimally space efficient



Intro to SUN RPC

• Simple, no-frills, widely-used RPC standard
- Does not emulate pointer passing or distributed objects

- Programs and procedures simply referenced by numbers

- Client must know server—no automatic location

- Portmap service maps program #s to TCP/UDP port #s

• IDL: XDR – eXternal Data Representation
- Compilers for multiple languages (C, java, C++)



Transport layer

• Transport layer transmits delimited RPC messages
- In theory, RPC is transport-independent

- In practice, RPC library must know certain properties
(e.g., Is transport connected? Is it reliable?)

• UDP transport: unconnected, unreliable
- Sends one UDP packet for each RPC request/response

- Each message has its own destination address

- Server needs replay cache

• TCP transport (simplified): connected, reliable
- Each message in stream prefixed by length

- RPC library does not retransmit or keep replay cache



UDP SunRPC vs. textbook protocol

• IP implements BLAST-equivalent
- except no selective retransmit

• SunRPC implements
CHAN-equivalent

- except not at-most-once

• UDP + SunRPC implement
SELECT-equivalent

- portmap + UDP dispatches to program
(ports bound to programs)

- SunRPC dispatches to procedure within
program

IP

ETH

SunRPC

UDP



Sun XDR

• “External Data Representation”
- Describes argument and result types:

struct message {

int opcode;

opaque cookie[8];

string name<255>;

};

- Types can be passed across the network

• Standard rpcgen compiles to C
- Converts messages to native data structures

- Generates marshaling routines (struct ↔ byte stream)

- Generates info for stub routines



Basic data types

• int var – 32-bit signed integer
- wire rep: big endian (0x11223344 → 0x11, 0x22, 0x33, 0x44)

- rpcgen rep: int32 t var

• hyper var – 64-bit signed integer
- wire rep: big endian

- rpcgen rep: int64 t var

• unsigned int var, unsigned hyper var

- wire rep: same as signed

- rpcgen rep: u int32 t var, u int64 t var



More basic types

• void – No data
- wire rep: 0 bytes of data

• enum {name = constant,. . .} – enumeration
- wire rep: Same as int

- rpcgen rep: enum

• bool var – boolean
- both reps: As if enum bool {FALSE = 0, TRUE = 1} var



Opaque data

• opaque var[n] – n bytes of opaque data
- wire rep: n bytes of data, 0-padded to multiple of 4
opaque v[5]→ v[0], v[1], v[2], v[3], v[4], 0, 0, 0

- rpcgen rep: char var[n]



Variable length opaque data

• opaque var<n> – 0–n bytes of opaque data
- wire rep: 4-byte data size in big endian format, followed by
n bytes of data, 0-padded to multiple of 4

- rpcgen rep:

typedef struct {

u_int32_t var_len;

char *var_val;

} var;

• opaque var<> – arbitrary length opaque data
- wire rep: same

- rpcgen rep: same



Strings

• string var<n> – string of up to n bytes
- wire rep: just like opaque var<n>

- rpcgen rep: char *var;

except cannot be NULL, cannot be longer than n bytes

• string var<> – arbitrary length string
- wire rep: same as string var<n>

- rpcgen rep: same

• Note: Strings cannot contain 0-valued bytes
- Should be allowed by RFC

- Because of C string implementations, does not work



Arrays

• obj t var[n] – Array of n obj ts
- wire rep: n wire reps of obj t in a row

- rpcgen rep: typedef obj t var[20];

• obj t var<n> – 0–n obj ts
- wire rep: array size in big endian, followed by that many

wire reps of obj t

- rpcgen rep:

typedef struct {

u_int32_t var_len;

obj_t *var_val;

} var;



Pointers

• obj t *var – “optional” obj t

- wire rep: same as obj t var<1>: Either just 0, or 1 followed
by wire rep of obj t

- rpcgen rep: obj t *var

• Pointers allow linked lists:

struct entry {

filename name;

entry *nextentry;

};

• Not to be confused with network object pointers!



