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Abstract

International payments are slow and expensive, in part be-

cause of multi-hop payment routing through heterogeneous

banking systems. Stellar is a new global payment network

that can directly transfer digital money anywhere in the

world in seconds. The key innovation is a secure transaction

mechanism across untrusted intermediaries, using a new

Byzantine agreement protocol called SCP. With SCP, each

institution specifies other institutions with which to remain

in agreement; through the global interconnectedness of the

financial system, the whole network then agrees on atomic

transactions spanning arbitrary institutions, with no sol-

vency or exchange-rate risk from intermediary asset issuers

or market makers. We present SCP’s model, protocol, and

formal verification; describe the Stellar payment network;

and finally evaluate Stellar empirically through benchmarks

and our experience with several years of production use.

CCS Concepts • Security and privacy → Distributed

systems security; •Computer systems organization→

Peer-to-peer architectures; • Information systems →

Electronic funds transfer .
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1 Introduction

International payments are notoriously slow and costly [32].

Consider the impracticality of sending $0.50 from the U.S. to
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Mexico, two neighboring countries. End users pay nearly $9

for the average such transfer [32], and a bilateral agreement

brokered by the countries’ central banks could only reduce

the underlying bank cost to $0.67 per item [2]. On top of fees,

the latency of international payments is generally counted

in days, making it impossible to get money abroad quickly in

emergencies. In countries where the banking system doesn’t

work or doesn’t serve all citizens, or where fees are intol-

erable, people resort to sending payments by bus [38], by

boat [19], and occasionally now by Bitcoin [55], all of which

incur risk, latency, or inconvenience.

While there will always be compliance costs, evidence sug-

gests a significant amount is lost to lack of competition [21],

which is exacerbated by inefficient technology.Where people

can innovate, prices and latencies go down. For instance, re-

mittances from bank accounts in Q2 2019 cost an average of

6.99%, while the figure for mobile money was only 4.88% [13].

An open, global payment network that attracts innovation

and competition from non-bank entities could drive down

costs and latencies at all layers, including compliance [83].

This paper presents Stellar, a blockchain-based payment

network specifically designed to facilitate innovation and

competition in international payments. Stellar is the first

system to meet all three of the following goals (under a

novel but empirically valid “Internet hypothesis”):

1. Openmembership – Anyone can issue currency-backed

digital tokens that can be exchanged among users.

2. Issuer-enforced finality – A token’s issuer can prevent

transactions in the token from being reversed or undone.

3. Cross-issuer atomicity – Users can atomically exchange

and trade tokens from multiple issuers.

Achieving the first two is easy. Any company can uni-

laterally offer a product such as Paypal, Venmo, WeChat

Pay, or Alipay and ensure the finality of payments in the

virtual currencies they have created. Unfortunately, transact-

ing atomically across these currencies is impossible. In fact,

despite Paypal having acquired Venmo’s parent company

in 2013, it is still impossible for end users to send Venmo

dollars to Paypal users [78]. Only recently can merchants

even accept both with a single integration.

Goals 2 and 3 can be achieved in a closed system. In partic-

ular, a number of countries have efficient domestic payment

networks, typically overseen by a universally trusted regula-

tory authority. However, membership is limited to a closed

set of chartered banks and the networks are limited to the

reach of a country’s regulatory authority.
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Goals 1 and 3 have been achieved in mined blockchains,

most notably in the form of ERC20 tokens on Ethereum [3].

The key idea of these blockchains is to create a new cryp-
tocurrency with which to reward people for making settled

transactions hard to revert. Unfortunately, this means to-

ken issuers do not control transaction finality. If software

errors cause transactions history to be reorganized [26, 73],

or when the spoils of defrauding people exceed the cost of

reorganizing history [74, 97], issuers may be liable for tokens

they have already redeemed for real-world money.

The Stellar blockchain has two distinguishing properties.

First, it natively supports efficient markets between tokens

from different issuers. Specifically, anyone can issue a token,

the blockchain provides a built-in orderbook for trade be-

tween any pair of tokens, and users can issue path payments
that atomically trade across several currency pairs while

guaranteeing an end-to-end limit price.

Second, Stellar introduces a new Byzantine agreement

protocol, SCP (Stellar Consensus Protocol), through which

token issuers designate specific validator servers to enforce

transaction finality. So long as no one compromises an is-

suer’s validators (and the underlying digital signatures and

cryptographic hashes remain secure), the issuer knows ex-

actly which transactions have occurred and avoids the risk

of losses from blockchain history reorganization.

SCP’s key idea is that most asset issuers benefit from

liquid markets and want to facilitate atomic transactions

with other assets. Hence, validator administrators configure

their servers to agree with other validators on the exact

history of all transactions on all assets. A validator v1 can be

configured to agree withv2, orv2 can be configured to agree

with v1, or both may be configured to agree with each other;

in all cases, neither will commit to a transaction history until

it knows the other cannot commit to a different history.

By transitivity, if v1 cannot disagree with v2 and v2 can-
not disagree with v3 (or vice versa), v1 cannot disagree with
v3, whether or not v3 represents assets v1 has even heard

of. Under the hypothesis that these agreement relationships

transitively connect the whole network, SCP guarantees

global agreement, making it a global Byzantine agreement

protocol with open membership. We call this new connect-

edness assumption the Internet hypothesis, and note that it

holds of both “the Internet” (which everyone understands to

mean the single largest transitively connected IP network)

and legacy international payments (which are hop-by-hop

non-atomic, but leverage a transitively connected, global

network of financial institutions).

Stellar has been in production use since September, 2015.

To keep the blockchain length manageable, the system runs

SCP at 5-second intervals—fast by blockchain standards, but

far slower than typical applications of Byzantine agreement.

Though the primary use has been payments, Stellar has also

proven appealing for non-money fungible tokens that benefit

from immediate secondary markets (see Section 7.1).

The next section discusses related work. Section 3 presents

SCP. Section 4 describes our formal verification of SCP. Sec-

tion 5 describes Stellar’s payment layer. Section 6 relates

some of our deployment experience and lessons learned.

Section 7 evaluates the system. Section 8 concludes.

2 Related work

The system described in this paper is collectively our third

attempt to realize a decentralized payment network. The

first attempt, by one of the authors, resulted in the Ripple

blockchain. While still in existence, we believe Ripple can-

not realize the vision of a truly open payment network for

both governance and technical reasons. The governance rea-

sons derive from tension between shareholder interests and

network users, but are beyond the scope of this paper. The

technical issue is that Ripple’s Byzantine agreement proto-

col [89] requires nearly closed membership [33], making it

functionally similar to conventional Byzantine agreement.

The second attempt, a short-lived fork of the Ripple code

base called stellard, went live in July, 2014. We had planned to

develop SCP and slot it into stellard when ready, but instead

decided to build a new system from scratch around SCP,

called stellar-core and described in this paper. stellar-core
was released along with a description and proof of SCP [68]

in April, 2015, and entered production use 5 months later.

An Internet draft [20] later described SCP for implementors.

SCP’s motivation and structure are similar to asymmet-

ric trust in multiparty computation [40], though that model

requires nodes to have a global view of the adversary struc-

ture. By introducing a notion of quorum slices, SCP enjoys

discoverability and dynamic membership that are impor-

tant to Stellar’s deployment. Personal Byzantine quorum

systems [47] and asymmetric distributed trust [29] general-

ize SCP’s quorums and simplify comparison to traditional

systems. In a more restricted setting, Gotsman et al. [49] also

study a generalization of Stellar’s quorums.

