High Performance TCP in ANSNET

Curtis Villamizar <curtis@ans.net>
Advanced Network & Services, Inc.

Cheng Song <csong@vnet.ibm.com>
Advantis

September 12, 1994

Abstract

This report concentrates on specific requirements and
goals of the research networks supported by ANSNET,
but applies to any TCP dominated high speed WAN
and in particular those striving to support high speed
end-to—end flows. Measurements have been made under
conditions intended to better understand performance
barriers imposed by queueing capacities and queue drop
strategies.

The IBM RS/6000 based routers currently supporting
ANSNET performed very well in these tests. Measure-
ments have been made with the current software and
performance enhanced software. Single TCP flows are
able to achieve 40 Mb/s and competing multiple TCP
flows achieve over 41 Mb/s link utilization on 44.7 Mb/s
DS3 links with delays comparable to US cross continent
ANSNET delays. Congestion collapse is demonstrated
with intentionally reduced queueing capacity and using
window sizes much larger than optimal.

A variation of Floyd and Jacobson’s Random Early
Detection (RED) algorithm [1] is tested. Performance
improved with the use of RED for tests involving mul-
tiple flows. With RED and queueing capacity at or
above the delay bandwidth product, congestion collapse
is avoided, allowing the maximum window size to safely
be set arbitrarily high.

Queueing capacity greater than or equal to the delay
bandwidth product and RED are recommended. RED
provides performance improvement in all but the single
flow case, but cannot substitute for adequate queueing
capacity, particularly if high speed flows are to be sup-
ported.

Contents
1 Introduction 1
2 TCP Protocol Dynamics 2

2.1 TCP Segment Size 2
2.2 TCP Maximum Window Size 3
2.3 TCP Congestion Avoidance 3
2.4 Fast Retransmit and Recovery 3
2.5 Performance Pitfalls 4
3 Queue Size Requirements 4
3.1 Multiple TCP Flows 4
3.2 Effects of Queueing Capacity)

4 Performance Testing 5
4.1 Test Network Conditions.)
4.2 Router Queueing Capacity 6
4.3 Traffic Sources 6
4.4 Summary of Test Conditions 7

5 Test Results 7
5.1 Single High Speed Flows 8
5.2 Multiple Flows 9
5.3 Reverse Flow 11
5.4 Random Early Detection 11
5.5 Fairness and Delay 12
5.6 Link Utilization Estimates 12

6 Recommendations 13

7 Other Considerations 14

8 Conclusions 14

9 Acknowledgments 14

1 Introduction

TCP performance over WANs may be limited by numer-
ous factors including both host (end-system) and router
(packet switch) limitations.

The NSFNET has been improving upon the perfor-
mance bounds in wide area IP networking since its in-
ception. Performance capabilities have now reached the
point where the current 44.7 Mb/s! can be almost fully
utilized by either single high speed flows, aggregations
of TCP flows, or arbitrary combinations of high speed
flows and lower speed flows.

The Maui High Performance Computing Center (MH-
PCC) has been established in Hawaii to serve the com-
putational needs of the Air Force Maui Optical Station
(AMOS). MHPCC also aims to establish itself as a na-
tional supercomputing resource. The challenges posed
by MHPCC due to it’s high propagation delays to the
mainland US and high bandwidth needs are described in
[2].

Both the NSFNET service and the MHPCC service
are provided by ANSNET. Two current requirements
of NSFNET and MHPCC are not as easily met as one
might expect and are the primary focus of this work. The
NSFNET service must accommodate further increases in
network load in an IP network dominated by TCP traffic
without experiencing congestive collapse (low utilization
in the face of high load). High bandwidth applications
must be accommodated in support of the NSENET spon-
sored supercomputing centers and in support of MHPCC
needs.

Statistics gathered for NSF [3] show a doubling of traf-
fic approximately every year. DS3 Link utilizations have
exceeded 45% of link capacity over 15 minute intervals
and daily peaks in the low 40% range are now common
[4]. Congestion loss measured over 15 minute intervals
had until recently been well under 10~* (one lost packet
in 10*) for ANSNET DS3 and FDDI links serving the
NSFNET [5]. Loss of 10=3 for 15 minute intervals and at
time close to 10~2 has occurred primarily in the NY and
Washington areas, indicating that congestion is now be-
ginning to occur. Traffic growth statistics indicate that,
though the problem is still acute, congestion is likely to
become more common.

The requirement to support large aggregations of traf-
fic is of interest for any large deployment of IP, including
existing or planned commercial IP service. The require-
ment to support very high speed flows may be unique
to the scientific fields, but as can be seen later, meeting
this more difficult requirement better assures meeting
the former.

2 TCP Protocol Dynamics

The Transmission Control Protocol (TCP) is described
in RFC-793. TCP is a connection oriented transport

1Clear channel DS3 clocks at 44.7 Mb/s and provides
44.21 Mb/s after DS3 framing.

protocol capable of providing reliable end-to—end ser-
vice over a best—effort connectionless protocol such as
IP. The foundations of the algorithms most commonly
in use prior to the late 1980s are described in RFC-813,
RFC-879, RFC-889, RFC-896 and Nagle [6]. The TCP
slow start and congestion avoidance algorithms were in-
troduced in 1988 by Van Jacobson [7]. These algorithm
affect timing rather than the underlying protocol, and
remain interoperable with earlier implementations. Al-
though earlier implementations would continue to func-
tion, there has been a concerted effort to eliminate imple-
mentations that predate [7] due to their tendency toward
congestion collapse under high bottleneck utilizations.

Interoperability with earlier implementations of TCP
has remained a priority (despite arguments to the con-
trary asin [13]). Improvements to the algorithms and ex-
tensions to TCP have been discussed in numerous RFCs
(RFC-1072, RFC-1106, RFC-1110, RFC-1185, RFC-
1323) and in the open literature (too numerous to cite).

Compatibility with earlier TCP implementations can
be maintained by using the TCP options defined in
RFC-793 for extensibility. The latest commercial TCP
implementations support the algorithm improvements
and extensions described in RFC-1323 and preserve
compatibility with earlier implementations.

Of particular interest to this work is TCP’s congestion
avoidance, fast retransmit, and fast recovery algorithms
and how queueing capacity and queue drop strategy im-
pacts the effectiveness of these algorithms. A large factor
in TCP’s widespread use is its ability to fully (or nearly
fully) utilize a network bottleneck, adapting quickly to
changes in offered load or available bandwidth.

TCP is able to quickly detect a dropped segment us-
ing the fast retransmit algorithm and is able to avoid
waiting a full RTT for acknowledged window pointer to
be advanced as a result of the retransmission. These
algorithms were originally introduced by Van Jacobson
in electronic mail to the end2end-interest list, a work-
ing group studying TCP. These algorithms are also de-
scribed in [19].

A summary of these algorithms and their some of their
characteristics is presented here. For a more thorough
treatment of the subject see [19] or the cited papers.

2.1 TCP Segment Size

TCP is byte oriented, but prefers to send data in fixed
sized packets whose payload plus TCP header overhead
is referred to as the TCP segment size. At high speeds
a large segment size is generally required.

A large segment size will reduce the per packet over-
head at the hosts [20, 21, 22]. For most routers, a larger
segment size (as large as can be supported by the path
MTU) will more efficiently use available queueing ca-

pacity. Inefficiencies in many routers are due to smaller
packets often occupying the same buffer storage as large
packets.

Setting the segment size too high will cause packet
fragmentation, which is much worse. Packet fragmenta-
tion puts a load on the router that has to do the frag-
mentation. More important, at high speeds fragment
reassembly on the receiving host can become the perfor-
mance limiting factor.

Hosts typically use a segment size which provides a
payload of a multiple of 512 or 1024 bytes. For trans-
fers on the same subnet, the MTU of the local interface
dictates the segment size. Hosts typically use a TCP
payload of 512 bytes when the transfer is not to a di-
rectly attached subnet. The small segment size insures
that fragmentation will not occur, but can reduce per-
formance relative to an optimal segment size.

