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Abstract

Current technology trends make it possible to build
communication networks that can support high-
performance distributed computing. This paper de-
scribes issues in the design of a prototype switch for
a point-to-point network with link speeds of up to one
gigabit per second. The switch deals in fixed-length
ATM-style cells, which it can process at a rate of 37
million cells per second. It provides high bandwidth
and low latency for datagram traffic. In addition, it
supports real-time traffic by providing bandwidth reser-
vations with guaranteed latency bounds. The key to the
switch’s operation is a technique called parallel iterative
matching, which can quickly identify a set of conflict-
free cells for transmission in a time slot. Bandwidth
reservations are accommodated in the switch by build-
ing a fixed schedule for transporting cells from reserved
flows across the switch; parallel iterative matching can
be used to fill unused slots with datagram traffic. Fi-
nally, we note that parallel iterative matching may not
allocate bandwidth fairly among flows of datagram traf-
fic. We describe a technique called statistical match-
ing, which can be used to ensure fairness at the switch
and also to support applications with rapidly changing
needs for guaranteed bandwidth.

This paper has been abridged for publication in this con-
ference; an unabridged version can be obtained from the Dig-
ital Equipment Corporation Systems Research Center, 130
Lytton Ave., Palo Alto, CA 94301.
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1 Introduction

Over the past few years, several technology trends have
converged to provide an opportunity for high perfor-
mance distributed computing. Advances in laser and
fiber optic technology have driven feasible link through-
puts above a gigabit per second. Dynamic RAM chips
have become cheap enough to be cost-effective at pro-
viding the large amounts of buffering needed at these
very high link speeds. Moreover, quick routing and
switching decisions are possible with current CMOS
technology.

In combination, these trends make it possible to con-
struct a practical local area network out of multiple
crossbar switches interconnected by gigabit per second
point-to-point fiber links. Point-to-point networks have
several advantages over other alternatives [Schroeder
et al. 91]. In contrast to networks like Ethernet [Met-
calfe & Boggs 76] that use a broadcast physical medium,
or networks like FDDI [Ame 87, Ame 88] based on
a token ring, point-to-point networks offer (i) aggre-
gate network bandwidth that can be much larger than
the throughput of a single link, (ii) the ability to add
throughput incrementally to match workload require-
ments, (iii) the potential for lower latency by shortening
path lengths and eliminating the need to acquire control
over the entire network in order to begin transmitting,
and (iv) a more flexible approach to high availability
by allowing multiple paths between hosts.

This paper studies the architectural issues in building
switches for high performance point-to-point local area
networks.

High performance point-to-point networks have the
potential to change the nature of distributed comput-
ing. Low latency and high throughput communication
allow a much closer coupling of distributed systems
than has been feasible in the past: with previous gen-
eration networks, the high cost of sending messages led
programmers to carefully minimize the amount of net-



work communication [Schroeder & Burrows 90]. Fur-
ther, when combined with today’s faster processors,
faster networks can enable a new set of applications,
such as desktop multimedia and using a network of
workstations as a supercomputer.

A primary barrier to building high performance net-
works is the difficulty of high speed switching—of tak-
ing data arriving on an input link and quickly sending it
out on the appropriate output link. The switching task
is simplified if the data can be processed in fixed-length
cells, as discussed in Section 2.3. Given fixed-length
cells, switching involves at least two separate tasks:

o scheduling — choosing which cell to send during
each time slot, when more than one cell is destined
for the same output, and

o data forwarding — delivering the cell to the output
once it has been scheduled.

Many high speed switch architectures use the same
hardware for both scheduling and data forwarding;
Starlite [Huang & Knauer 84], Knockout [Yeh et al.
87], and Sunshine [Giacopelli et al. 91] are just a few
of the switches that take this approach. If the input
and output links of a switch are connected internally
by a multi-stage interconnection network, the internal
network can detect and resolve conflicts between cells
as they work their way through the switch.

We take a different approach. We argue that for high-
speed switching, both now and in the future, switch
scheduling can profitably be separated from data for-
warding. By doing this, the hardware for each function
can be specialized to the task. Because switch cost is
dominated by the optical components needed to drive
the fiber links, the added cost of separate hardware to
do scheduling is justified, particularly if link utilization
is improved as a result.

We observe that switch scheduling is simply an appli-
cation of bipartite graph matching—each output must
be paired with at most one input that has a cell des-
tined for that output. A primary contribution of this
paper is a randomized parallel algorithm for finding a
maximal bipartite match at high speed. (In practice,
we run the algorithm for a fixed short time; it almost
always finds a maximal match.) The algorithm can
be efficiently implemented in hardware for switches of
moderate scale. Our work is motivated by the needs
of a prototype point-to-point network we are currently
building; we expect to begin using the network in early
1993. Using only off-the-shelf field programmable gate
array technology [Xil 91], our switch will be able to
schedule a standard 53 byte ATM cell out each link of

a 16 by 16 crossbar switch in the time for one cell to

arrive at a link speed of 1 gigabit per second. This re-
quires scheduling over 37 million cells per second. Cell
latency across the switch is about 2.2 microseconds in
the absence of contention. The switch does not drop
cells, and it preserves the order of cells sent between a
pair of hosts. If implemented in custom CMOS, we ex-
pect our algorithm to scale to larger switches and faster
links.

Supporting the demands of new distributed applica-
tions requires more from a network than simply high
throughput or low latency. The ability to provide guar-
anteed throughput and bounded latency is crucial to
multimedia applications [Ferrari & Verma 90]. Even for
applications that do not need guarantees, predictable
and fair performance is often important to higher lay-
ers of protocol software [Jain 90, Zhang 91].