Several other blockchains have adopted SCP, including

MobileCoin [7] and NCNT. Ripple also more recently pro-

posed an open-membership Byzantine agreement protocol

called Cobalt [66]. SCP’s safety is optimal, so SCP is safe in

any failure scenario where Cobalt is, while the converse is

unclear. However, Cobalt claims its safety condition is eas-

ier to understand and thus less prone to misconfiguration,

which will be interesting to evaluate if Cobalt gets deployed.

2.1 Systems without open membership

Like many consensus protocols, SCP is based on voting [50,

94] in a quorum system. Previous work on quorum sys-

tems [52, 67, 72], sometimes called “survivor sets” [57], stud-

ies quorum systems that are static, i.e., fixed throughout

system execution, and uniform, i.e., where all nodes have the

same notion of what a quorum is. SCP’s setting is different in

that different nodes accept different and evolving quorums.
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Heterogeneous fast consensus [91] allows more nuanced

notions of trust to be expressed via labels in a lattice and

leverages this to optimize communication, but it assumes

closed membership.

Other efforts to adapt Byzantine agreement protocols

to Blockchain-like settings, including HoneyBadger [70],

SBFT [53], and HotStuff [99], have focused on scalability

to many participants and performance over wide-area net-

works, retaining the traditional closed-membership model.

Blockchains targeting closed membership have leveraged

such protocols, including most recently Libra [11].

2.2 Systems without issuer-enforced finality

Bitcoin [71] was the first fungible digital asset without a

trusted authority to track balances. It simultaneously solved

two problems: how to distribute a new asset so people believe

it has value, and how to provide irreversible transactions that

prevent double-spend attacks. Bitcoin creates assets through

proof-of-work [43], which its author compares to gold min-

ers investing resources to increase the supply of gold. The

proved work depends on transaction history, which thwarts

double-spend attacks because rolling back transactions re-

quires work comparable to creating the original history.

Attacks on proof-of-work blockchains become feasible

once an attacker controls 1/3 of mining power [46, 48]. Proof-

of-work is particularly risky for new or smaller blockchains [15,

23]; established miners have been known to divert mining

power to smaller chains for profit [10, 54, 74, 97, 98] or just to

create problems [25, 37] (so-called “Goldfinger attacks” [60]).

At times, miners have benevolently mounted such “51% at-

tacks” to roll back the undesired effects of bugs [95]. New

blockchains can gain some protection from 51% attacks by

leveraging more established blockchains with merged min-

ing [6] or proof of burn [79].

As of this writing, a 51% attack is estimated to cost $823,000/

hour on Bitcoin, $93,000/hour on Ethereum, and under $20,000/

hour for all other tracked blockchains [12]. Ultimately, these

costs depend on the value of the cryptocurrency incentiviz-

ing the mining, which is independent of the value of issued

assets. By contrast, the cost of compromising Stellar valida-

tors is somewhat under the control of their administrators;

SCP is amenable to high-assurance implementations, such as

using hardware security modules to prevent a validator from

signing contradictory messages. As an additional benefit,

Stellar has no mining costs to recoup through transaction

fees or seigniorage.

Bitcoin’s massive energy consumption [76] has motivated

more energy-efficient variations of proof of work such as

proof of space [16, 17, 44, 87], proof of storage [18, 56, 86, 90],

and proof of elapsed time [4].

Proof of work can be slow, with blocks of transactions

taking minutes to confirm and multiple blocks required for

stronger security. However, the work to mine a block can be

amortized over an arbitrary-sized batch of transactions, con-

strained only by political issues and compatibility. Bitcoin-

NG [45] uses proof of work to elect a leader who coordinates

a larger batch of transactions. Thunderella [84] can use proof-

of-work as a fallback “slow path” and optimistically confirm

transactions much faster using an asynchronous consensus

protocol when an accelerator node and 3/4 of an elected com-

mittee are honest. Though SCP is faster than proof-of-work,

it requires more messages than Thunderella’s fast path, but

could potentially be a useful Thunderella slow path.

An alternative to proof of work is proof of stake [59],

in which miners obtain influence either directly or indi-

rectly from asset ownership. In some cases, influence in-

creases with the time assets have been held. Some schemes

encourage honesty by confiscating miners’ stake if they

misbehave [27, 28, 41]. Delegated proof-of-stake [9, 61] has

nodes vote their stake to elect representatives for a conven-

tional Byzantine agreement protocol such as PBFT [31]. Algo-

rand [51] uses verifiable random functions to elect represen-

tative nodes pseudorandomly, with probability proportional

to cryptocurrency holdings. Snow White [39] formalizes the

security properties required in proof of stake, accommodat-

ing “sleepy” nodes that go on and off line.

Though most proof-of-stake schemes cannot be brute-

forced with expensive computation, the cost to acquire stake

or bribe miners is still related to the value of the under-

lying cryptocurrency and outside an asset issuer’s control.

Even in the absence of malicious miners, bugs can also cause

blockchain reorganization [26, 73]. Hence, unlike with SCP,

issuers have no way to ensure blockchain finality before

redeeming on-chain tokens for a real-world wire transfer or

cash withdrawal.

3 Stellar consensus protocol

The Stellar consensus protocol (SCP) is a quorum-based

Byzantine agreement protocol with open membership. Quo-

rums emerge from the combined local configuration deci-

sions of individual nodes. However, nodes only recognize

quorums to which they belong themselves, and only after

learning the local configurations of all other quorum mem-

bers. One benefit of this approach is that SCP inherently

tolerates heterogeneous views of what nodes exist. Hence,

nodes can join and leave unilaterally with no need for a

“view change” protocol to coordinate membership.

3.1 Federated Byzantine agreement

The traditional Byzantine agreement problem consists of a

closed system of N nodes, some of which are faulty and may

behave arbitrarily. Nodes receive input values and exchange

messages to decide on an output value among the inputs.

A Byzantine agreement protocol is safe when no two well-

behaved nodes output different decisions and the unique

decision was a valid input (for some definition of valid agreed
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upon beforehand). A protocol is live when it guarantees that

every honest node eventually outputs a decision.

Typically, protocols assume N = 3f + 1 for some integer

f > 0, then guarantee safety and some form of liveness so

long as at most f nodes are faulty. At some stage in these

protocols, nodes vote on proposed values and a proposal

receiving 2f + 1 votes, called a quorum of votes, becomes

the decision. With N = 3f + 1 nodes, any two quorums of

size 2f + 1 overlap in at least f + 1 nodes; even if f of these

overlapping nodes are faulty, the two quorums share at least

one non-faulty node, preventing contradictory decisions.

However, this approach only works if all nodes agree on

what constitutes a quorum, which is impossible in SCPwhere

two nodes may not even know of each other’s existence.

With SCP, each node v unilaterally declares sets of nodes,

called its quorum slices, such that (a) v believes that if all

members of a slice agree about the state of the system, then

they are right, and (b) v believes that at least one of its slices

will be available to provide timely information about the

state of the system. We call the resulting system, consisting

of nodes and their slices, a Federated Byzantine Agreement

(FBA) system. As we will see next, a quorum system emerges

from nodes’ slices.