For high speed transfers, MTU discovery as defined
in RFC-1191 is often used to determine the true MTU
of the path and set segment size accordingly. MTU
discovery will not overestimate MTU and cause packet
fragmentation unless all ICMP generation is disabled in
routers on the path (as RFC-1435 warns).

2.2 TCP Maximum Window Size

TCP is an adaptive windowed protocol. TCP will send
up to one current window size of data without requiring
acknowledgments (ACKs). The current window size and
the end-to—end round trip time (RTT) of a TCP flow
place a ceiling on the average offered load. Any MAN
or WAN experiences transmission delays due to circuit
mileage. For example, regardless of link bandwidth, it
typically takes a signal 35 msec to cross the continental
US, yielding a 70 msec RTT.

In practice TCP will not exceed a maximum window
size determined by the amount of queueing space that
the sender and receiver are willing to commit to. This
practice is not dictated by the TCP protocol. In BSD
(and therefore most Unix systems) the default maxi-
mum window size is the value of the tcp_sendspace and
tcp_recvspace kernel variables. These can be modified
by the SO_SNDBUF and SO_RCVBUF setsockopt options.

In older BSD and Unix TCP implementations, the de-
fault values of the tcp_sendspace and tcp_recvspace
kernel variables were typically 4 kB. These values were
increased to 8 kB in more recent implementations.
These values yield performance limitations of 0.45 and
0.9 Mb/s respectively, on US cross continent (70 msec
RTT) transfers. Shorter delays allow higher throughput
to be achieved. For example, a 20 msec RTT would allow
1.6 and 3.2 Mb/sec, respectively.

Implementations that do not support RFC-1323 ex-
tensions place an upper limit of 64 kB on maximum

window size. If the window size is 64 kB and band-
width is infinite, the highest throughput a TCP flow
could achieve is accomplished by sending 64 kB every
70 msec. This yields a 7.3 Mb/sec limit over a 70 msec
path. RFC-1323 eliminates the maximum window size
limitation and therefore the bandwidth limitation. For
high speed applications; it is therefore critical that RFC—
1323 capable TCP implementations be used and that
window size limits are increased.

2.3 TCP Congestion Avoidance

Any point in a network where offered load can exceed
available bandwidth, even temporarily, forms a bottle-
neck. With well designed equipment a bottleneck will
be a link, but it could also to internal to packet routing
or switching equipment.

If a bottleneck forms, some or all TCP flows traversing
that bottleneck must reduce their offered load. The TCP
congestion avoidance algorithm uses the packet drops
that occur as a result of queue overflow as feedback to
reduce the sending rate. Such a drop will generally oc-
cur if a sustained ingress flow exceeds egress capacity.
The reduced sending rate is accomplished by cutting the
current window size in half. The window size is then
gradually increased in an attempt to find the optimal
operating point.

If the queue is large enough, transmission will resume
after a short pause and the bottleneck will remain at or
very near full utilization. During the pause in transmis-
sion, the link is fed by the backlog of data in the queue,
allowing the queue to empty somewhat but keeping the
link utilization from dropping. Note that if queueing
capacity is sufficiently inadequate, a drop can also oc-
cur simply due to burstiness and occur well below full
average bottleneck utilization.

TCP’s slow start and congestion avoidance involves an
initial exponential growth in window size starting with a
one segment (packet) window. With exponential growth
in the window size, a packet drop will soon occur. The
packet drop forces a reduction in window size and then
gradual increase in window size. If one packet is lost
within a window, the window size is halved and and then
gradually increased. If a timeout occurs, TCP repeats
the slow start agorithm, restarting with a window size of
one. Exponential growth in the window size is allowed
until half the previous window size is reached and then
growth slows from that point on.

2.4 Fast Retransmit and Recovery

When a loss occurs, senders will cut their windows in
half. The TCP fast retransmit algorithm detects a loss
very quickly by counting three consecutive acknowledg-

ments for the same segment (duplicate ACKs). When
the fast retransmit algorithm is triggerred, one full seg-
ment just beyond the acknowledgments window is re-
transmit. The fast recovery algorithm reduces the con-
gestion window by half in response to triggering fast re-
transmit and keeps the amount of unacknowledged data
fixed at that level until the acknowledged window pointer
is advanced. Fast recovery retransmits one packet as
allowed by the window size for each remaining dupli-
cate ACK, until the acknowledged window pointer is ad-
vanced, indicating that the retransmit and retransmit
acknowledgment has completed its round trip.

As a result of fast retransmit and fast recovery, when
an isolated packet drop occurs, after three duplicate
ACKs one packet is retransmitted. The sender then
becomes idle until acknowledgments for one half of the
previous window arrive in the form of duplicate ACKs.
If the queue is not quite large enough, the queue will
empty before transmission resumes. After one RTT, the
acknowledged window pointer is advanced by a large in-
crement, and linear growth of the congestion window can
resume.

If single packet drops are the norm, the TCP win-
dow size will oscillate about the optimal size, using close
to full bottleneck bandwidth and only occasionally re-
transmitting. If demand changes at the bottleneck as
the result of new flows becoming active, or flows becom-
ing inactive or closing, by oscillating about an optimal
window size, TCP adapts quickly.

2.5 Performance Pitfalls

If a drop occurs and is not detected by fast retransmit,
a TCP retransmit timeout will occur. The retransmit
timer is set to an estimate of RTT times four times the
estimated mean deviation of RTT, if an accurate esti-
mate of RTT can be made. If not, the retransmit timer
defaults to two seconds. Retransmission timeouts can
drastically reduce TCP’s performance. TCP will remain
idle for the timeout duration, and then slow start.

Fast retransmit and fast recovery improve perfor-
mance over reliance on TCP timeouts. However these
improvements can be lost if the window size is very small
or if multiple packet drops occur within one RTT.

If TCP is operating with a very small window (less
than 4 segments) and loses a packet, fast retransmit can-
not be triggerred. If the window is large enough but a
second packet is lost within the same window (a loss prior
to the retransmit occurring), acknowlegements following
the retransmit will advance the acknowledged window
pointer, but only to the second drop. If enough packets
have been sent after the second loss and have not been
lost, fast retransmit will trigger again. If not a timeout
will occur.

With a very large window, if congestion causes a num-
ber of packets to be dropped, but always at intervals of
four or more packets, fast retransmit and fast recovery
can be triggerred a number of times in one RTT. This
can cause the window size to be reduced in half a number
of times and then grow slowly. This can also reduce uti-
lization by causing TCP to underutilize the bottleneck
for a number of RTTs while the window grows.

3 Queue Size Requirements

A parameter critical to TCP performance is the delay
bandwidth product (D*BW) of TCP flows. This is the
total round trip time (RTT) times the bandwidth avail-
able at the bottleneck. If there is a single TCP flow (or
more likely a single high speed TCP flow dominating the
offered load) at a bottleneck, the window size must be
able to reach at least the delay bandwidth product in
order to make effective use of the available bandwidth.
If the maximum window size is set beyond this limit,
the current window size will tend to exceed the D¥BW
value, resulting in congestion. This will force queueing
drops, and cause the window size will oscillate about an
optimal value.

For most networks it is impossible for a given user to
predict the bandwidth requirements of all other poten-
tial users at any given time. Therefore when setting the
window size for a high speed application, it is wise (un-
less queueing capacity is inadequate) to set the window
size at or slightly below the D¥BW product that would
be available if the slowest physical link were otherwise
idle and let TCP determine the optimal window size if
there is other traffic competing for the bottleneck.