Our basic scheduling algorithm does not by itself
provide either fairness or guaranteed throughput. We
present enhancements to our algorithm to provide these
features. These enhancements pull from the bag of
tricks of network and distributed system design—local
decisions are more efficient if they can be made inde-
pendently of global information, purely static schedul-
ing can simplify performance analysis, and finally, ran-
domness can de-synchronize decisions made by a large
number of agents.

The remainder of the paper discusses these issues in
more detail. Section 2 puts our work in context by
describing related work. Section 3 presents the basic
parallel scheduling algorithm. Section 4 explores static
scheduling as a way of providing guaranteed bandwidth
and latency. Section 5 describes a technique called sta-
tistical switching, that uses additional randomness in
the switching algorithm to improve fairness and to sup-
port dynamic allocation of bandwidth. Section 6 pro-
vides a summary of our work.

2 Background and Related
Work

Our goal is to build a local area network that supports
high performance distributed computing; for this, a net-
work must have high throughput, low latency, graceful
degradation under heavy workloads, the ability to pro-
vide guaranteed performance to real-time applications,
and performance that is both fair and predictable.
The network we envision comnsists of switches con-
nected in an arbitrary topology. Hosts are connected
to switch ports through a controller. Routing in the
network is based on flows, where a flow is a stream of
cells between a pair of hosts. (Our network also sup-



ports multicast flows, but we will not discuss that here.)
There may be multiple flows between a given pair of
hosts, for example, with different performance guaran-
tees. Each cell is tagged with an identifier for its flow.
Switches contain routing tables, built during a configu-
ration phase, that determine how cells of each flow are
routed at that switch. All cells from a flow take the
same path through the network.

In this section, we place our work in context by dis-
cussing aspects of our switch’s design in the context of
related work. These include switch size, the switch’s
internal interconnection fabric, fixed-length cells vs.
variable-length packets, and buffer organization.

2.1 Switch Scale

A key parameter in designing a point-to-point network
is the scale of each switch. Part of the the host-to-
host interconnect is provided by the fiber connections
between switches and part by the silicon within each
switch. In designing a network, we need to find an
appropriate balance between using a large number of
small switches or a small number of large switches.

At one extreme, very small switches are not cost-
effective. The largest component in the cost of a local
area fiber optic network comes from the optical devices
in each switch that drive the fiber; these devices ac-
count for half the parts cost of our prototype switch. A
smaller switch size requires the network to have a larger
number of fiber connections and thus a larger number
of optical devices.

On the other hand, very large switches are often in-
appropriate for local area networks. While it is feasible
to build switches with thousands of ports, such a switch
would be unduly costly for sites that have only dozens
of workstations. Smaller switches allow capacity to be
added incrementally at low cost; smaller switches can
also improve availability by making it less expensive for
the network to have redundant paths.

For these reasons, our algorithms are designed for
switches of moderate scale, in the range of 16 by 16
to 64 by 64. In the near-term, we expect workstations
to be unable to utilize a full gigabit per second link;
in our prototype, multiple workstations can connect to
the network through a single switch port.

2.2 Internal Interconnect

Once the switch size has been decided, there are several
approaches to designing the internal data path needed
to transport cells from the inputs to the outputs of the
switch. Probably the simplest approach to transport-

ing data across a switch is to use shared memory or a
shared bus. We do not pursue these techniques here,
because they do not seem feasible for even moderate-
sized switches with gigabit per second links, much less
for the faster link speeds of the future.

Another uncomplicated approach is to connect in-
puts to outputs via a crossbar, using some external logic
to schedule the crossbar, i.e., to decide which cells are
forwarded over the crossbar during each time slot and
to set up the crossbar for those cells. In the absence
of a fast algorithm, however, scheduling the crossbar
quickly becomes a performance bottleneck for all but
the smallest switches.

Many switch architectures call for the switch’s inter-
nal interconnection to be self-routing[Ahmadi & Denzel
89]. The switch is organized internally as a multistage
network of smaller switches arranged in a butterfly, or
more generally, in a banyan [Patel 79]. Cells placed
into a banyan network are automatically routed and
delivered to the correct output based solely on the in-
formation in the cell header.

Unlike a crossbar, however, banyan networks suffer
from internal blocking. A cell destined for one output
can be delayed (or even dropped) because of contention
at the internal switches with cells destined for other
outputs. This makes it difficult to provide guaranteed
performance.

Internal blocking can be avoided by observing that
banyan networks are internally non-blocking if cells are
sorted according to output destination before being
placed into the network [Huang & Knauer 84]. Thus, a
common switch design is to put a Batcher sorting net-
work [Batcher 68] in front of a normal banyan network.
As with a crossbar, a cell may be sent from any input
to any output provided no two cells are destined for the
same output.

Our scheduling algorithm assumes that data can be
forwarded through the switch with no internal block-
ing; this can be implemented using either a crossbar
or a batcher-banyan network. Owur prototype uses a
crossbar because it is simpler and has lower latency.
Even though the hardware for a crossbar for an N by
N switch grows as O(N?), for moderate scale switches
the cost of a crossbar is small relative to the rest of
cost of the switch. In our prototype, for example, the
crossbar accounts for only 5% of the overall cost of the
switch.