Informally, an FBA node’s slices express with whom the

node requires agreement. E.g., a node may require agree-

ment with 4 specific organizations, each running 3 nodes; to

accommodate downtime, it may set its slices to be all sets

consisting of 2 nodes from each organization. If this “requires

agreement with” relation transitively relates any two nodes,

we get global agreement. Otherwise, we can get divergence,

but only between organizations neither of which requires

agreement with the other. Given the topology of today’s

financial system, we hypothesize that widespread conver-

gence will keep producing a singe ledger history people call

“the Stellar network,” much as we speak of the Internet.
Quorums arise from slices as follows. Every node specifies

its quorum slices in every message it sends. Let S be the

set of nodes from which a set of messages originated. A

node considers the set of messages to have reached quorum

threshold when every member of S has a slice included in S .
By construction, such a set S , if unanimous, satisfies the

agreement requirements of each of its members.

A faulty peer may advertise slices crafted to change what

well-behaved nodes consider quorums. For the sake of proto-

col analysis, we define a quorum in FBA to be a non-empty

set S of nodes encompassing at least one quorum slice of

each non-faulty member. This abstraction is sound, as any set

of messages purporting to represent a unanimous quorum

actually does (even if it contains messages from faulty nodes),

and it is precise when S contains only well-behaved nodes. In
this section, we also assume that nodes’ slices do not change.

Nevertheless, our results transfer to the changing-slice case

because a system in which slices change is no less safe than

a fixed-slice system in which a node’s slices consist of all the

slices it ever uses in the changing-slices case (see Theorem

13 in [68]). As explained in Section 4, liveness depends on

well-behaved nodes eventually removing unreliable nodes

from their slices.

Because different nodes have different agreement require-

ments, FBA precludes a global definition of safety. We say

non-faulty nodes v1 and v2 are intertwined when every

quorum of v1 intersects every quorum of v2 in at least one

non-faulty node. An FBA protocol can ensure agreement

only between intertwined nodes; since SCP does so, its fault

tolerance for safety is optimal. The Internet hypothesis,

underlying Stellar’s design, states that the nodes people care

about will be intertwined.

We say a set of nodes I is intact if I is a uniformly non-

faulty quorum such that every two members of I are inter-
twined even if every node outside of I is faulty. Intuitively,
then, I should remain impervious to the actions of non-intact

nodes. SCP guarantees both non-blocking liveness [93] and

safety to intact sets, though nodes themselves do not need

to know (and may not be able to know) which sets are intact.

Furthermore, the union of two intact sets that intersect is

an intact set. Therefore, intact sets define a partition of the

well-behaved nodes, where each partition is safe and live

(under some conditions), but different partitions may output

divergent decisions.

3.1.1 Safety vs. Liveness considerations in FBA

With limited exceptions [64], most closed Byzantine agree-

ment protocols are tuned to the equilibrium point at which

safety and liveness have the same fault tolerance. In FBA,

that means configurations in which, regardless of failures, all

intertwined sets are also intact. Given that FBA determines

quorums in a decentralized way, it is unlikely that individ-

ual slice choices will lead to this equilibrium. Moreover, at

least in Stellar, equilibrium is not desirable: the consequences

of a safety failure (namely double-spent digital money) are

far worse than those of a liveness failure (namely delays

in payments that anyway took days before Stellar). People

therefore should and do select large quorum slices such that

their nodes are more likely to remain intertwined than intact.

Further tipping the scales, it is easier to recover from

typical liveness failures in an FBA system than in a tradi-

tional closed one. In closed systems, all messages must be

interpreted with respect to the same set of quorums. Hence,

adding and removing nodes to recover from failure requires

reaching consensus on a reconfiguration event, which is diffi-

cult once consensus is no longer live. By contrast, with FBA,

any node can unilaterally adjust its quorum slices at any

time. In response to an outage at a systemically important

organization, node administrators can adjust their slices to

work around the problem, a bit like coordinating responses

to BGP catastrophes [63] (though without the constraints of

routing over physical network links).
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3.1.2 The cascade theorem

SCP follows the template of the basic round model [42];

nodes progress through a series of numbered ballots, each

attempting three tasks: (1) identify a “safe” value not con-

tradicted by any decision in a previous ballot (often termed

preparing the ballot), (2) agree on the safe value, and (3) de-

tect that agreement was successful. However, FBA’s open

membership stymies several common techniques, making it

impossible to “port” traditional closed protocols to the FBA

model by simply changing the definition of quorum.

One technique employed by many protocols is rotating

through leader nodes in round-robin fashion following time-

outs. In a closed system, round-robin leader selection ensures

that eventually a unique honest leader ends up coordinat-

ing agreement on a single value. Unfortunately, round-robin

cannot work in an FBA system with unknown membership.

Another common technique that fails with FBA is assum-

ing a particular quorum can convince all nodes. For instance,

if everyone recognizes any 2f + 1 nodes as a quorum, then

2f + 1 signatures suffice to prove protocol state to all nodes.

Similarly, if a node receives a quorum of identical messages

through reliable broadcast [24], the node can assume all non-

faulty nodes will also see a quorum. In FBA, by contrast, a

quorum means nothing to nodes outside the quorum.

Finally, non-federated systems often employ “backwards”

reasoning about safety: if f + 1 nodes are faulty, all safety
guarantees are lost. Hence, if node v hears f + 1 nodes all
state some fact F , v can assume at least one is telling the

truth (and hence that F is true) with no loss of safety. Such

reasoning fails in FBA because safety is a property of pairs
of nodes, so a node that has lost safety to some peers can

always lose safety to more nodes by assuming bad facts.

FBA can, however, reason backwards about liveness. De-

fine a v-blocking set as a set of nodes that intersects every

slice of v . If a v-blocking set B is unanimously faulty, B
can deny node v a quorum and cost it liveness. Hence, if

B unanimously states fact F , then v knows that either F is

true or v is not intact. However, v still needs to see a full

quorum to know that intertwined nodes won’t contradict F ,
which leads to a final round of communication in SCP and

other FBA protocols [47] that is not required in analogous

closed-membership protocols. The result is that we have

three possible levels of confidence in potential facts: indeter-

minate, safe to assume among intact nodes (which we will

term accepted facts), and safe to assume among intertwined

nodes (which we will term confirmed facts).

Node v can efficiently determine whether a set B is v-
blocking by checking whether B intersects all its slices. In-

terestingly, if nodes always announce the statements they

accept and a full quorum accepts a statement, it sets off a cas-

cading process by which statements propagate throughout

intact sets. We call the key fact underlying this propagation

the cascade theorem, which sates the following: If I is an

intact set, Q is a quorum of any member of I , and S is any

superset of Q , then either S ⊇ I or there is a member v ∈ I
such that v < S and I ∩ S is v-blocking. Intuitively, were this
not the case, the complement of S would contain a quorum

that intersects I but not Q , violating quorum intersection.

Note that if we start with S = Q and repeatedly expand S to

include all nodes it blocks, we obtain a cascading effect until,

eventually, S encompasses all of I .

3.2 Protocol description

SCP is a partially synchronous consensus protocol [42] con-

sisting of a series of attempts to reach consensus called

ballots. Ballots employ timeouts of increasing duration. A

ballot-synchronization protocol ensures that nodes stay on

the same ballot for increasing periods of time until the ballots

are effectively synchronous. Termination is not guaranteed

until ballots are synchronous, but two synchronous ballots

in which faulty members of well-behaved nodes’ slices do

not interfere are sufficient for SCP to terminate.

A balloting protocol specifies the actions taken during each
ballot. A ballot begins with a prepare phase, in which nodes

try to determine a value to propose that does not contradict

any previous decision. Then, in a commit phase, nodes try

to make a decision on the prepared value.