3.1 Multiple TCP Flows

If there are many TCP flows sharing a link, the delay
bandwidth product of each flow is that flow’s RTT times
its share of the link bandwidth. The sum of these D¥BW
products is proportional to the required queueing capac-
ity. In practice, TCP has been shown to quite equitably
share bandwidth among flows (though not perfectly [25])
and achieve fairly high utilization if conditions are right?.

The queueing requirements of the router or switch at
the congestion point is fairly independent of the num-
ber of TCP flows. Where there are multiple flows, each
flow will use a portion of the bottleneck bandwidth. The
sum of these throughputs will be approximately equal to

2Random packet loss must be low. Sudden increases in delay
of more than the previous average delay should not occur. Delays
should not exceed 2 seconds. As we examine later, an important
condition is adequate queueing capacity at the congestion point.
These are among the most important factors needed to achieve
high bottleneck utilization over long delay paths.

the bottleneck bandwidth, if all is working well. Even
if bandwidth is unevenly distributed among flows due to
bottlenecks elsewhere, if the RTTs are similar the sum of
the delay bandwidth products will generally be very close
to the average delay times the total bandwidth available
at the bottleneck. Except for small numbers of flows,
such as 1 or 2, it makes little difference how many simul-
taneous flows are active. For queueing capacity require-
ments, the worst case data burst remains approximately
equal to the D¥BW product using the average delay and
the link bandwidth.

If multiple TCP flows are active at a bottleneck, but
remain unsynchronized, queueing requirements will be
reduced with the number of flows. Unfortunately, TCP
flows do tend to become increasingly bursty and can be-
come well synchronized. Synchronization (clustering) is
described in [26].

An important factor in bidirectional TCP traffic is
“ACK compression”, first described in [27]. In ACK
compression a series of acknowledgments in one direc-
tion are queued behind a burst and become compressed
in time. This results in a much larger burst of data in
the other direction after the compressed stream of ACKs
arrives.

Synchronization can begin when queue overflow occurs
and results in loss of packets from more than one flow. If
the delays of some of the flows are approximately equal
(as is the case for all US East coast to West Coast flows)
the TCP flows will become fairly synchronized and result
in even larger bursts. Later queue overflows may bring
more flows into synchronization with the group.

3.2 Effects of Queueing Capacity

A poorly engineered network bottleneck can become
bistable. A period of fairly high (or even full) utilization
may be followed by a stable period of loss and substantial
bottleneck underutilization. This second condition is a
form of congestion collapse. Congestion collapse due to
poor TCP congestion control in early TCP host imple-
mentations is described in [7]. A similar condition can
occur if queueing capacity at the bottleneck (the router)
is inadequate, though the performance degredation will
not be as severe as the collapse described in [7].

Problems associated with inadequate queueing will
not be observed in testing routers or switches unless
there are sufficient delays introduced in the test environ-
ment. Therefore inadequate queueing capacity can easily
be overlooked. When such equipment is later deployed
in a WAN the delay is unavoidable and the problems are
then observed.

If queueing capacity is grossly inadequate, as link uti-
lization grows, premature loss may occur long before full
bottleneck utilization is achieved due to the bursty na-

ture of IP traffic. If queueing capacity is adequate or
nearly adequate, loss will tend not to occur until a pe-
riod of somewhat sustained full bottleneck utilization.
This period can be a few hundred milliseconds or longer.

The result of a nearly sufficient queueing capacity can
be somewhat less than full average bottleneck utilization,
though collapse is avoided. If queueing capacity is truly
adequate, full utilization can be sustained indefinitely
until offered load simply goes away. If queueing capac-
ity is highly inadequate, some degree of synchronization
will occur and alternate periods of very low and very
high utilization can occur, resulting in very low average
utilization.

Recent work by Floyd and Jacobson [1] aims among
other things to reduce the synchronization of TCP flows
through actions take by the router or switch. The al-
gorithms are referred to as Random Early Detection
(RED). RED limits queue utilization by carefully intro-
ducing controlled pseudo-random feedback (in this case
packet drops).

4 Performance Testing

Performance testing was conducted to demonstrate ef-
fects of queueing capacity and better quantify queue-
ing capacity requirements. Among the more immediate
goals are determining whether improvement is needed to
the IBM RS/6000 based routers used in ANSNET and

what forms of further improvement can be made.

4.1 Test Network Conditions

Testing was done on the ANS test network. This is an
unchannelized DS3 network like the ANSNET network
that provides the NSFNET service (see [28] for a descrip-
tion of NSFNET). The test network uses routers and
other equipment identical to those used on ANSNET.
Like many NSFNET sites, some of the test network host
have FDDI LAN attachments with direct DS3 connec-
tions to the network core and are capable of providing
sustained high load on the WAN.

One of the paths used in testing was a 20 msec,
7 IP hop, fairly direct path between NY and Michi-
gan. This path traverses 4 FDDI rings and 3 DS3 cir-
cuits. The delay between the same two hosts can be
increased to 68 msec by taking down an interface and
forcing an 8 hop path that goes by way of Texas. This
longer path traverses 4 FDDI rings and 4 DS3 circuits.
The 68 msec test network RTT conveniently matches the
70 msec US continental RTT.

Tests have been performed using TCP maximum win-
dow sizes in the range of 8 kB to 512 kB. The 20 and
68 msec paths correspond to D¥BW products of about
110 kB and 380 kB. A TCP segment size of 4096 plus

designation | description

60 | Effective queue capacity per interface inten-
tionally reduced to 60 2 KB buffers. There is
a maximum of 44 buffers allowed per peer card
on the transmit side.

r60 | Effective queue capacity per interface inten-
tionally reduced to 60 2 KB buffers on the
transmit side. This build contains an imple-
mentation of RED. Additional buffers on the
input side serve primarily to buffer bus trans-
fer.

224 | Queueing capacity is increased to 224 2 KB
buffers for FDDI and 320 2 KB buffers for T3.
There is a maximum of 128 buffers allowed per
peer card on the transmit side.

r200 | Queueing capacity is 200 2 KB buffers on the
transmit side. This build contains an imple-
mentation of RED. Additional buffers on the
input side serve primarily to buffer bus trans-
fer.

Table 1: RS/960 Code Used in Testing

TCP header and a window of D¥BW yields windows of
about 28 and 98 packets.

The primary bottleneck in all of these tests is the first
DS3 circuit fed by the ingress FDDI ring. For the case
of a single bottleneck or highly dominant bottleneck, the
location of the bottleneck along the path should have
no effect on results. The time required for the effects of
feedback (drop) to begin to take effect remains one RTT.

4.2 Router Queueing Capacity
The RS/6000 based routers used within ANSNET use

intelligent custom interface adapters known as RS/960
cards. These cards contain full routing tables and for-
ward packets directly over the RS/6000 MCA bus with-
out involving the main processor in forwarding.

Each RS960 card provides up to a maximum of 1 MB
of packet queueing capacity. Packet buffers are 2 KB
each, allocated for either the receive side queueing or
the transmit side queueing.

The receive side queueing provides buffering for pack-
ets received from the interface prior to being queued for
MCA card to card transfer. The transmit side queueing
provides buffering for packets waiting for transmission
on a network interface.

The buffer allocation scheme is based on dynamic
sharing of common pools of buffers with a fixed amount
of reserved buffers guaranteed for each card to card
packet transfer. On the transmit side, a number of
buffers is preallocated for use by a peer card so that
packet DMA transfer can be set up immediately. The
transmit side code garantees a fixed number of such al-

located buffers (a tunable parameter) regardless of peer
traffic intensity. To accommodate the dynamic variation
of traffic intensity from different peers, more buffers can
be allocated from the transmit side common buffer pool.
On the receive side, a large number of buffers are re-
served to receive packets from network interfaces with
non-reserved buffers gathered in a common pool avail-
able for packets to be transferred to peer cards. The
size of the two common buffer pools are controlled by
two parameters, tuned according to the traffic load and
characteristics observed on the ANSNET backbone.