2.3 Fixed-Length Cells vs. Variable-
Length Packets

Within our network, data is transmitted in fixed-length
cells rather than variable-length packets. This choice
has a number of advantages for switch design, despite
the disadvantage that it requires the switch to make
more frequent scheduling decisions. The chief gain is
that performance guarantees are easier to provide when
the entire crossbar is re-scheduled after every cell time
slot. In addition, fixed-length cells simplify non-FIFO
buffer management (discussed in the next sub-section).
Packet latency is improved because small cells simulate
the performance of cut-through [Kermani & Kleinrock
79] while permitting a simpler store-and-forward imple-
mentation.

Applications may still deal in variable-length packets.
It is the responsibility of the sending host controller to
divide packets into cells, each containing the flow id for
routing; the receiving controller re-assembles the cells
into packets for the host.

2.4 Buffer Organization

Even with an internally non-blocking switch, when sev-
eral cells destined for the same output arrive in a time
slot, at most one can actually leave the switch; the oth-
ers must be buffered. There are many options for or-
ganizing the buffer pools. For example, buffers may be
placed at the switch inputs or outputs; when placed at
the inputs they may be strictly FIFO or allow more
general access. There has been considerable research
on the impact of these alternatives. In this section we
review the work that is most relevant to our switch de-
sign.

The simplest approach is to maintain a FIFO queue
of cells at each input. However, with FIFO queueing,
when a cell at the head of an input queue is blocked,
all cells behind it in the queue are prevented from be-
ing transmitted, even when the output link they need

is idle. This is called head-of-line (HOL) blocking.

Karol et al. [1987] have shown that HOL blocking lim-
its switch throughput to 58% of the link bandwidth,
when the destinations of incoming cells are uniformly
distributed among all outputs.

Unfortunately, FIFO queueing can have even worse
performance under certain traffic patterns. For exam-
ple, if several input ports each receive a burst of cells
for the same output, cells that arrive later for other out-
puts will be delayed while the burst cells are forwarded
sequentially through the bottleneck link. If incoming
traffic is periodic, Li [1988] shows that the total switch
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Figure 1: Performance Degradation Due to FIFO
Queueing

throughput can be as small as the throughput of a single
link, even for very large switches; this is called station-
ary blocking. Figure 1 illustrates this effect.’ The small
boxes represent cells arriving at each input; the num-
ber in each box corresponds to the output destination of
that cell. The worst case occurs when scheduling prior-
ity rotates among inputs so that the first cell from each
input is scheduled in turn. Note that if cells could be
forwarded in non-FIFO order, all of the switch’s links
could be fully utilized in steady state.

Various approaches have been proposed for avoiding
the performance problems of FIFO input buffers. One
is to expand the internal switch interconnect so that
it can route k cells to an output in a single time slot.
This can be done in a batcher-banyan switch, for ex-
ample, by replicating the banyan part of the switch &
times [Huang & Knauer 84]. Since only one cell can de-
part from an output at each slot, buffers are required at
the outputs with this technique. If more than k cells ar-
rive during a slot for a given output, not all of them can
be routed immediately. Typically, the excess cells are
simply dropped. While few cells are dropped with a uni-
form workload [Giacopelli et al. 91], local area network
traffic is rarely uniform. Instead, a common pattern is
client-server communication, where a large fraction of
incoming cells tend to be destined for the same output
port [Owicki & Karlin 92]. Unlike previous generation
networks, fiber links have very low error rates; the net-
work we are building, for example, has a link bit error
rate of 1072, Thus, loss induced by the switch archi-
tecture will be more noticeable.

1In this and other figures, input and output ports are
shown as distinct entities. However, the ith input and the
ith output are actually the two parts of a full-duplex port.
The example assumes for simplicity that cells can be sent out
the same port they came in on. If this is not the case, switch
throughput can be as small as twice the link throughput.



Another technique, often combined with the previous
one [Giacopelli et al. 91], is to shunt blocked cells into
a re-circulating queue that feeds back into extra ports
in the batcher network. The re-circulated cells are then
sorted, along with incoming cells, during the next time
slot. Once again, if there is too much contention for
outputs, some cells will be dropped.

Our switch takes the alternative approach of using
non-FIFO input buffers. Cells that cannot be routed
in a slot are retained at the input, and the first cell
of any flow can be selected for transmission across the
switch. This avoids the cell loss problem in the schemes
above, but requires a more sophisticated algorithm for
scheduling the cells to be transmitted in a slot.

While there have been several proposals for switches
that use non-FIFO input buffers [Karol et al. 87, Tamir
& Frazier 88, Obara & Yasushi 89, Karol et al. 92], the
difficulty is in devising an algorithm that is both fast
enough to schedule cells at high link speeds and yet
effective enough to deliver high link throughput. For
example, Hui and Arthurs [1987] use the batcher net-
work iteratively to schedule the batcher-banyan. At
first, only the header for the first queued cell at each
input port is sent through the batcher network; an ac-
knowledgement is returned indicating whether the cell
is blocked or can be forwarded during this time slot.
An input that loses the first round of the competition
sends the header for the second cell in its queue on the
second round, and so on. After some number of iter-
ations k, the winning cells, header plus data, are sent
through the batcher-banyan to the outputs. Note that
this reduces the impact of HOL blocking but does not
eliminate it, since only the first &k cells in each queue
are eligible for transmission.

3 Parallel Iterative Matching

In this section, we describe our algorithm for scheduling
the switch, first giving an overview and a possible hard-
ware implementation, then discussing several issues en-
countered in its design.