Balloting employs an agreement sub-protocol called fed-
erated voting, in which nodes vote on abstract statements

that may eventually be confirmed or get stuck. Some state-

ments might be designated contradictory, and the safety

guarantee of federated voting is that no two members of an

intertwined set confirm contradictory statements. Confirma-

tion of a statement is not guaranteed except for an intact

set whose members all vote the same way. However, if a

member of an intact set does confirm a statement, federated

voting guarantees that all members of the intact set eventu-

ally confirm that statement. Hence, taking irreversible steps

in response to confirming statements preserves liveness for

intact nodes.

Nodes initially propose values obtained from a nomination
protocol that increases the chances of all members of an intact

set proposing the same value, and that eventually converges

(though with no way to determine convergence is complete).

Nomination combines federated voting with leader selection.

Because round-robin is impossible in FBA, nomination uses

a probabilistic leader-selection scheme.

The cascade theorem plays a crucial role both in ballot

synchronization and in avoiding blocked states from which

termination is no longer possible.

3.2.1 Balloting

SCP nodes proceed through a series of numbered ballots, em-

ploying federated voting to agree on statements about which

values are or are not decided in which ballots. If asynchrony

or faulty behavior prevents reaching a decision in ballot n,
nodes time out and try again in ballot n + 1.

5
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Recall federated voting might not terminate. Hence, some

statements about ballots can get stuck in a permanently

indeterminate state where nodes can never determine if they

are still in progress or stuck. Because nodes cannot rule out

the possibility of indeterminate statements later proving true,

they must never attempt federated voting on new statements

contradicting indeterminate ones.

In each ballot n, nodes use federated voting on two types

of statement:

• prepare ⟨n, x⟩ – states that no value other than x
was or will ever be decided in any ballot ≤ n.

• commit ⟨n, x⟩ – states x is decided in ballot n.

Importantly, note that prepare ⟨n, x⟩ contradicts commit
⟨n′, x ′⟩ when n ≥ n′ and x , x ′

.

A node starts ballot n by attempting federated voting on a

statement prepare ⟨n, x⟩. If any previous prepare statement

was successfully confirmed through federated voting, the

node chooses x from the confirmed prepare of the high-

est ballot. Otherwise, the node sets x to the output of the

nomination protocol described in the next subsection.

If and only if a node successfully confirms prepare ⟨n, x⟩
in ballot n, it attempts federated voting on commit ⟨n, x⟩. If
that succeeds, it means SCP has decided, so the node outputs

the value from the confirmed commit statement.

Consider an intertwined set S . Since at most one value

can be confirmed prepared by members of S in a given bal-

lot, no two different values may be confirmed committed by

members of S in a given ballot. Moreover, if commit ⟨n, x⟩
is confirmed, then prepare ⟨n, x⟩ was confirmed too; since

prepare ⟨n, x⟩ contradicts any earlier commit for a differ-

ent value, by the agreement guarantees of federated voting

we get that no different value may be decided in an earlier

ballot by members of S . By induction on ballot numbers, we

therefore get that SCP is safe.

For liveness, consider an intact set I and a long enough

synchronous ballot n. If faulty nodes appearing in the slices

of well-behaved nodes do not interfere in n, then by ballot

n+ 1 all members of I have confirmed the same set P of pre-

pare statements. If P = ∅ and ballot n was long enough, the

nomination protocol will have converged on some value x .
Otherwise, let x be the value from the prepare with the high-

est ballot inP. Either way, I will uniformly attempt federated

voting on prepare ⟨n + 1, x⟩ in the next ballot. Therefore, if

n + 1 is also synchronous, a decision for x inevitably follows.

3.2.2 Nomination

Nomination entails federated voting on statements:

• nominate x – states x is a valid decision candidate.

Nodes may vote to nominate multiple values—different

nominate statements are not contradictory. However, once

a node confirms any nominate statement, it stops voting to

nominate new values. Federated voting still allows a node to

confirm new nominate statements it didn’t vote for, which

vote-or-accept a
from quorum

accept a
from quorum

a is valid

accept a from

blocking set

uncommitted

voted a accepted a confirmed a

voted ¬a

Figure 1. Stages of federated voting

allows members of an intact set to confirm one another’s

nominated values while still withholding new votes.

The (evolving) result of nomination is a deterministic com-

bination of all values in confirmed nominate statements. If

x represents a set of transactions, nodes can take the union

of sets, the largest set, or the one with the highest hash, so

long as all nodes do the same. Because nodes withhold new

votes after confirming one nominate statement, the set of

confirmed statements can contain only finitely many values.

The fact that confirmed statements reliably spread through

intact sets means intact nodes eventually converge on the

same set of nominated values and hence nomination result,

though at an unknown point arbitrarily late in the protocol.

Nodes employ federated leader selection to reduce the

number of different values in nominate statements. Only

a leader who has not already voted for a nominate state-

ment may introduce a new x . Other nodes wait to hear from
leaders and just copy their leaders’ (valid) nominate votes.

To accommodate failure, the set of leaders keeps growing as

timeouts occur, though in practice only a few nodes intro-

duce new values of x .

3.2.3 Federated voting

Federated voting employs a three-phase protocol shown in

Figure 1. Nodes try to agree on abstract statements by first

voting, then accepting, and finally confirming statements.

A node v may vote for any valid statement a that does not

contradict its other outstanding votes and accepted state-

ments. It does so by broadcasting a signed vote message.

v then accepts a if a is consistent with other accepted state-

ments and either (case 1)v is a member of a quorum in which

each node either votes for a or accepts a, or (case 2) even ifv
didn’t vote for a, a v-blocking set accepts a. In case 2, v may

have previously cast votes contradicting a, which have now

been overruled. v is allowed to forget about overruled votes

and pretend it never cast them because ifv is intact, it knows

overruled votes cannot complete a quorum through case 1.

v broadcasts that it accepts a, then confirms a when it is in

a quorum that unanimously accepts a. Figure 2 shows the
effect of v-blocking sets and the cascade theorem during

federated voting.

Two intertwined nodes cannot confirm contradictory state-

ments, as the two required quorums would have to share a
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Figure 2. Cascade effect in federated voting. Each node has one quorum slice indicated by arrows to members of the slice.

(a) Contradictory statements X and Y are introduced. (b) Nodes vote for valid statements. (c) Node 1 accepts X after its quorum

{1, 2, 3, 4} unanimously votes for X. (d) Nodes 1, 2, 3, and 4 all accept X; set {1} is 5-blocking, so node 5 accepts X, overruling

its previous vote for Y. (e) Set {5} is 6- and 7-blocking, so 6 and 7 both accept X.

non-faulty node that could not accept contradictory state-

ments. Confirmation of a statement is not guaranteed: in

case of a split vote, both statements may be permanently

stuck waiting for a quorum in the voting phase. However, if

a node in an intact set I confirms a statement, the cascade

theorem and accept case 2 ensure that all of I will eventually
confirm that statement.

3.2.4 Ballot synchronization

If nodes are unable to confirm a commit statement for the

current ballot, they give up after a timeout. The timeout gets

longer with each ballot so as to adjust to arbitrary bounds

on network delay.

However, timeouts alone are not sufficient to synchro-

nize ballots of nodes that did not start at the same time or

got desynchronized for other reasons. To achieve synchro-

nization, nodes start the timer only once they are part of a

quorum that is all at the current (or a later) ballot n. This
slows down nodes that started early and ensures that no

member of an intact set stays too far ahead of the group.

Moreover, if a node v ever notices a v-blocking set at a later

ballot, it immediately skips to the lowest ballot such that this

is no longer the case, regardless of any timers. The cascade

theorem then ensures that all stragglers catch up. The result

is that ballots are roughly synchronized throughout an intact

set once the system becomes synchronous.