A number of builds of software for the IBM RS/960
FDDI and T3 adapters were used. The RS/960 build
designations used in this paper contain the approximate
queueing capacity and the letter “r” for RS/960 code
containing a RED implementation. The RS/960 build
designations 60, r60, 224, and r200 are described in Ta-
ble 1. For the builds that do not implement RED, the
queue size designation includes both receive and trans-
mit side buffers.

The r200 build includes a variation of RED imple-
mented on the transmit side [1, 29]. RED relies on track-
ing average queue utilization. In our experimental code,
we avoid the extra software overhead for the transmit
side to determine the number of receive side buffers cur-
rently in use for a peer traffic. Therefore, RED imple-
mentation ignores the receive side buffering and starts
dropping packets when the transmit side queue size ap-
proaches full. This reduces the effective queue capacity
to the capacity of the transmit side.

4.3 Traflic Sources

Simulation of Internet traffic is difficult problem in itself.
It is well accepted that packet arrivals over a LAN or
WAN cannot be modeled as Poisson arrivals.

Researchers at USC and LBL propose simulating TCP
and modeling session arrivals and durations based on em-
pirical studies of traffic [30, 31]. In [32] traffic is modeled
as self-similar stochastic processes. Paxson and Floyd
provide a review of much of this work in [33]. Partridge
sums up the importance of adequate traffic models in
[34], pointing out that the use of simple models, partic-
ularly the Poisson model, may lead to underestimates of
the amount of buffering required in ATM switches and
IP routers.

The pragmatic approach taken here is to concentrate
on supporting single high speed TCP flows and small
numbers of simultaneous TCP flows under the assump-
tion that these cases are likely to be far more bursty
than aggregations of very large numbers of slower TCP
flows. The cases being studied also constitute worst case
situations which may arise if supercomputer centers are
encouraged to make use of high bandwidth applications.

designation | description

no-b | No background traffic was used.

revb A TCP flow was started in the reverse
direction with a window size of 256 KB
for the 68 msec path and 64 KB for the
20 msec path.

Table 2: Background Traffic Used in Testing

The entry level for hosts that implement RFC-1323
and can saturate a FDDI ring with TCP data are high
end workstations. A pair of SGI Indy/SC running
IRIX 5.2 was used. IRIX 5.2 TCP is based on BSD Reno
with both fast retransmit and fast recovery and contains
RFC1323 extensions based on the University of Illinois
research prototype written by Thomas Skibo [35].

The TRIX allnetsarelocal kernel variable was set
(setting mtudiscovery would also have worked). Many
kernel size limits had to be increased radically, partic-
ularly those related to mbuf structures. The number of
allowed free mbufs had to be made very large to prevent
freeing and reallocating mbufs excessively.

The multiple flow tests provide a very measurable
background (the other flows). This provides a means
of observing how effectively TCP is able to share band-
width, with different queueing capacities. The effects of
incompressible data (data which does not react to con-
gestion drop) and the effects of small packet traffic can-
not be measured using multiple flows as background.

A reverse traffic flow is also used. The reverse traffic
flow provides a very bursty flow of small packets (TCP
ACKs) and forces ACK compression of the forward data
flow. The window size for the reverse flow was chosen
to be small enough to provide a high link utilization,
but below D*BW, so as not to cause congestion in the
reverse direction.

Table 2 summarizes the background cases that were
used. Other traffic conditions were tried including up to
2.5 Mb/s of UDP small packet traffic, but none produced
very interesting results.

4.4 Summary of Test Conditions

The primary measurement tool was the TTCP program.
TTCP is a public domain network measurement tool
originally written by the US Army Ballistics Research
Lab. The version used was obtained from ftp.sgi.com.
Tests were performed using 1, 4, and 8 TCP flows. In
single TCP flow tests window sizes of up to 512 kB were
used. In the multiple flow tests, the total of all of the
window sizes was allowed to exceed 512 kB (reaching as
high a 2 MB), though in these tests the individual TCP
flows were limited to windows of 512 kB or less.

New York to Michigan by way of Texas

68msec RT'T 60 r60 224 r200
Single Flow

no-b 39.89%6 40.02 39.95 40.07

revb 22.97%% 33.48 35.29 33.59
68msec RT'T 60 r60 224 r200
Four Flows

no-b 36.2837 40.842§ 411615 41.1211

revb 25.1614 33.3612 38.68l7 40.56]3
68msec RT'T 60 r60 224 r200
Eight Flows

no-b . 41.0417 41.2082 41.209%

revb 28.3207 36.0005 39.680% 40.880%

Entries list the highest TCP throughput achieved
(mb/s) and the window size limit (KB) used to
achieve that result. See text for the meaning of the
superscripts and subscripts.

Table 3: Test Conditions for 68msec RTT

New York to Michigan direct

20msec RT'T 60 r60 224 r200
Single Flow
no-b - 40.7851 40.74%¢ 40.77
revb 38.137° 40.66%2 40.77°7 4077
20msec RT'T 60 r60 224 r200
Four Flows
20 13 10
no-b - 41.2029 41.20]3 41.2019
~ 28 18 11 08
revb 37.5228 41.081% 4080} 41.000%
20msec RT'T 60 r60 224 r200
Eight Flows
06 02 01
no-b - 41129 41.1292 41.209}
15 06 02 01
revb 38.961%2 41.049% 40.8802 41.04%}

Entries list the highest TCP throughput achieved
(mb/s) and the window size limit (KB) used to
achieve that result. See text for the meaning of the
superscripts and subscripts.

Table 4: Test Conditions for 20msec RTT

5 Test Results

The highest queueing capacity tested provided under one
D*BW for the 68 msec path. The D¥BW for this path
is approximately 380 kB. The 224 2 kB buffers provide
an effective queueing capacity of about 300 kB since the
TCP packets are over 4 kB in size and require 3 buffers
each. This queueing capacity seemed generally adequate
in preventing significant congestion degradation but was
not sufficient to allow full bottleneck utilization.

Table 3 and Table 4 list the highest TCP throughput
achieved in a representative set of tests. Tests were not
performed for all possible combinations of conditions nor
are results for all builds reported.

Entries in Table 3 and Table 4 marked with a super-

45

40

35

30

25

20

15

10

Total throughput (mb/s)

no-b-r200
no-b-r60
no-b-224

) revb-r200
revb-r60

no-b-60

Window size limit (KB)

o

128 256 384 512

Figure 1: Single TCP Flow, 68 msec RTT

script suffered throughput degradation at higher window
size limits. The superscript gives the percent degrada-
tion from the peak utilization recorded for the test. Sub-
scripts indicate multiple TCP flow tests in which not all
of the flows completed simultaneously. The subscript
gives the ratio, expressed as a percent, of the difference
between the fastest and slowest flows over the rate of the
fastest flow.

Graphs with multiple data sets are labeled with ab-
breviations to identify the test conditions. The RS/960
build designations found in Table 1 and background con-
dition designations found in Table 2 are used. The abbre-
viations 1f, 4f, and 8f indicate a single TCP flow, 4 si-
multaneous TCP flows and 8 simultaneous TCP flows.

5.1 Single High Speed Flows

The single TCP flow tests were run to a window size limit
of 512 kB. For the 68 msec path, a window of 512 kB
is about 1/3 larger than D¥BW. For the 20 msec path,
this window size is almost 5 times D*BW.

In tests run with no background, throughput rose lin-
early with increase in the window size limit up to ap-
proximately the delay bandwidth product. If queueing
capacity was close to D¥BW or exceeded it, the curves
would plateau when the TCP window was allowed to ex-

45

40

35

30

25

20

15

10

Total throughput (mb/s)

no-b-r200

\ / revb-r200
\/

no-b-224
—— no-b-r60
revb-r60
revb-60
Window size limit (KB)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
0 128 256 384 512

Figure 2: Single TCP Flow, 20 msec RTT

ceed D*BW. This can be seen in Figure 1 with the 224
build and the 68 msec path, reaching 38.8 Mb/s at a
window size limit of 384 kB and gradually increasing to
40 Mb/s as the window size limit grew to 512 kB.