3.1 Overview

The task of the scheduling algorithm is to determine
which inputs will transmit to which outputs in a given
time slot. With non-FIFO buffers, an input may trans-
mit to any one of the outputs for which it has a cell.
Thus the task comes down to matching inputs with out-
puts for which they have a cell, under the constraint
that each input can be connected to at most one out-
put and vice versa.
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Figure 2: Parallel Iterative Matching: One Itera-
tion

Our algorithm, parallel iterative matching, uses par-
allelism, randomness, and iteration to accomplish this
task efficiently. We iterate the following three steps:

1. Each unmatched input sends a request to each out-
put for which it has a buffered cell. This notifies
an output of all its potential partners.

2. If an unmatched output receives any requests, it
chooses one randomly to grant. The output notifies
each input whether its request was granted.

3. If an input receives any grants, it chooses one to
accept and notifies that output.

Figure 2 illustrates the request, grant, accept proto-
col. Two or more inputs can request the same output;
the grant phase chooses among them. Two or more
grants can be made to the same input; the accept phase
chooses among them.

Note that this is a distributed algorithm—there is
no centralized scheduler. Each of the steps can be per-
formed in parallel at all of the links.

After a single iteration of steps 1-3, we have paired
inputs and outputs, but inputs may remain which can
be paired to other unpaired outputs. This is demon-
strated in Figure 2. Two or more outputs can grant to
the same input; an output whose grant is not accepted
may be able to be paired with some other input.

To address this, we repeat the request, grant, ac-
cept protocol, retaining the matches made in previous
iterations. As in Hui and Arthurs’ algorithm, we iter-
ate to “fill in the gaps” in the match left by previous
iterations. However, there is no HOL blocking in our
approach, since we can route any flow with queued cells.

Our algorithm may forward cells through the switch
in an order different from the order in which they ar-
rived. However, the switch maintains a FIFO queue



for each flow, so cells within a flow are not re-ordered.
This use of FIFO buffers does not lead to HOL block-
ing: since all cells from a flow must be forwarded to
the same output, either none of the cells of a flow are
blocked or all are.

We implement this algorithm in a straightforward
way, by running a wire between every input and out-
put. Even though this implementation requires hard-
ware that grows as O(IV?) for an N by N switch, the
cost of our scheduling hardware is small relative to the
cost of the fiber optic switch components. The request
and grant signals can be encoded by a single bit on the
appropriate wire. No separate communication step is
required to indicate which grants are accepted. When
an input chooses to accept an output’s grant, it simply
continues to request that output on subsequent itera-
tions, but drops all other requests. Once an output
grants to an input, it continues to grant to the same
input on subsequent iterations unless the input drops
its request.

Our algorithm can be generalized to handle switches
with replicated switching fabrics. For instance, consider
a batcher-banyan switch with k copies of the banyan
network. With such a switch, up to k cells can be de-
livered to a single output during one time slot. (Note
that this requires buffers at the outputs, since only one
cell per slot can leave the output.) In this case, we can
modify parallel iterative matching to allow each output
to make up to k grants in step 2. In all other ways,
the algorithm remains the same. An analogous change
can be made for switch fabrics that allow inputs to for-
ward more than one cell during any time slot. For the
remainder of the paper, however, we assume that each
input must be paired with at most one output and vice
versa.

3.2 Maximal vs. Maximum Match-
ing

The problem of scheduling a switch, that is, determin-
ing which input and output ports should be connected
during each slot, is an application of bipartite graph
matching [Tarjan 83]. Switch inputs and outputs form
the nodes of a bipartite graph; the edges are the con-
nections needed by queued cells.

Bipartite graph matching has been studied exten-
sively. There are two interesting kinds of bipartite
matches. A mazimum match is one that pairs the max-
imum number of inputs and outputs together; there is
no other pairing that matches more inputs and outputs.
A mazimal match is one for which pairings cannot be
trivially added; each node is either matched or has no

edge to an unmatched node. A maximum match must
of course be maximal, but the reverse is not true; there
may be a way of pairing more inputs and outputs than a
maximal match by completely re-shuffling which inputs
and outputs are paired with one another.

We designed our switch scheduler to find a maxi-
mal match, even though link utilization would be better
with a maximum match. One reason is performance—
finding a maximum match for an N by N graph with
M edges can take O(N x (N + M)) time. Karp et al.
[1990] give a randomized algorithm that comes close on
average to finding a maximum match, but even that
algorithm can take O(N + M) time. As discussed be-
low, our parallel algorithm finds a maximal match in
logarithmic time, on average.

Another reason for using a maximal match is that
maximum matching can lead to starvation. Figure 2
illustrates this possibility. Assuming a sufficient sup-
ply of incoming cells, maximum matching would always
connect input 1 with output 2 and input 3 with output
4. Cells queued at input 3 destined for output 2 would
never be transmitted.

In contrast, our algorithm does not incur starvation.
Since every output grants randomly among requests, an
input will eventually, with very high probability, receive
a grant from every output it requests. Provided inputs
choose among grants in a round-robin or other fair fash-
ion, every queued cell will eventually be transmitted.

In the worst case, the number of pairings in a maxi-
mal match can be as small as 50% of the number of pair-
ings in a maximum match. However, simulations show
that if all input-output pairs are requested with equal
probability p, then the expected size of the matches
found by iterative matching ranges between 85% and
100% of maximum, depending on p.

3.3 Convergence

Parallel iterative matching takes a variable number of
iterations to find a maximal match. It is important
for performance to understand how long the algorithm
will take to converge. In the worst case, it is no faster
than the sequential approach. If all outputs grant to
the same input on the first round, only one match will
be made. If this pattern is repeated, it will take IV
rounds to reach a maximal match. On the other hand,
in the best case, every output grants to a unique input,
in which case the algorithm takes only one iteration to
converge.