3.2.5 Federated leader selection

Leader selection allows each node to pick leaders in such a

way that nodes generally only choose one or a small number

of leaders. To accommodate leader failure, leader selection

proceeds through rounds. If leaders of the current round

appear not to be fulfilling their responsibilities, then after a

certain timeout period nodes proceed to the next round to

expand the set of leaders that they follow.

Each round employs two unique cryptographic hash func-

tions, H0 and H1, that output integers in the range [0,hmax).

For instance, Stellar uses Hi (m) = SHA256(i∥b∥r ∥m), where

b is the overall SCP instance (block or ledger number), r is
the leader selection round number, and hmax = 2

256
. Within

a round, we define the priority of node v as:

priority(v) = H1(v)

One strawman would be for each node to choose as leader

the nodev with the highest priority(v). This approach works
well with nearly identical quorum slices, but doesn’t properly

capture the importance of nodes in imbalanced configura-

tions. For instance, if Europe and China each contribute 3

nodes to every quorum, but China runs 1,000 nodes and Eu-

rope 4, then China will have the highest-priority node 99.6%

of the time.

We therefore introduce a notion of slice weight, where

weight(u,v) ∈ [0, 1] is the fraction of node u’s quorum slices

containing node v . When node u is selecting a new leader, it

only considers neighbors, defined as follows:

neighbors(u) = { v | H0(v) < hmax · weight(u,v) }

A nodeu then starts with an empty set of leaders, and at each

round adds to it the node v in neighbors(u) with the highest

priority(v). If the neighbors set is empty in any round, u in-

stead adds the nodev with lowest value ofH0(v)/weight(u,v).

4 Formal verification of SCP

To eliminate design errors, we formally verified SCP’s safety

and liveness properties (see [65]). Specifically, we verified

that intertwined nodes never disagree and that, under condi-

tions discussed below, every member of an intact set even-

tually decides. Interestingly, verification revealed that the

conditions under which SCP guarantees liveness are subtle,

and stronger than initially thought [68]: as discussed below,

malicious nodes that manipulate timing without otherwise

deviating from the protocol may need to be manually evicted

from quorum slices.
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To ensure that the properties proved hold in all possible

FBA configurations and executions, we consider an arbitrary

number of nodes with arbitrary local configurations. This

includes scenarios with disjoint intact sets, as well as poten-

tially infinitely long executions. The drawback is that we

face the challenging problem of verifying a parameterized

infinite-state system.

To keep verification tractable, we modeled SCP in first-

order logic (FOL) using Ivy [69] and the methodology of [82].

The verification process consists of manually providing in-

ductive conjectures that are then automatically checked by

Ivy. The FOL model of SCP abstracts over some aspects of

FBA systems that are difficult to handle in FOL (e.g., the

cascade theorem is taken as an axiom), so we verify the

soundness of the abstraction using Isabelle/HOL [75].

After expressing the verification problem in FOL, we ver-

ify safety by providing an inductive invariant. The inductive

invariant consists of a dozen one-line conjectures for about

150 lines of protocol specification.We then specify SCP’s live-

ness properties in Ivy’s Linear Temporal Logic and use the

liveness to safety reduction of [80, 81] to reduce the liveness

verification problem to the problem of finding an inductive

invariant. While SCP’s safety is relatively straightforward to

prove, SCP’s liveness argument is much more intricate and

consists of around 150 single-line invariants.

Proving liveness required a precise formalization of the

assumptions under which SCP ensures termination. We ini-

tially thought an intact set I would always terminate if all

members removed faulty nodes from their slices [68]. How-

ever, this turned out to be insufficient: a well-behaved (but

not intact) node in a quorum of a member of I can, under the
influence of faulty nodes, prevent termination by completing

a quorum just before the end of a ballot, thereby causing

members of I to chose different values of x in the next ballot.

We must therefore additionally assume that, informally,

each node in a quorum of a member of I eventually either

becomes timely or doesn’t send messages at all for a suf-

ficient period. In practice, this means members of I may

need to adjust their slices until the condition holds. This

issue is not inherent to FBA systems: Losa et al. [47] present

a protocol whose liveness depends on the strictly weaker

assumptions of just eventual synchrony and eventual leader-

election, without the need to remove faulty nodes from slices.

5 Payment network

This section describes Stellar’s payment network, imple-

mented as a replicated state machine [88] on top of SCP.

5.1 Ledger model

Stellar’s ledger is designed around an account abstraction (in

contrast to the more coin-centric unspent transaction output

or UTXO model of Bitcoin). The ledger contents consists of a

set of ledger entries of four distinct types: accounts, trustlines,
offers, and account data.

Accounts are the principals that own and issue assets. Each
account is named by a public key. By default, the corre-

sponding private key can sign transactions for the account.

However, accounts can be reconfigured to add other sign-

ers and deauthorize the key that names the account, with a

“multisig” option to require multiple signers. Each account

also contains: a sequence number (included in transactions

to prevent replay), some flags, and a balance in a “native”

pre-mined cryptocurrency called XLM, intended to mitigate

some denial-of-service attacks and facilitate market making

as a neutral currency.

Trustlines track the ownership of issued assets, which are

named by a pair consisting of the issuing account and a short

asset code (e.g., “USD” or “EUR”). Each trustline specifies

an account, an asset, the account’s balance in that asset, a

limit above which the balance cannot rise, and some flags.

An account must explicitly consent to holding an asset by

creating a trustline, preventing spammers from saddling

accounts with unwanted assets.

Know-your-customer (KYC) regulations require many fi-

nancial institutions to knowwhose deposits they are holding,

for instance by checking photo ID. To comply, issuers can set

an optional auth_reqired flag on their accounts, restrict-

ing ownership of the assets they issue to authorized accounts.

To grant such authorization, the issuer sets an authorized

flag on customers’ trustlines.

Offers correspond to an account’s willingness to trade up

to a certain amount of a particular asset for another at a given

price on the order book; they are automatically matched and

filled when buy/sell prices cross. Finally, account data con-
sists of account, key, value triples, allowing account holders

to publish small metadata values.

To prevent ledger spam, there is a minimum XLM balance,

called the reserve. An account’s reserve increases with each

associated ledger entry and decreases when the ledger entry

disappears (e.g., when an order is filled or canceled, or when a

trustline is deleted). Currently the reserve grows by 0.5 XLM

(∼$0.03) per ledger entry. Regardless of the reserve, it is

possible to reclaim the entire value of an account by deleting

it with an AccountMerge operation.

A ledger header, shown in Figure 3, stores global attributes:
a ledger number, parameters such as the reserve balance per

ledger entry, a hash of the previous ledger header (actually

several hashes forming a skiplist), the SCP output including

a hash of new transactions applied at this ledger, a hash of

the results of those transactions (e.g., success or failure for

each), and a snapshot hash of all ledger entries.

Because the snapshot hash includes all ledger contents,

validators need not retain history to validate transactions.

However, to scale to hundreds of millions of anticipated

accounts, we cannot rehash all ledger entry tables on every

ledger close. Moreover, it is not practical to transfer a ledger
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. . .

Figure 3. Ledger contents. H is SHA-256, while H ∗
repre-

sents hierarchical or recursive application of H . SCP output

also depends the previous header hash.

CreateAccount Create and fund new account ledger entry

AccountMerge Delete account ledger entry

SetOptions Change account flags and signers

Payment Pay specific quantity of asset to dest. acct.