In Figure 2 the same build is used with the 20 msec
path. At 160 kB, 40 Mb/s is exceeded. The plateau
remains to 416 kB, just beyond the queueing capacity.
At that point, a collapse occurs, despite having nearly
3 time D*BW of queueing, with throughput dropping by
about 60%.

When the 68 msec path is used with the 60 build (Fig-
ure 1), the linear increase in throughput continues be-
yond twice the queueing capacity. Above that point,
results become somewhat erratic, exceeding 80% utiliza-
tion before collapsing to just over 25% utilization (a 2/3
degradation from peak performance).

In Figure 1 results are provided with the 224 build
with a TCP flow in the reverse direction on the 68 msec
path. With reverse traffic only 35 Mb/s is achieved.
With reverse traffic and very large windows, performance
is somewhat erratic but did not show signs of dropping
off.

Figure 1 also shows results for the 60 build with a
single flow and reverse traffic. With or without reverse
flow severe congestion collapse occurs. With reverse flow
only about 23 Mb/s is achieved before collapse begins,

compared to 39.9 Mb/s with no background. With no
background the collapse is sudden. With reverse flow,
the collapse begins earlier and is gradual. Beyond the
collapse, with no background performance is reduced to
about 16 Mb/s, compared to under 10 Mb/s with reverse
flow.

With RED utilization remains high in the single flow
tests, but peak utilizations do not improve noticably. In
the single flow test with reverse flow, a lower peak of
33 Mb/s is achieved with r200, as opposed to 35 Mb/s
for the 224 build. Both builds have under D¥*BW of
queueing and in this particular test yielded somewhat
erratic results when the window size exceeded queueing
capacity. The 2 Mb/s difference may not be significant
given the erratic results near the performance peak in
this test. In the single flow tests, the most significant
difference between r200 and 224 build performance may
be the absence of a collapse in Figure 2 for r200 where
all other builds collapsed to 18 Mb/s or less.

Collapse occurs in a number of the single flow tests.
For builds that do not implement RED, there seem to
be two conditions under which collapse occurs. Either
the the window is much larger than the queue and then
exceeds D¥BW by a relatively small amount, or the win-
dow much larger than D*BW and exceeds the queue size
by a relatively small amount. With RED, collapse occurs
under only one condition, if the window is much greater
than both D¥BW and the queue size. This seems to
indicate that if RED is implemented and the queue size
can be kept greater than D¥BW, host window size limits
can be set arbitrarily high.

5.2 Multiple Flows

For multiple TCP large window transfers the total uti-
lization of the multiple flows is plotted. The total utiliza-
tion is approximated by multiplying the number of flows
by the lowest throughput achieved by a flow in that test
run.

Figure 3 shows the results of running 4 TCP flows
using the 68 msec path. With both the 224 and 60
builds, link utilization increases linearly and then begins
to drop. With the 224 build 41.2 Mb/s is achieved at
a window size limit of 192 kB and with no background
traffic, and 38.7 Mb/s is achieved with reverse traffic. As
the window size grows to 352 kB, both plots drop back
to 33 Mb/s.

Results for 4 TCP flows using the 20 msec path are
similar, but with less degredation as the optimal window
size is exceeded. Figure 4 shows throughput with 224
quickly rising to 41.2 Mb/s and falling off only slightly
starting above 256 kB. With reverse flow, a peak of
40.8 Mb/s is achieved.

When the 60 build is used with 4 TCP flows and the

45

40

35

30

25

20

15

10

45

40

35

30

25

20

15

10

Total throughput (mb/s)

AN no-b-r200
— —~_ revb-r200

\ revb-224

_ no-b-r60
" revb-r60

no-b-60

Window size limit (KB)

64 128 192 256 320 384

Figure 3: Four TCP Flows, 68 msec RTT

Total throughput (mb/s)

revb-r200
no-b-r200
revb-224

revb-r60
no-b-ré60

revb-60

Window size limit (KB)

64 128 192 256 320 384

Figure 4: Four TCP Flows, 20 msec RTT

68 msec path (Figure 3), a peak of 36 Mb/s is reached at
128 kB with no background. Beyond that point through-
put gradually drops as the window size in further in-
creased, dropping below 25 Mb/s at 352 kB. With a re-
verse flow, the peak is 25 Mb/s and performance drops

slightly to 23 Mb/s beyond the peak.

On the 20 msec path (Figure 4), with 4 flows the 60
build achieves 37.5 Mb/s. On this path, the queueing in
the 60 build is much closer to D¥BW.

The r200 build clearly outperforms the other builds
in the 4 flow tests. This is most evident on the 68 msec
path (Figure 3). The r200 curves for reverse flow peaks
2 Mb/s higher than the corresponding curve for the 224
build. The r200 curve remains 2-5 Mb/s avove the 224
curve beyond the peak. On the 20 msec path (Figure 4),
both plots peak at 41.2 Mb/s. Beyond the peak, both
curves are quite smooth with the curve for r200 about
1 Mb/s above the 244 curve.

The r60 build clearly outperforms the 60 build in
the 4 flow tests. With the 68 msec path (Figure 3),
the 33.4 Mb/s peak achieved with r60 is well below the
r200 and 224 results, and performance drops off to under
30 Mb/s. With r60, a peak of 41.1 Mb/s is achieved on
the 20 msec path (Figure 4), but performance drops off
to 34 Mb/s, again well below r200 and 224 builds.

Both the r60 and 60 build have slightly inadequate
queueing capacity for the 20 msec path and about 1/5
of the queueing capacity needed for the 68 msec path. In
the 4 flow tests, r60 outperformed 60, by an enormous
margin on the 68 msec path. With r60 performing well
under r200 and 224 it is clear that RED could not make
up for inadequate queueing capacity in the 4 flow tests.

Figure 5 provides results for § TCP flows on the
68 msec path. Results are similar to the 4 TCP flow re-
sults. With 8 flows, the peaks are slightly higher for all
of the builds without background or with reverse flow.
Performance falls off more slowly beyond the peak for
8 flows than for 4 flows. Again the r200 build per-
forms best, closely followed by the 224 build. Both r200
and 224 peak at 41.2 Mb/s. The r60 build peaks at
36.0 Mb/s and the 60 build peaks at a 28.3 Mb/s. The
builds with sufficient queueing again outperform those
with insufficient queueing by a significant margin.

Figure 6 shows results for the 20 msec path. With
the 20 msec path and 8 flows and no background traffic,
there is almost no throughput degredation beyond the
peak with the r200 and 224 builds. The r60 build per-
forms nearly as well as the r200 and 224 builds, though
a 2 Mb/s difference exists well beyond peak. The 60
build peaks at 39.0 Mb/s, but performance drops of be-
low 35 Mb/s beyond the peak.

45

40

35

30

25

20

15

10

45

40

35

30

25

20

15

10

10

Total throughput (mb/s)

no-b-r200
~ revb-r200
— revb-224
= no-b-r60
revb-r60
no-b-60

Window size limit (KB)

64 128 192 256

Figure 5: Eight TCP Flows, 68 msec RTT

Total throughput (mb/s)

no-b-r200
revb-r200
no-b-224

- no-b-ré60
revb-r60

T revb-60

Window size limit (KB)

o

64 128 192 256

Figure 6: Eight TCP Flows, 20 msec RTT

45

40

35

30

25

20

15

10

o

Total throughput (mb/s)

Sum of window size limits (KB)

2048

o

512 1024 1536

Figure 7: 68 msec RTT, Reverse Flow

5.3 Reverse Flow

The reverse TCP flow had a clear effect. In cases where
the maximum window size had exceeded the queue-
ing capacity but was still less than the D¥BW prod-
uct, throughput continued to rise without reverse traf-
fic. This may indicate a spreading of packets throughout
the available window, failing to stress the queueing ca-
pacity. With the reverse traffic, ACK compression may
have caused enough burstiness to stress the queueing ca-
pacity when window size limits of individual flows are
below D¥*BW.