To achieve fast convergence, we make it unlikely that
most outputs grant to the same input. This is done by
granting randomly among requests in step 2. It can



be shown that the algorithm finds a maximal match
in O(log N) iterations, on average, independent of the
pattern of requests. The proof is given in Appendix A.
The key is that each iteration resolves, on average, at
least 3/4 of the remaining unresolved requests.

Our implementation uses a small fixed number of it-
erations rather than iterating until a maximal match
is reached. This is because we have a fixed amount of
time to schedule the switch—the time to receive one
cell at link speed. In our current implementation us-
ing 53 byte ATM cells, off-the-shelf field programmable
gate array technology, and 1.0 gigabit per second links,
there is time for four iterations. Simulations of a 16
by 16 switch show that if all input-output pairs are re-
quested with equal probability p, then four iterations
achieve a maximal matching over 98% of the time, re-
gardless of p. In other words, the constant factor in the
O(log N) iterations needed to reach a maximal match
is small.

A remaining implementation problem is selecting
randomly among k requesting inputs. The most
straightforward way to do this is to generate a ran-
dom number between 1 and k. Depending on the size
of the switch, more efficient implementations may be
possible. For instance, in our prototype, it is possible
to select more efficiently using a scheme based on tables
of precomputed values.

To summarize, parallel iterative matching makes it
possible for the switch to achieve a nearly maximal
match in a short time, regardless of the pattern of
output requests. Moreover, the hardware requirements
are modest enough to make parallel iterative matching
practical for high speed switching.

4 Static Scheduling

As network and processor speeds increase, new types of
high-performance distributed applications become fea-
sible. Supporting the demands of these applications
requires more from a network than just high through-
put or low latency. Parallel iterative matching, while
fast and effective at keeping links utilized, cannot by it-
self provide the needed services. The remainder of this
paper discusses these issues and suggests ways of aug-
menting our basic algorithm to address these concerns.

One important class of applications depend on real-
time performance guarantees. For example, multimedia
applications must display video frames at set intervals.
They require that the network provide a certain mini-
mum bandwidth and a bounded latency for cell deliv-
ery. Following the conventions of the ATM community,
we will call traffic with reserved bandwidth constant bit

rate (CBR) traffic, and refer to other traffic as variable
bit rate (VBR) traffic. (VBR traffic is often called data-
gram traffic). Switches distinguish VBR and CBR cells
based on the flow identifier in the cell header.

To ensure guaranteed performance, an application is-
sues a request to the network to reserve a certain band-
width and latency bound for a flow of CBR traffic [Fer-
rari & Verma 90]. If the request can be met without
violating any existing guarantees, the network grants it
and reserves the required resources on a fixed path be-
tween source and destination. The application can then
transmit cells at a rate up to its requested bandwidth,
and the network ensures that they are delivered on time.
Applications that do not require guarantees can trans-
mit cells with no prior arrangement in VBR flows. If the
network becomes heavily loaded, VBR cells may suffer
arbitrary delays. But CBR performance guarantees are
met no matter how high the load of VBR traffic.

Our contribution in this area is in showing how to im-
plement performance guarantees in a network of input-
buffered switches with unsynchronized clocks. The rest
of this section describes our approach to CBR traffic.
We first describe the form of a bandwidth request and
the criterion used to determine whether it can be ac-
cepted. We next show how a switch can be scheduled
to meet bandwidth guarantees. Finally, we show that
buffers for CBR traffic can be statically allocated and
the latency of CBR cells can be bounded, even when
network switch clock rates are unsynchronized. Our ap-
proach smoothly integrates both CBR and VBR traffic;
VBR cells can consume all of the network bandwidth
unused by CBR cells.

Bandwidth allocations are made on the basis of
frames which consist of a fixed number of slots, where a
slot is the time required to transmit one cell [Golestani
90]. An application’s bandwidth request is expressed as
a certain number of cells per frame. Frame boundaries
are internal to the switch; they are not encoded on the
link.

Frame size is a parameter of the network. A larger
frame size allows for finer granularity in bandwidth allo-
cation; we will see later that smaller frames yield lower
latency. The frame size in our prototype switch is 1000
slots; a frame takes less than half a millisecond to trans-
mit. This leads to latency bounds that seem accept-
able for multi-media applications, the most likely use
for CBR guarantees.

When a request is issued, network management soft-
ware must determine whether it can be granted. In our
approach, this is possible if there is a path from source
to destination on which each link’s uncommitted capac-
ity is greater than the requested bandwidth. If network



Reservations (cells per frame)

Output
Input |1 2 3 4
1 1 (1)1
2 | 2
3 2 1
4|1 1
Schedule
Slot1 |1—-3|2—-51|3—>2
Sot2 | 124251352 |4—>3
Slot 3 |1 —2 354 |4—>1

Figure 3: CBR Traffic: Reservations and Schedule

software finds such a path, it grants the request, and
notifies the involved switches of the additional reserva-
tion. The application can then send up to the reserved
number of cells each frame. The host controller or the
first switch on the flow’s path can meter the rate at
which cells enter the network; if the application exceeds
its reservation, the excess cells may be dropped. Alter-
natively, excess cells may be allowed into the network,
and any switch may drop cells for a flow that exceeds
its allocation of buffers.