PathPayment Like Payment, but pay in different asset (up

to limit); specify up to 5 intermediary assets

ManageOffer Create/delete/change offer ledger entry,

-PassiveOffer with passive variant to allow zero spread

ManageData Create/delete/change acct. data ledger entry

ChangeTrust Create/delete/change trustline

AllowTrust Set or clear authorized flag on trustline

BumpSequence Increase seq. number on account

Figure 4. Principal ledger operations

of that size every time a node has been disconnected from

the network for too long. The snapshot hash is therefore

designed to optimize both hashing and state reconciliation.

Specifically, the snapshot stratifies ledger entries by time

of last modification in a set of exponentially-sized containers

called buckets. The collection of buckets is called the bucket
list, and bears some similarity to log-structured merge-trees

(LSM-trees) [77]. The bucket list is not read during trans-

action processing (see Section 5.4). Hence, certain design

aspects of LSM-trees can be relaxed. In particular, random

access by key is not required, and buckets are only ever read

sequentially as part of merging levels. Hashing the bucket

list is done by hashing each bucket as it is merged and calcu-

lating a new cumulative hash of the bucket hashes (a small,

fixed index of reference hashes) at each ledger close. Reconcil-

ing the bucket list after disconnection requires downloading

only buckets that differ.

5.2 Transaction model

A transaction consists of a source account, validity criteria, a

memo, and a list of one or more operations. Figure 4 lists avail-
able operations. Each operation has a source account, which

defaults to that of the overall transaction. A transaction must

be signed by keys corresponding to every source account in

an operation. Multisig accounts can require higher signing

weight for some operations (such as SetOptions) and lower

for others (such as AllowTrust).

Transactions are atomic—if any operation fails, none of

them execute. This simplifies multi-way deals. Suppose an

issuer creates an asset to represent land deeds, and user A
wants to exchange a small land parcel plus $10,000 for a

bigger land parcel owned by B. The two users can both sign

a single transaction containing three operations: two land

payments and one dollar payment.

A transaction’s main validity criterion is its sequence num-

ber, which must be one greater than that of the transaction’s

source account ledger entry. Executing a valid transaction

(successfully or not) increments the sequence number, pre-

venting replay. Initial sequence numbers contain the ledger

number in the high bits to prevent replay even after deleting

and re-creating an account.

The other validity criterion is an optional limit on when

a transaction can execute. Returning to the land and dollar

swap above, if A signs the transaction before B, Amay not

want B to sit on the transaction for a year before submitting

it, and so could place a time limit invalidating the transaction

after a few days. Multisig accounts can also be configured

to give signing weight to the revelation of a hash pre-image,

which, combined with time bounds, permits atomic cross-

chain trading [1].

A transaction’s source account pays a trivial fee in XLM,

10
−5

XLM unless there is congestion. Under congestion, the

cost of operations is set by Dutch auction. Validators are

not compensated by fees because validators are analogous

to Bitcoin full nodes, not miners. Rather than destroy XLM,

fees are recycled and distributed proportionally by vote of

existing XLM holders, which in retrospect might or might

not have been worth the complexity.

5.3 Consensus values

For each ledger, Stellar uses SCP to agree on a data structure

with three fields: a transaction set hash (including a hash

of the previous ledger header), a close time, and upgrades.

When multiple values are confirmed nominated, Stellar takes

the transaction set with the most operations (breaking ties

by total fees, then transaction set hash), the union of all

upgrades, and the highest close time. A close time is only

valid if it is between the last ledger’s close time and the

present, so nodes do not nominate invalid times.

Upgrades adjust global parameters such as the reserve bal-

ance, minimum operation fee, and protocol version. When

combined during nomination, higher fees and protocol ver-

sion numbers supersede lower ones. Upgrades effect gover-

nance through a federated-voting tussle space [34], neither

egalitarian nor centralized. Each validator is configured as

either governing or non-governing (the default), according

to whether its operator wants to participate in governance.

Governing validators consider three kinds of upgrade:

desired, valid, and invalid (anything the validator does not

9
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Figure 5. Stellar validator architecture

know how to implement). Desired upgrades are configured to

trigger at a specific time, intended to be coordinated among

operators. Governing nodes always vote to nominate desired

upgrades, accept but do not vote to nominate valid upgrades

(i.e., go along with a blocking quorum), and never vote for

or accept invalid upgrades. Non-governing validators echo

any vote they see for a valid upgrade, essentially delegating

the decision on what upgrades are desired to those who opt

for a governance role.

5.4 Implementation

Figure 5 shows Stellar’s validator architecture. A daemon

called stellar-core (∼92k lines of C++, not counting third-

party libraries) implements the SCP protocol and the repli-

cated statemachine. Producing values for SCP requires reduc-

ing large numbers of ledger entries to small cryptographic

hashes. By contrast, transaction validation and execution

requires looking up account state and order matching at

the best price. To serve both functions efficiently, stellar-core
keeps two representations of the ledger: an external represen-
tation containing the bucket list, stored as binary files that

can be efficiently updated and incrementally rehashed, and

an internal representation in a SQL database (PostgreSQL

for production nodes).

Stellar-core creates a write-only history archive containing
each transaction set that was confirmed and snapshots of

buckets. The archive lets new nodes bootstrap themselves

when joining the network. It also provides a record of ledger

history—there needs to be some place one can look up a

transaction from two years ago. Since history is append-only

and accessed infrequently, it can be kept in cheap places

such as Amazon Glacier or any service allowing one to store

and retrieve flat files. Validator hosts typically do not host

their own archives so as to avoid any impact on validation

performance from serving history.

To keep stellar-core simple, it is not intended to be used

directly by applications and exposes only a very narrow in-

terface for the submission of new transactions. To support

clients, most validators run a daemon called horizon (∼18k

lines of Go) that provides an HTTP interface for submitting

and learning of transactions. horizon has read-only access to

stellar-core’s SQL database, minimizing the risk of horizon
destabilizing stellar-core. Features such as payment path find-

ing are implemented entirely in horizon and can be upgraded

unilaterally without coordinating with other validators.

Several optional higher-layer daemons are clients to hori-
zon, rounding out the ecosystem. A bridge server facilitates
integration of Stellar with existing systems, e.g., posting no-

tifications of all payments received by a specific account. A

compliance server provides hooks for financial institutions to
exchange and approve of sender and beneficiary information

on payments, for compliance with sanctions lists. Finally,

a federation server implements a human-readable naming

system for accounts.

6 Deployment experience

Stellar grew for several years into a state with a moderate

number of reasonably-reliable full node operators. However,

nodes’ configurations were such that liveness (though not

safety) depended on us, the Stellar Development Foundation

(SDF); had SDF suddenly disappeared, other node operators

would have needed to intervene and manually remove us

from quorum slices for the network to continue.

While we and many others want to reduce SDF’s sys-

temic importance, this goal received increasing priority after

researchers [58] quantified and publicized the network’s cen-

tralization without differentiating the risks to safety and

liveness. A number of operators reacted with active config-

uration adjustments, primarily increasing the size of their

quorum slices in an effort to dilute SDF’s importance; ironi-

cally this only increased the risk to liveness.

Two problems exacerbated the situation. First, a popular

third-party Stellar monitoring tool [5] was systematically

overestimating validator uptime by not actually verifying

that stellar-core was running; this lead people to include

unreliable nodes in their quorum slices. Second, a bug in

stellar-core meant once a validator moved to the next ledger,

it didn’t adequately help remaining nodes complete the pre-

vious ledger in the event of lost messages. As a result, the

network experienced 67 minutes of downtime and required

manual coordination by validator administrators to restart.