Figure 7 shows the link utilization plotted against the
sum of the window sizes limits for all tests involving the
68 msec path. For a given build, each set of three plots
with 1, 4, and 8 flows all peak within a small area of
the graph. For the 60 build, the inflection points are
at about 23-28 Mb/s. For the r60 build, the inflection
points are at 36-38 Mb/s. For the 224 build, the inflec-
tion points are at about 40-41 Mb/s, very close to full
utilization.

For each build, the inflection point occurs at a slightly
lower bandwidth for the single flow cases. It also occurs
just above D*BW, where in the multiple flow cases, the
inflection point moves toward twice D*BW. Beyond the
inflection point, there is a fall off in bandwidth. The
peak is high for builds with queueing capacity of close

45

40

35

30

25

20

15

10

o

11

Total throughput (mb/s)

Sum of window size limits (KB)

1024 1536 2048

o

512

Figure 8: 20 msec RTT, Reverse Flow

to D*BW and highest in tests where queueing capacity
is greater than D*BW and with builds that implement
RED. The peak are slightly higher and fall off is more
gradual as the number of flows increases.

Reverse traffic had a similar effect on tests run on the
20 msec path (Figure 8). For this path, the r200 and 224
builds have about 3 time D*¥*BW in queueing capacity.
The r60 and 60 builds have just under D*BW in queue
capacity. The inflection points for all of the builds are
in the range of 38-41 Mb/s.

For tests using the 20 msec path, the major difference
between the performance of various builds is in the rate
of fall off beyond the inflection point. For single flow
tests, all but the r200 can be considered to have col-
lapsed. In the multiple flow tests, the 60 build shows
considerable fall off, to 27 Mb/s in the 4 flow case and
35 Mb/s in the 8 flow case. The r60 build shows con-
siderably less fall off, to 35 Mb/s in the 4 flow case and
to 38 Mb/s in the 8 flow case. The 224 build falls off to
40 Mb/s, and the r200 build shows no sign of fall of at
all.

5.4 Random Early Detection

The effective queueing capacity of the r200 build imple-
menting RED was slightly smaller than the 224 build.

Figure 1 shows no real difference between the r200 build
and 224 build with no background. With reverse flow,
the 224 build is a bit faster. This is likely due to the re-
duced queueing capacity in the r200 build and queueing
capacity slightly less than D¥*BW in both builds.

In the 20 msec tests, the small difference in queue-
ing capacity between the r200 build and the 224 build
has no effect since both builds have well over D¥BW of
queueing capacity. The r200 generally outperformed the
224 build by a small but noticable margin in the mul-
tiple flow tests (see Figure 4 and Figure 6). The most
striking difference is the absence of a congestion collapse
for very large window sizes in the single flow tests on
the 20 msec path that can be seen in Figure 2. Note
that with insufficient queueing in the r60 build, RED is
unable to prevent a collapse in Figure 2 as the window
size limit is set 3-4 times its optimal value.

In the tests involving multiple flows, the r200 build
performed slightly better than the 224 build both with-
out background traffic and with reverse flow. This can
be seen in Figure 3 and Figure 5. In Figure 3, the advan-
tage of RED is most evident as the windows are made
too large. Bandwidth falls off beyond the inflextion point
less with r200 than with other builds.

In Figure 7, the r200 build can be seen to perform best
in all of the reverse flow tests on the 68 msec path except
the single flow test. In Figure 8 r200 outperforms 224
in all tests and, unlike 224, r200 avoids congestion col-
lapse when window size limits are well beyond optimal.
The lower performance in the 68 msec single flow test
is due to there being slightly less than D¥BW in queue-
ing capacity and RED further reducing queue utilization
slightly. When using the 20 msec path, the queueing ca-
pacity is larger than D¥*BW resulting in better perfor-
mance with RED than without in all tests including the
single flow.

5.5 Fairness and Delay

One of the goals of RED is to reduce delay. The varia-
tion of RED used here is optimized to improve link uti-
lization, though somewhat reduced delay is a secondary
benefit. Delay was not measured. The tradeoff between
further reducing delay and impacting high speed flows is
discussed further in [29].

The worst fairness experienced in any complete test
run (all window sizes for a given set of conditions) is
given in Table 3 and Table 4 as the subscripts. While
TCP is not perfectly fair in these tests, deviations are
typically 10-20%. The only notable exceptions are the
8 flow test with build 224 and no background traffic
in which the slowest flow rate was 42% less than the
fastest and in the 4 flow test with the r200 build and no
background. A deviation of 10-20% is quite fair. Even

40

35

30

25

20

15

10

12

— Deviation from Fairness

- vs. Window Size (KB)

] &

B < 1200

1 o 224

E X 60

B <&

] <&

i &

i < &

B X m (OIS & -
_ 0 K .

] o <o X X =

] X X g S8 ¢
7 X - ﬁ 5

A & X 8 %
] P = X g X «

7 g ? = é O

] = &

\‘*‘\T\\\‘\\\\\\\‘\\\\\\\

0 512 1024 1536 2048

Figure 9: Deviation from Fairness for 68 msec Tests

a 42% difference among 8 flows is not bad.

Figure 9 provides a scatter plot of the deviation from
fairness. The ratio of difference in rates over the highest
rate achieved expressed as a percent is plotted against
the sum of the window size limits.

When the sum of the window sizes are less than D*BW
and the queueing capacity, there is no opportunity for in-
equitable service since there is no need to drop packets.
As the window is further increased without RED the
queue will overflow. With RED as the average queue
size grows, RED will have a greater tendency to per-
form a packet drop to signal a flow to reduce it’s rate.
In either case, there is a greater probability of drop for
flows contributing more bandwidth, tending to distribute
available bandwidth quite fairly.

RED is actually seen to be slightly less fair in these
tests. Simulations indicate that for TCP flows with un-
equal RTTs, RED will remain approximately fair, where
the lower RTT would be favored without RED [36]. The
simulations indicate that RED will eliminate this ten-
dency to be systematically unfair.

5.6 Link Utilization Estimates

There is some uncertainty associated with the bandwidth
figures in the multiple flow cases. Link utilization is es-

timated by taking the rate of the slowest flow and mul-
tiplying by the number of flows. There is good reason
not to use an average.

There is a relatively long time in which all of the flows
are active. There is then a period of time when a reduced
number of flows are active. During the time in which
less flows are active, utilization is likely to be different,
probably less, than when all flows were active.

If the average rate is used, erroneous results are pos-
sible. This can be proven with a simple example. The
example is two flows where one dominates completely
and the second is totally idle until the first finishes af-
ter which the second proceeds at the same rate that the
first had. The first flow may proceed at full link rate, in
which case the second will will complete at an apparent
half that rate. If the average of the two rates times the
number of flows were used, the estimate of link utiliza-
tion would be 1.5 times the link capacity.

The estimate of the average link utilization that is used
is the total amount of data transferred divided by the
amount of time needed to transfer it. If all of the flows
are started simultaneously, this is equal to the transfer
rate of the last flow to complete times the number of
flows. The utilization is bounded to below link capacity
when the sum of the window sizes of the remaining flows
is below D¥*BW. The estimate is therefore a lower bound
estimate on the average link utilization during the period
when all of the flows were active.

Figure 9 shows a reduced tendency toward fairness
with increase in the sum of the window sizes. Since this
reduced fairness is likely to also cause a slight underesti-
mate of the link utilization, this is partially responsible
for the slight degredation in link utilization seen in Fig-
ure 7 and Figure 8. Close examination of the raw data
shows that this inaccuracy is small compared to the ac-
tual reduction in performance. A more direct measure of
link utilization would provide greater accuracy, but does
not seem necessary.