Note that this allocation criterion allows reservation
of 100% of the link bandwidth. Meeting this through-
put level is straightforward with an output-buffered
switch [Golestani 90, Kalmanek et al. 90], but this as-
sumes the switch has enough internal bandwidth that
it never needs to drop cells under any pattern of arriv-
ing CBR cells. With input buffering, parallel iterative
matching is not capable of guaranteeing this through-
put level. Instead, we exploit the Slepian-Duguid the-
orem [Hui 90] to build an explicit schedule of switch
connections for each slot in a frame. The theorem im-
plies that such a schedule can be found for any traffic
pattern, so long as the number of cells from any input or
to any output is no more than the frame size. Figure 3
provides an example of reservations and a schedule for
a frame size of 3 slots.

When a new reservation is made, it may be neces-
sary to rearrange the connections in the schedule. For
instance, consider an additional reservation of one cell
per frame from input 2 to output 4. Because there is
no slot in which both input 2 and output 4 are free,
the existing schedule must be shuffled in order to ac-
commodate the new flow. The result is illustrated in
Figure 4. Computing a new schedule may require a
number of steps proportional to the size of the reserva-

Reservations (cells per frame)

Output
Input |1 2 3 4
1 1 (1)1
2 | 2 1
3 2 1
4 |1 1
Schedule
Slot1 |1—-2|2—>51|3—>14
Slot2 |1—-4|2—>51|3—>22|4—>3
Slot 3 | 123|254 |3—>22|4—>1

Figure 4: CBR Traffic with Added Reservation

tion (in cells/frame) XN, for an N by N switch. How-
ever, the test for whether a switch can accommodate a
new flow is much simpler; it is possible so long as the
input and output link each have adequate unreserved
capacity. Once a feasible path is found, the selected
switches can compute their new schedules in parallel.

CBR cells are routed across the switch during sched-
uled slots. VBR cells are transmitted during slots not
used by CBR cells. For example, in Figure 3, a VBR
cell can be routed from input 2 to output 3 during the
third slot. In addition, VBR cells can use an allocated
slot if no cell from the scheduled flow is present at the
switch.

Pre-scheduling the switch ensures that there is ade-
quate bandwidth at each switch and link for CBR traf-
fic. It is also necessary to have enough buffer space at
each switch to hold cells until they can be transmit-
ted; otherwise, some cells would be lost. Our switch
statically allocates enough buffer space for CBR traf-
fic. VBR cells use a different set of buffers, which are
subject to flow control.

In a network where switch clock rates are synchro-
nized, as in the telephone network, a switch needs
enough buffer space at each input link for two frames
worth of cells [Golestani 90, Zhang & Keshav 91]. Note
that one frame of buffering is not enough, because the
frame boundaries may not be the same at both switches,
and because the switches can rearrange their schedules
from one frame to the next.

When the switches are not synchronized, the situa-
tion becomes more complicated. We do not present the
proof here, but the number of buffers required can still
be bounded if the clocks on all switches and controllers
tick at rates that are within a specified accuracy of a
specified nominal rate, and if the host controller or the



first switch on the flow’s path is constrained to admit
cells into the network slightly slower than the slowest
switch can process them. The exact bound is a function
of network parameters: the switch and controller frame
sizes, the network diameter, and the clock error limits.
Four or five frames of buffers are sufficient for values
of these parameters that are reasonable for local area
networks.

Now let us consider latency guarantees. If switch
clocks are synchronized, a cell can be delayed at most
two frame times at each switch on its path [Golestani
90, Zhang & Keshav 91]. Let p be the number of hops
in the cell’s path, f the time to transmit a frame, and
! an upper bound on link latency plus switch overhead
for processing a cell. Then the total latency for a cell
is less than p(2f + I). When switches are not synchro-
nized, the delay experienced at a switch may be larger
than (2f + 1) but end-to-end delay is still bounded by
p(2f +1). Again, the proof is not presented here. This
yields latency bounds in our prototype that are ade-
quate for most multi-media applications. A smaller
frame size would provide lower CBR latency, but as
mentioned before it would entail a larger granularity in
bandwidth reservations. We are considering schemes in
which a large frame is subdivided into smaller frames.
This would allow each application to trade off low la-
tency guarantee vs. small granularity of allocation.

To summarize, bandwidth and latency guarantees
are provided through the following mechanisms:

e Applications request bandwidth reservations in
terms of slots/frame.

o The network grants a request if it can find a path
on which each link has the required capacity.

o Each switch, when notified of a new reservation,
builds a schedule for transmitting cells across the
switch.

e Enough buffers are permanently reserved for CBR
traffic to ensure that arriving cells will always find
an empty buffer.

e Latency is bounded by a simple function of link
latency, path length, and frame size.

5 Statistical Matching

The prototype switch we are building combines the
methods described in the previous two sections to pro-
vide low latency and high throughput for VBR traffic
and guaranteed performance for CBR traffic. Two is-
sues remain: (i) parallel iterative matching does not al-
ways provide fair and predictable network performance
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Figure 5: Unfairness with Parallel Iterative Match-
ing

and (ii) some applications need performance guaran-
tees yet generate packets at a variable rate. In this
section, we present a generalization of parallel iterative
matching, called statistical matching, that addresses
both these concerns; due to space constraints, we only
discuss the issue of fairness here. Statistical matching
works by systematically using randomness in choosing
which request to grant and which grant to accept. The
first version of our prototype switch does not implement
statistical matching.