Worse, while attempting to restart the network, simulta-

neous rushed reconfigurations on multiple nodes resulted

in a collective misconfiguration that allowed some nodes to

diverge, requiring a manual shutdown of those nodes and

resubmission of the transactions accepted during the diver-

gence. Luckily, this divergence was caught and corrected

quickly and contained no conflicting transactions, but the

risk of the network failing to enjoy quorum intersection—

splitting while continuing to accept potentially conflicting

transactions, simply due to misconfiguration—was made

very concrete by this incident.

Reviewing these experiences led to two major conclusions

and corresponding corrective actions.
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Figure 6. Validator quality hierarchy. Highest quality nodes

require the highest threshold of 100%, whereas lower quali-

ties are configured to 67% threshold. Nodes within a single

organization require a simple 51% majority.

6.1 Configuration complexity and fragility

Stellar expresses quorum slices as nested quorum sets consist-
ing of n entries and a threshold k where any set of k entries

constitutes a quorum slice. Each of then entries then is either

a validator public key or, recursively, another quorum set.

While flexible and compact, we realized nested quorum

sets simultaneously afforded node operators too much flexi-

bility and too little guidance: it was easy to write unsafe (or

even nonsensical) configurations. The criteria for grouping

nodes into sets, for organizing subsets into a hierarchy, and

for choosing thresholds were all insufficiently clear and con-

tributed to operational failures. It wasn’t clear whether to

treat a “level” in the nested-set hierarchy as a level of trust,

or an organization, or both; many configurations in the field

mixed these concepts, in addition to specifying dangerous

or meaningless thresholds.

We therefore added a simpler configuration mechanism

that separates two aspects of nested quorum sets: grouping

nodes together by organization, and labeling each organiza-

tion with a simple trust classification (low, medium, high, or

critical). Organizations at and above high are required to

publish history archives. The new system synthesizes nested-

quorum sets in which each organization is represented as a

51% threshold set, and organizations are grouped into sets

with 67% or 100% thresholds (depending on group quality).

Each group is a single entry in the next (higher quality) group,

as illustrated in Figure 6. This simplified model reduces the

likelihood of misconfiguration, both in terms of the structure

of the synthesized nested sets and the thresholds chosen for

each set.

6.2 Proactive detection of misconfiguration

Second, we realized that detecting collective misconfigura-

tion bywaiting to observe its negative effects is too late. Espe-

cially with respect to misconfigurations that can diverge—a

more serious failure mode than halting—the network needs

to be able to detect misconfiguration immediately so that op-

erators can revert it before any divergence actually hapens.

To address this need, we built a mechanism into the val-

idator software that continuously gathers the collective con-

figuration state of all the peers in the node’s transitive clo-

sure and detects the potential for divergence—i.e., disjoint

quorums—within that collective configuration.

6.2.1 Checking quorum intersection

While gathering quorum slices is easy, finding disjoint quo-

rums among them is co-NP-hard [62]. However, we adopted

a set of algorithmic heuristics and case-elimination rules

proposed by Lachowski [62] that check typical instances

of the problem several orders of magnitude faster than the

worst-case cost. Practically speaking, the current network’s

quorum slice transitive closures are on the order of 20–30

nodes and, with Lachowski’s optimizations, typically check

in a matter of seconds on a single CPU. Should the need arise

to enhance performance, we may parallelize the search.

6.2.2 Checking risky configurations

Detecting that the network admits disjoint quorums is a step

in the right direction, but flags the danger uncomfortably late

for such a critical issue. Ideally, we want node operators to re-

ceive warnings when the network’s collective configuration

is merely approaching a risky state.

We therefore extended the quorum-intersection checker

to detect a condition we call criticality: when the current

collective configuration is one misconfiguration away from

a state that admits disjoint quorums. To detect criticality,

the checker repeatedly replaces each organization’s configu-

ration with a simulated worst-case misconfiguration, then

re-runs the inner quorum intersection checker on the result.

If any such critical misconfiguration exists one step away

from the current state, the software issues a warning and

reports the organization posing a misconfiguration risk.

These changes give the community of operators two layers

of notice and guidance to insulate against the worst forms

of collective misconfiguration.

7 Evaluation

To understand Stellar’s suitablity as a global payment and

trading network, we evaluated the state of the public network

and ran controlled experiments on a private experimental

network. We focused on the following questions:

• What does the production network topology look like?

How many messages are broadcast on average, and

how does SCP experience timeouts?

• Do consensus and ledger update latencies remain in-

dependent of the number of accounts?
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• How are latencies affected by increasing (a) transac-

tions per second (and, consequently, transactions per

ledger), and (b) the number of validator nodes?

• What is the cost of running a node in terms of CPU,

memory, and network bandwidth?

Payment networks have low transaction rates compared

to other types of distributed system. The leading blockchains,

Bitcoin and Ethereum, confirm up to 15 transactions/second,

less than Stellar. Moreover, these systems take minutes to

an hour to confirm a transaction securely, because proof-of-

work requires waiting for several blocks to be mined. The

non-blockchain SWIFT network averaged only 420 transac-

tions per second on its peak day [14]. We therefore chose

to compare our measurements against the 5-second target

ledger interval, a more aggressive target. Our results show

that latencies are comfortably below this limit even with

several unimplemented optimizations still in the pipeline.

7.1 Anchors

The top traded assets by volume include currency (e.g., 3 USD

anchors, 2 CNY), a Bitcoin anchor, a real-estate-backed se-

curity token [92], and an in-app currency [8]. Different an-

chors have different policies. For instance, one USD anchor,

Stronghold, sets auth_reqired and requires a know-your-

customer (KYC) process for every account that holds their

assets. Another, AnchorUSD, let’s anyone receive and trade

their USD (making it literally possible to send $0.50 toMexico

in 5 seconds with a fee of $0.000001). However, AnchorUSD

does require KYC and fees to purchase or redeem their USD

with conventional wire transfers. In the Philippines, where

bank regulations are laxer for incoming payments, coins.ph
supports cashing out PHP at any ATM machine [36]. In ad-

dition to the aforementioned security token and in-app cur-

rency, there’s a range of non-currency tokens ranging from

commercial bonds [22] and carbon credits [85, 96] to more

esoteric assets such as a token incentivizing collaborative

car repossession [35].

7.2 Public network

As of this writing, there are 126 active full nodes, 66 of which

participate in consensus by signing vote messages. Figure 7

(generated by [5]) visualizes the network, with a line between

two nodes if one appears in the other’s quorum slices and a

darker blue line to show bi-directional dependence. At the

center is a cluster of 17 de facto “tier-one validators” run by

SDF, SatoshiPay, LOBSTR, COINQVEST, and Keybase.

Four months ago, before the events of Section 6, there

were 15 systemically important nodes: 3 from seemingly

tier-one organizations and several random singletons. The

graph also looked much less regular. Hence, the new config-

uration mechanism and/or better operator decisions seem

to be contributing to a healthier network topology. Without

great financial resources (and corresponding shareholder

Figure 7. Quorum slice map

obligations), it would have been difficult to recruit 5 tier one

organizations from the start, however. This suggests quorum

slices play a useful role in network bootstraping: anyone can

join with the goal of becoming an important player because

there are no gatekeepers to pairwise agreement.