6 Recommendations

Whenever high bandwidth is needed, a large TCP seg-
ment size should be used. MTU discovery (RFC-1191)
if correctly implemented can assure that an optimal seg-
ment size is used.

Well connected hosts (those with greater than T1 ca-
pacity to much of the Internet) should consider increas-
ing the default tcp_sendspace and tecp_recvspace ker-
nel variables according to their connectivity. When com-
municating with hosts behind slower connections, the
lower window size limit specified by the other host will be
used. When communicating with other well connected
hosts, performance can improve dramatically. Care must

13

be taken not to exceed the queueing capacity of routers
on the path.

Attempts to set the window size limit either consider-
ably greater than the queueing capacity, or many times
greater than the delay bandwidth product can cause con-
gestion collapse at links dominated by a small number
of TCP flows. This problem is eliminated if the routers
at the congestion point implement RED.

If the window size limit is set correctly, very high per-
formance is possible. If multiple TCP flows attempt very
high speed and exceed the capacity of a bottleneck, TCP
will share the available bandwidth quite equitably. As
flows are added, total utilization will generally rise or
remain the same if already at capacity, though slight
degradation in utilization may occur as the sum of the
window sizes becomes much larger than D*BW. In gen-
eral, slightly higher link utilizations are achieved using
RED. If queueing capacity is greater than D¥BW and
RED is implemented, little or no degradation in link
utilization will occur.

If queueing is inadequate at some bottleneck, utiliza-
tion will be limited, particularly with small numbers of
flows. As load is added, there will be a greater tendency
toward degradation or even collapse. Routers should
have queueing capacity of more than one D¥BW prod-
uct. Implementing RED is helpful in reducing the queue
utilization, particularly for larger numbers of flows, but
cannot substitute for adequate queueing capacity.

For ANSNET DS3 connected sites, it should be safe
to set the window size limits to about 192 kB to 256 kB
provided no routers with reduced queueing capacity are
in the path, such as routers on the local campus. This
should allow single TCP flows on the order of 25 Mb /s for
US cross continental connections, 30 Mb/s to 35 Mb/s
for Hawaii to California connections, and single TCP
flows of perhaps 15 Mb/s from the US East Coast to
Hawaii. Multiple flows, both within the continental US
and to Hawaii should be able to drive utilization to
40 Mb/s or more. The risk of congestion collapse is
eliminated by RED and seems quite small even without
RED.

For sites with high speed connectivity but behind
routers with lower queueing capacity, the maximum win-
dow size should be set lower. Indications are that with
queueing capacity of 80 kB per interface path, appropri-
ate window sizes might be 48 kB to 64 kB at most.

When using a large window size limit to allow full uti-
lization of long paths there is a risk of inducing collapse
on shorter paths if the window size is much greater than
the delay bandwidth product of the shorter path. There
is no practical way to set the window size limit such that
it is optimal for a long path but does not pose a risk to
a shorter path. This problem is eliminated with RED.
Until RED is deployed, DS3 sites must be aware of this.

7 Other Considerations

Our testing was done using large packets, over 4 kB in
size. Internet traffic is typically smaller packets, averag-
ing 200-250 B in size. High speed flows (those in which
the segment size limit is increased over the default value)
using M'TU discovery can be expected to be closer to the
ethernet or FDDI MTU. Even so, the average packet size
will reflect TCP ACKs, and small packets from other ser-
vices. Most routers reserve a full MTU buffer for each
packet regardless of size. For a 200 B average and a
4352 B (FDDI) MTU, this represents a reduction in ef-
fective queueing of a factor of about 20. For an ATM
MTU of 9180 B, this situation is worsenned.

RED may help address the small packet problem. The
Internet small packet traffic is currently a mix of proto-
cols, dominated by an aggregation of TCP flows [37].
RED can help prevent synchronization of the TCP flows
and keep queue utilization down should this traffic grow
to fill backbone link capacities.

There may be a limit to the number of simultaneous
flows that can be supported. The available window ca-
pacity can be subdivided among flows until each window
has a small integer number of packets. Below a window
size of 3 or 4 packets one would expect TCP to perform
poorly or erratically. The TCP fast retransmit algorithm
would be defeated, causing timeouts. This could pro-
duce a ledge in the performance curve. At this point,
TCP algorithms are defeated and TCP becomes largely
incompressible. The only solutions to this is to decrease
the MTU, to increase the number of packets per window,
or allow the queue to grow larger, increasing delay and
therefore also D¥*BW.

The problems of multiple bottlenecks is addressed in
[36] and other useful results are presented. Without
RED TCP favors flows with lower RTTs at a single bot-
tleneck. With RED, TCP is shown to be fair in this sit-
uation. Even with RED, TCP flows on long paths with
multiple congested gateways may receive an unaccept-
able low share of bandwidth relative to flows traversing
single congestion points on the path. Unpublished work
by Floyd, Paxson, and Jacobson is exploring this area
further, concentrating on two way traffic. Our current
test setup does not provide a simple way to mix flows of
different RTTs or provide multiple bottlenecks.

The results reported here included tests involving
2 way traffic, but only congestion in one direction. The
behavior under congestion in both directions is a topic
for further investigation.

First generation ATM switches gained a reputation
for grossly inadequate queueing capacity. This has im-
proved. More recently, ATM cell buffer capacities have
increased by more than two orders of magnitude. The

effects of cell loss and failure to drop full ATM AAL

14

frames has been shown to be detrimental to TCP perfor-
mance using simulations [38]. Simulation involving ATM
to date have not addressed the use of high speed TCP on
long delay paths. Congestion avoidance for ATM UBR
service does not exist and is not yet specified for ABR
service.

Throughout the evolution of TCP, backward compat-
ibility with earlier host implementations has been of
paramount importance. This paper addresses the use
of MTU discovery (RFC-1191), high performance ex-
tensions to TCP (RFC-1323), and changes to routers
to accomplish performance goals for high speed applica-
tions and relys only upon changes to routers to achieve
better performance using large aggregations of traffic.
Changing routers or other equipment in the core of a
high speed Internet is generally much easier than chang-
ing hosts, since there are simply too many hosts to make
host changes a practical alternative.

8 Conclusions

Sufficient queueing capacity is required to support high
speed TCP flows or aggregations of TCP flows. Test re-
sults demonstrate that nearly full bottleneck utilization
is achieved with close to one D¥BW product of queueing
in paths with delays comparable to US cross continent
delays.

Insufficient queueing can result in low bottleneck
utilization. Test results demonstrate that insufficient
queueing capacity can result in sustained low utilization
and that utilizations can drop with increased load. Col-
lapse can occur under certain conditions.

The combination of adequate queueing capacity and
RED provide the means to support high bandwidth ap-
plications with multiple flows attempting to use full link
bandwidth. This combination allows high link utilization
and eliminates the possibility of degredation or collapse
in link utilization due to excessive window size limits set
by end users.

The IBM RS/6000 based routers fared quite well in
this testing, including the difficult cases of small numbers
of very high speed flows. The newer builds of software
further improve performance over the currently deployed
build. While queueing capacity is not sufficient to sup-
port full bandwidth transfers on the longest ANSNET
paths, such as Boston to Hawaii, these improvements
will go a long way toward allowing close to full utiliza-
tion of ANSNET as demand rises.

9 Acknowledgments

The IBM RS/6000 routers used within ANSNET owe

their excellent performance to the hard work and ded-

ication of many individuals at Advantis (formerly IBM
HPCC). This paper studies only one factor in determin-
ing overall performance and documents optimizations
done in that area.