5.1 Motivation

Ramakrishnan et al. [1990] provide a formal definition
of fairness in the allocation of network resources. To be
fair, every user should receive an equal share of every
network resource that does not have enough capacity
to satisfy all user requests. If a user needs less than its
equal share, the remainder should be split among the
other users. One result of a fair network, then, is that
users typically see graceful degradation in performance
under increased load. Adding an additional user to an
already crowded system will result in a relatively small
decrease in everyone else’s resource allocation.

Unfortunately, a network built out of switches us-
ing parallel iterative matching is not fair, for two rea-
sons. First, to be scheduled, a queued cell needs to
receive a grant from its output and to have its input
accept the grant. Both the input and output ports are
sources of contention; parallel iterative matching will
tend to give higher throughput to input-output connec-
tions that have fewer contending connections. In Fig-
ure 5, for instance, if input 4 chooses randomly when it
receives more than one grant, the connection between
input 4 and output 1 will receive only one fifth the
throughput of the other connections.

Second, even if a switch allocates output bandwidth
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Figure 6: Unfairness with Point-to-Point Networks

equally among all requesting inputs, the switch, when
embedded in a point-to-point network, will not be fair
among users or flows [Demers et al. 89].2 Depending
on the topology of the network, each switch input may
have a different numbers of flows. A flow reaching a bot-
tleneck link at the end of a long chain of switches may
receive an arbitrarily small portion of the link through-
put, while another flow receives a much larger portion.
Unfortunately, this is exactly the pattern we expect if
higher level software is using a client-server model [Ow-
icki & Karlin 92]. Figure 6 illustrates what happens
when four flows share a bottleneck link. Each letter
represents a cell; switches forward cells by a round-
robin among input ports. To be perfectly fair, each
flow should receive the same throughput on the right-
most link.

A number of approaches to fairness in point-to-point
networks have been proposed, but they have been dif-
ficult to implement in high performance networks. For
example, Zhang [1991] suggests a wirtual clock algo-
rithm. Host network software assigns each flow its fair
share of the network bandwidth and notifies each switch
along the path of the rate to be delivered to the flow.
When a cell arrives at a switch, it is assigned a time-
stamp based on when it would be scheduled if the net-
work were operating fairly; the switch gives priority to
cells with earlier timestamps.

Demers et al. [89] propose a fair queueing scheme
that does not require rates to be set by host software.
Instead, switches round-robin among flows in choosing
which cell to forward onto an output link. No external
rate control is needed for fairness, because each flow has
its own dedicated buffer space at each switch, and flow
control between switches prevents buffer overflows.

Both virtual clock and fair queueing assume that

2 A “network user” may, of course, be sending more than
one flow of cells through a switch, for example, to different
hosts. For simplicity, though, the remainder of our discus-
sion will assume that our target is fairness among flows as
an approximation to fairness among users.
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it is possible for each output link to select arbitrar-
ily among any of the cells queued for it. This is the
case in an output-buffered switch. In our input-buffered
switch, however, only one cell from each input can be
forwarded at a time. Without centralized control of
scheduling, which is incompatible with a high perfor-
mance switch, it seems difficult to implement either

scheme in an input-buffered switch.

5.2 Algorithm

Statistical matching, like Slepian-Duguid, is an algo-
rithm for delivering to each flow a pre-set portion of
the link throughput. With statistical matching, up to
(1—1/e)x (141/€?), or 72%, of link throughput can be
allocated to specific lows; any unused slot can be filled
in with other traffic by parallel iterative matching. The
reserved throughputs can be in any pattern, provided
the sum of the throughputs at any input or output is
less than 72%. Unlike Slepian-Duguid, however, adjust-
ing throughput rates is efficient, in part because only
the input and output ports used by a flow need be in-
formed of a change in its rate.

Statistical matching is based on parallel iterative
matching, but it makes more systematic use of ran-
domness in making and accepting grants. The match-
ing for each time slot is chosen independently, but on
average, each flow is scheduled according to its pre-set
throughput rate. The algorithm mirrors parallel itera-
tive matching except that there is no request phase.

In the following algorithm, X represents the number
of discrete units of allocatable bandwidth per link; X; ;
denotes the number of units of bandwidth allocated to
traffic from input ¢ to output j. Our description of the
algorithm assumes for simplicity that the bandwidth is
fully allocated; a straightforward adjustment accounts
for any unallocated bandwidth.

1. Each output j randomly chooses an input 7z to
grant to, with probability proportional to its reser-



vation:
Pr{j grants to i} = X;;/X

2. Each input chooses at most one grant to accept (it
may accept none) as a two-step process:

(a) Each input i randomly chooses, for each out-
put j that makes a grant to it, a weight m; ;,
between 0 and Xj; ;, representing the num-
ber of virtual grants received from j. This is
done in such a way as to simulate the effect of
X;, ; possible grants being generated indepen-
dently, each with probability 1/X. Specifi-
cally, the probability that m;; = m for pos-
itive m is

Xij X(l)’"x(X—l)Xw—mX X
m X X X,',j
The remaining probability mass is assigned

to m;j; = 0. When j does not grant to i,
m;,; is set to zero.

(b) If any grant has positive weight, the input
then randomly accepts a grant with proba-

bility proportional to its weight:

m,j
Ek Mik

If a grant is accepted, the input randomly chooses
among the flows for the connection according to
their bandwidth reservations.