Structures

struct type {

type_A fieldA;

type_B fieldB;

...

};

• wire rep: wire representation of each field in order

• rpcgen rep: structure as defined



Discriminated unions

union type switch (simple_type which) {

case value_A:

type_A varA;

case value_B:

type_B varB;

...

default:

void;

};

• simple type must be [unsigned] int, bool, or enum

• Wire representation: wire rep of which, followed
by wire rep of case selected by which.



Discriminated unions: rpcgen representation

struct type {

simple_type which;

union {

type_A varA;

type_B varB;

...

} type_u;

};

• Must check/set which before accessing field

• Warning: Accessing the wrong field is a common
bug, and causes unpredictable behavior



RPC message format

enum msg_type { CALL = 0, REPLY = 1 };

struct rpc_msg {

unsigned int xid;

union switch (msg_type mtype) {

case CALL:

call_body cbody;

case REPLY:

reply_body rbody;

} body;

};

• 32-bit XID identifies each RPC
- Chosen by client, returned by server

- Server may base replay cache on XID



RPC call format
struct call_body {

unsigned int rpcvers; /* must always be 2 */

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque_auth cred;

opaque_auth verf;

/* argument structure goes here */

};

• Every call has a 32-bit program & version number
- E.g., NFS is program 100003, versions 2 & 3 in use

- Can implement multiple servers on same port

• Opaque auth is hook for authentication & security
- Credentials – who you are; Verifier – proof.



RPC reply format

enum reply_stat { MSG_ACCEPTED = 0, MSG_DENIED = 1 };

union reply_body switch (reply_stat stat) {

case MSG_ACCEPTED:

accepted_reply areply;

case MSG_DENIED:

rejected_reply rreply;

} reply;

• Most calls generate “accepted replies”
- Includes many error conditions, too

• Authentication failures produce “rejected replies”



Accepted calls

struct accepted_reply {

opaque_auth verf;

union switch (accept_stat stat) {

case SUCCESS:

/* result structure goes here */

case PROG_MISMATCH:

struct { unsigned low; unsigned high; }

mismatch_info;

default:

/* PROG/PROC_UNAVAIL, GARBAGE_ARGS, SYSTEM_ERR, ... */

void;

} reply_data;

};



Rejected calls

enum reject_stat { RPC_MISMATCH = 0, AUTH_ERROR = 1 }

union rejected_reply switch (reject_stat stat) {

case RPC_MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info; /* means rpcvers != 2 */

case AUTH_ERROR:

auth_stat stat; /* Authentication insufficient */

};



RPC authentication

enum auth_flavor {

AUTH_NONE = 0,

AUTH_SYS = 1, /* a.k.a. AUTH_UNIX */

AUTH_SHORT = 2,

AUTH_DES = 3

};

struct opaque_auth {

auth_flavor flavor;

opaque body<400>;

};

• Opaque allows new types w/o changing RPC lib
- E.g., SFS adds AUTH UINT=10, containing simple integer



AUTH UNIX credential flavors

struct authsys_parms {

unsigned int time;

string machinename<255>;

unsigned int uid;

unsigned int gid;

unsigned int gids<16>;

};

• Contains credentials of user on client machine

• Only useful if:
1. Server trusts client machine, and

2. Client and server have same UIDs/GIDs, and

3. Network between client and server is secure



Example: fetch and add server

struct fadd_arg {

string var<>;

int inc;

};

union fadd_res switch (bool error) {

case TRUE:

int sum;

case FALSE:

string msg<>;

};



RPC program definition

program FADD_PROG {

version FADD_VERS {

void FADDPROC_NULL (void) = 0;

fadd_res FADDPROC_FADD (fadd_arg) = 1;

} = 1;

} = 300001;

• RPC library needs information for each call
- prog, vers, marshaling function for arg and result

• rpcgen encapsulates all needed info in a struct
- Lower-case prog name, numeric version: fadd prog 1