This research was sponsored in part by the Phillips
Laboratory, Air Force Materiel Command, USAF | under
cooperative agreement number F29601-93-2-0001. The
U.S. Government is authorized to reproduce and dis-
tribute reprints notwithstanding any copyright notation
thereon. The views and conclusions contained in this
document are those of the author and should not be in-
terpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Phillips
Laboratory or the U.S. government.

The authors are grateful to Sally Floyd (Lawrence
Berkeley Laboratory) for numerous discussions and sug-
gestions. We would also like to acknowledge the sug-
gestions and encouragement of Guy Almes (ANS) and
Matt Mathis (Pittsburgh Supercomputing Center) and
the help of Mike Ida (Maui High Performance Comput-
ing Center) and Hans-Werner Braun and Bilal Chinoy
(San Diego Supercomputing Center) with earlier testing

on ANSNET.

References

[1] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IFEE/ACM

Transactions on Networking, vol. 1, pp. 397-413,
Aug. 1993.

G. T. Almes, “Engineering trans-oceanic 44 mb/s
tcp/ip networks.” presented at the Third Sympo-
sium on High Speed Networking for Research in Eu-
rope, Brussels.

K. C. Claffy, H-W. Braun, and G. C. Polyzos,
“Long-term traffic aspects of the NSFNET,” in Pro-
ceedings of the International Networking Conference
(INET), (San Francisco, California), pp. CBA-1 -
CBA-12, Internet Society, Aug. 1993.

ANS Network Operations Center, “Ansnet link uti-
lization daily reports.” unpublished reports used for
capacity planning.

ANS Network Operations Center, “Ansnet conges-
tion loss daily reports.” unpublished reports used
for capacity planning.

J. Nagle, “Congestion control in IP/TCP internet-
works,” ACM Computer Communication Review,

vol. 14, pp. 11-17, Oct. 1984.

[7] V. Jacobson, “Congestion avoidance and control,”
ACM Computer Communication Review, vol. 18,

15

[18]

[19]

pp. 314-329, Aug. 1988. Proceedings of the Sig-
comm ‘88 Symposium in Stanford, CA, August,
1988.

J. Postel, “Transmission control protocol,” Network
Working Group Request for Comments RFC 793,
Information Sciences Institute, University of South-
ern California, Sept. 1981.

D. Clark, “Window and acknowlegement strategy
in TCP,” Request for Comments RFC 813, Internet
Engineering Task Force, July 1982.

J. Nagle, “Congestion control in IP/TCP internet-
works,” Request for Comments RFC 896, Internet
Engineering Task Force, Jan. 1984.

J. Postel, “TCP maximum segment size and related
topics,” Request for Comments RFC 879, Internet
Engineering Task Force, Nov. 1983.

D. Mills, “Internet delay experiments,” Request
for Comments RFC 889, Internet Engineering Task
Force, Dec. 1983.

L. Peterson and S. O’Malley, “TCP extensions con-
sidered harmful,” Request for Comments (Informa-
tional) RFC 1263, Internet Engineering Task Force,
Oct. 1991.

R. Braden and V. Jacobson, “TCP extensions for
long-delay paths,” Request for Comments (Ex-
perimental) RFC 1072, Internet Engineering Task
Force, Oct. 1988.

R. Fox, “TCP big window and NAK options,” Re-
quest for Comments RFC 1106, Internet Engineer-
ing Task Force, June 1989.

A. McKenzie, “Problem with the TCP big window
option,” Request for Comments RFC 1110, Internet
Engineering Task Force, Aug. 1989.

R. Braden, V. Jacobson, and L. Zhang, “TCP ex-
tension for High-Speed paths,” Request for Com-
ments (Experimental) RFC 1185, Internet Engi-
neering Task Force, Oct. 1990.

D. Borman, R. Braden, and V. Jacobson, “TCP ex-
tensions for high performance,” Request for Com-
ments (Proposed Standard) RFC 1323, Internet
Engineering Task Force, May 1992. Obsoletes
RFC1185.

W. R. Stevens, TCP/IP illustrated: the protocols,
vol. 1. Reading, Massachusetts: Addison-Wesley,
1994.

[20] D. Clark, V. Jacobson, J. Romkey, and M. Salwen,
“An analysis of TCP processing overhead,” IEEFE

Communications Magazine, vol. 27, pp. 23-29, June
1989.

D. A. Borman, “Implementing TCP/IP on a cray
computer,” ACM Computer Communication Re-
view, vol. 19, pp. 11-15, Apr. 1989.

V. Jacobson, “Some design issues for high-speed
networks,” in Networkshop ’93, (Melbourne, Aus-
tralia), Nov. 1993.

J. Mogul and S. Deering, “Path MTU discovery,”
Request for Comments (Draft Standard) RFC 1191,
Internet Engineering Task Force, Nov. 1990.

S. Knowles, “IESG advice from experience with
path MTU discovery,” Request for Comments (In-
formational) RFC 1435, Internet Engineering Task
Force, Mar. 1993.

S. Floyd and V. Jacobson, “On traffic phase effects
in packet-switched gateways,” Internetworking: Re-
search and FEzperience, vol. 3, pp. 115-156, Sept.
1992.

S. Shenker, L. Zhang, and D. Clark, “Some obser-
vations on the dynamics of a congestion control al-
gorithm,” ACM Computer Communication Review,

vol. 20, pp. 30-39, Oct. 1990.
L. Zhang, S. Shenker, and D. D. Clark, “Obser-

vations on the dynamics of a congestion control
algorithm: the effects of two-way traffic,” in Sig-
comm ’91 Conference: Communications Architec-
tures and Protocols, (Zirich, Switzerland), pp. 133
147, ACM, Sept. 1991.

K. C. Claffy, H-W. Braun, and G. C. Poly-
zos, “Tracking long-term growth of the NSFNET,”
Communications ACM, vol. 37, pp. 34-45, 1994.

[29]

C. Villamizar, “A variation of random early detec-
tion congestion avoidance.” work in progress.

[30] R. Céceres, P. B. Danzig, S. Jamin, and D. J.
Mitzel, “Characteristics of wide-area TCP/IP con-
versations,” in SIGCOMM Symposium on Com-
munications Architectures and Protocols, (Zirich,
Switzerland), pp. 101-112, ACM, Sept. 1991. also
in Computer Communication Review 21 (4), Sep.

1991.

V. Paxson, “Empirically-derived analytic models
of wide-area TCP connections,” technical report,
Lawrence Berkeley Laboratory and EECS Division,
University of California, Berkeley, California, June

1993.

16

[32] W. E. Leland, M. S. Taqq, W. Willinger, and D. V.
Wilson, “On the self-similar nature of Ethernet traf-
fic,” in SIGCOMM Symposium on Communications
Architectures and Protocols (D. P. Sidhu, ed.), (San
Francisco, California), pp. 183-193, ACM, Sept.
1993. also in Computer Communication Review 23

(4), Oct. 1992.

V. Paxson and S. Floyd, “Wide-area traffic: the
failure of Poisson modeling,” in SIGCOMM Sympo-
situm on Communications Architectures and Proto-
cols, (London, United Kingdom), pp. —, ACM, Aug.
1994.

[33]

[34] C. Partridge, “Editorial: The end of simple traffic

models,” IEEE Network, vol. 7, Sept. 1993.

[35] T. Skibo, “Experiences with tcp extensions
for high-performance networks.” contained in
ftp://vixen.cso.uiuc.edu/pub/tcplw.shar.Z.

[36] S. Floyd, “Connections with multiple congested
gateways in packet-switched networks part 1: One-
way traffic,” ACM Computer Communication Re-
view, vol. 21, pp. 30-47, Oct. 1991.

[37] I. Merit, “Nsfnet statistics
ftp://nis/nsf.net /statistics/nsfnet/.

repository.”

[38] A. Romanow and S. Floyd, “Dynamics of TCP
traffic over ATM networks.” see also 6th IEEE
LAN/MAN Workshop, 1993.