Pr{i accepts j} =

The effect of these steps is that each input behaves as
if it were choosing uniformly among X potential grants
(Xi,j of them from output j), each made with proba-
bility 1/X. Details of the proof are not given. As X
becomes large, (1 — (1 — 1/X)¥) approaches 1 — 1/e.
Thus a single iteration matches input ¢ to output j with
probability %(1 — %), or about 63% of %

Better throughput can be achieved by iterating these
steps twice; additional iterations beyond two yield in-
significant throughput improvements. On the second it-
eration, outputs grant and inputs accept independently
of the results of the first iteration. Connections made on
the second iteration that conflict with connections made
on the first iteration are discarded. Because the events
“s unmatched on the first round” and “j unmatched
on the first round” are either independent or positively
correlated (again, the proof is omitted), the probability
of both of these events occurring is at least 1/e*, and
the overall probability of a connection between 7z and j
after two rounds is at least X—)}ﬂ-(l — %)(1 + CLZ), or about

X; 4
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Additional iterations of parallel iterative matching
can then be performed to fill in slots unused by statis-
tical matching.

While statistical matching requires more hardware
to implement than does parallel iterative matching, the
hardware complexity is not as daunting as it might first
appear. Steps 1 and 2a can both be implemented with
simple table lookups. The table is initialized with the
number of entries for each outcome proportional to its
probability; a random index into the table selects the
outcome. Step 2b is simply a generalization of the ran-
dom choice among requests needed by parallel iterative
matching; the same implementation techniques apply.

5.3 Discussion

We motivated statistical matching by suggesting that it
could be used to schedule the switch fairly among com-
peting flows. For instance, statistical matching meets
many of the goals that motivated Zhang’s virtual clock
approach. With either approach, the switch can be
set to assign equal throughput to every competing flow
through a bottleneck link. Statistical matching can pro-
vide roughly equal throughput without the need for tag-
ging individual cells with timestamps and prioritizing
flows based on those timestamps, although some un-
fairness may be added when parallel iterative matching
fills in gaps left by statistical matching. With statistical
matching, as with virtual clock, a flow can temporar-
ily send cells faster or slower than its promised rate,
provided the throughput is not exceeded over the long
term. Queues in the network increase if the flow sends
at a faster rate; queues empty as the flow sends at a
slower rate. The virtual clock approach also provides
a way of monitoring whether a flow is exceeding its
promised rate over the long term; there is no analogue
with statistical matching.

Statistical matching can also approximate Demers et
al.’s fair queueing. The switch could periodically set
its rates to reflect the number of flows queued for each
input/output connection; this would give equal service
on average to each flow. It is a question for future
research to determine how well this works in practice.

6 Summary

We have described the design of a prototype switch that
can support high-performance distributed computing.
Key to the switch’s operation is a technique called par-
allel iterative matching, a fast algorithm for choosing
a conflict-free set of cells to forward across the switch
during each time slot. Our prototype switch combines



this with a mechanism to support real-time traffic even
The

switch will be used as the basic component of a point-

in the presence of clock skew between switches.

to-point local area network, providing
1. high-bandwidth,

2. low-latency for datagram traffic, so long as the net-
work is not overloaded, and

3. bandwidth and latency guarantees for real-time
traffic.

In addition, the switch’s scheduling algorithm can be
extended to allocate resources fairly when some part of
the network is overloaded.

We believe that the availability of high performance
networks with these characteristics will enable a new
class of distributed applications. Networks are no
longer slow, serial, highly error-prone bottlenecks where
message traffic must be carefully minimized in order to
get good performance. This allows distributed systems
to be more closely coupled than has been possible in
the past.
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A Convergence of Parallel It-
erative Matching

In this appendix, we consider the average convergence
time of the parallel iterative matching algorithm de-
scribed in Section 3, showing that it is O(log ) itera-
tions, for an N by N switch. This bound is independent
of the pattern of requests. The proof is based on the
observation that each iteration reduces the number of
unresolved requests by an average of at least 3/4. (A
request is unresolved if neither its input nor its output
port has been matched on a previous iteration.)

Consider an output Q that receives requests from n
inputs. Of these n inputs, some will request and receive
a grant from some output besides Q, and the rest will
receive no grants from other outputs. Let k be the
number that receive no other grants.
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Q chooses randomly to grant to one of the n inputs.
Since Q’s choice is independent of the choices of the
other outputs, Q will grant to one of the k inputs that
receive no other grants with probability k/n. In this
case, Q’s grant will be accepted, and all of Q’s n re-
quests will be resolved. On the other hand, with prob-
ability 1 — (k/n), Q will grant to an input that also
receives a grant from some other output. Even if Q’s
grant is not accepted, all of the » — k inputs that re-
ceived a grant will accept a grant; thus their n — k
requests to Q will be resolved.

Thus with probability k/n all requests to Q are re-
solved, and with probability 1 — (k/n) at most n — k
remain unresolved. As a result, the average number of
unresolved requests to Q is at most (1—(k/n))x (n—k),
which is no greater than n/4 for all k. Note that this im-
plies that the expected number of unresolved requests
after j iterations is at most N2/4j, because there can
be at most N? requests.

It remains to be shown that the algorithm converges
in O(log N) steps on average. Let C be the random
variable whose value is the step on which the last re-
quest is resolved. Then

oo

Y i Pr{C =i}

=1

= Y Y pc=i}

=1 i=j

= iPr{C’>j—1}

j=1
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Now let U; be the random variable whose value is
the number of unresolved requests at the end of j steps.

Then

Pr{C >j} = Y Pr{U;=k}

i k Pr{U; = k}

k=1

IA

NZ
= E[Uj] < Tl

Substituting Pr{C > j} < min(l,Nz/l}j) in (1) gives

>~ . . N? 4
E(C) < me(l’?) < logzN—{—g.
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