There are currently over 3.3M accounts in the ledger. Over

a recent 24-hour period, Stellar averaged 4.5 transactions and

15.7 operations per second. Reviewing recent ledgers, most

transactions seem to have a single operation, while every few

ledgers we see transactions containing many operations that

appear to come from market makers managing offers. The

mean times to achieve consensus and update the ledger were

1061 ms and 46 ms, respectively. The 99th percentiles were

2252 ms and 142 ms (the former reflecting a 1-second timeout

in nomination leader selection). Note SCP’s performance is

mostly independent of transactions per second, since SCP

agrees on a hash of arbitrarily many transactions. Bottle-

necks are more likely to arise from propagating candidate

transactions during nomination, executing and validating

transactions, and merging buckets. We have not yet needed

to parallelize stellar-core’s transaction processing over multi-

ple CPU cores or disk drives.

We also evaluated the number of SCP messages broadcast

on the production network. In the normal case with a single

leader elected to nominate a value, we expect seven logical

messages to be broadcast: two messages to vote and accept

a nominate statement, two messages to accept and confirm

a prepare statement, two message to accept and confirm

a commit statement, and finally, an externalize message

(sent after committing a new ledger to disk to help stragglers

catch up). The implementation combines confirm commit

and externalize messages as an optimization, since it is

safe to externalize a value after it is committed. We then ana-

lyze metrics gathered on a production Stellar validator. Over

the course of 68 hours, 1.3 messages/second were emitted,

averaging to 6-7 messages per ledger. We note that the total
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Percentile

Number of Timeouts

Nomination Balloting

75% 0 0

99% 1 0

Max 4 1

Figure 8. Timeouts per ledger over 68 hours

count of messages broadcast by validators is larger, since in

addition to federated voting messages, nodes also broadcast

any transactions they learn about.

Figure 8 shows the timeouts experienced by a production

validator over a period of 68 hours. Nomination timeouts are

a measure of the (in)effectiveness of the leader election func-

tion, while ballot timeouts depend heavily on the network

and potential message delays. The timeouts are consistent

with the number of messages emitted: six messages in the

best case scenario, and at least seven messages if an addi-

tional nomination round is needed.

7.3 Controlled experiments

We ran controlled experiments in containers packed onto

Amazon EC2 c5d.9xlarge instances with 72 GiB of RAM,

900 GB of NVMe SSD, and 36 vCPUs. Each instance was in

the same EC2 region and had a fixed bandwidth of 10 Gbps.

We used SQLite as a store. (Stellar also supports PostgreSQL,

but that has asynchronous tasks that inject noise into mea-

surements.)

Stellar provides a built-in runtime query, generateload,
that allows generating synthetic load at a specific target

transaction/second rate. Although Stellar supports various

trading features, such as order book and cross-asset path

payments, we focused on simple payments.

Confirming transactions consists of multiple steps, so we

recorded the measurements for each of the following:

• Nomination: time from nomination to first prepare

• Balloting: time from first prepare to confirming a

ballot committed

• Ledger update: time to apply consensus value

• Transaction count: confirmed transactions per ledger

Each of our experiments was defined by three parameters:

the number of account entries in the ledger, the amount of

load (in the form of XLM payments) submitted per second,

and the number of validators. We configured every validator

to know about every other validator (a worst-case scenario

for SCP), with quorum slices set to any simple majority of

nodes (so as to maximize the number of different quorums).

Baseline Our baseline experiment measured Stellar with

100,000 accounts, four validators, and the load generation

rate of 100 transactions/second. We observed 507 transac-

tions per ledger on average, with standard deviation of 49

(9.7%). Note that no transactions were dropped; the slight
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Figure 9. Latency as number of accounts increases

variance is due to scheduling limitations of the load genera-

tor. We observed that the number of transactions per ledger

was consistent with our load generation rate, given ledger

closing every 5 seconds. Nomination, balloting, and ledger

update showed mean latencies of 82.53 ms, 95.96 ms, and

174.08 ms, respectively.We observed that nomination latency

99th percentile is consistently under 61ms, with occasional

spikes of roughly 1 second, corresponding to the first step

in the timeout function of leader selection.

Given the baseline performance, we looked at the effects

of varying each of the test setup parameters.

Accounts The data in Figure 9 suggests that Stellar scales

well as the number of accounts increases. Generation of test

accounts became a lengthy process, as bucket creation and

merging prevented us from simply populating the database

with accounts directly via SQL. Therefore, we conducted our

experiments for up to 50,000,000 accounts. While there is

minimal impact on consensus and ledger update latencies,

we note that increasing accounts creates an overhead of

merging buckets, which get larger.

Transaction rate Transaction rate impacts the amount of

traffic multicast among validators, the number of transac-

tions included in each ledger, and the size of the top level

buckets. To understand the effects of increasing transaction

load, we ran an experiment with 100,000 accounts and 4 val-

idators.

Figure 10 shows slow growth in the consensus latency,

while the majority of time was spent updating the ledger.

Not surprisingly, as the transaction set increases in size, it

takes longer to commit it to the database. We also note that

ledger update latency is heavily implementation-dependent,

and is affected by the choice of the database.

Validator nodes To see how increasing the number of tier-

one validators impacts performance, we ran experiments

with 100,000 accounts, 100 transactions/second, and a vary-

ing number of validators from 4 to 43. All validators appeared

in all validators’ quorum slices; smaller quorum slices would

have a lesser impact on performance.
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Changing the number of validating nodes on the network

impacts the number of SCP messages exchanged as well as

the number of potential values during nomination. Figure 11

shows nomination time growing at a relatively small rate.

While the data suggests that balloting is the bottleneck, we

believe many scaling issues can be addressed by improving

Stellar’s overlay network to optimize network traffic. As

expected, ledger update latency remained independent of

the number of nodes.

Close rate Lastly, we wanted to measure Stellar’s end-to-

end performance by measuring how often ledgers are con-

firmed and whether Stellar meets its 5-second target without

dropping any transactions. We observed average ledger close

times of 5.03 s, 5.10 s, and 5.15 s as we increased account

entries, transaction rate, and number of nodes, respectively.

The results suggest that Stellar can consistently close ledgers

under high load.

7.4 Running a validator

One of the important features of Stellar is the low cost of

running a validator, as anchors should run (or contract with)

validators to enforce finality. SDF runs 3 production valida-

tors, all on c5.large AWS instances, which have two cores,

4 GiB of RAM and Intel(R) Xeon(R) Platinum 8124M CPU

@ 3.00GHz processors. Inspecting resource usage on one

of these machines, we observed the Stellar process using

around 7% of CPU and 300 MiB of memory. In terms of net-

work traffic, with 28 connections to peers and a quorum size

of 34, the incoming and outgoing rates were 2.78 Mbit/s and

2.56 Mbit/s, respectively. Hardware required to run such a

process is inexpensive. In our case, the cost is $0.054/hour

or about $40/month.

7.5 Future work

These experiments suggest Stellar can easily scale 1–2 orders

of magnitude beyond today’s network usage. Because the

performance demands have been so modest to date, Stellar

leaves room for many straight-forward optimizations using

well-known techniques. For example, transactions and SCP

messages are broadcast by validators using a naïve flooding

protocol, but should ideally use more efficient, structured

peer-to-peer multicast [30]. Additionally, database-heavy

ledger update time can be improved through standard batch-

ing and prefetching techniques.

8 Conclusion

International payments are expensive and take days. Fund

custody passes through multiple financial institutions in-

cluding correspondent banks and money transfer services.

Because each hop must be fully trusted, it is difficult for new

entrants to gain market share and compete. Stellar shows

how to sendmoney around theworld cheaply in seconds. The

key innovation is a new open-membership Byzantine agree-

ment protocol, SCP, that leverages the peer-to-peer structure

of the financial network to achieve global consensus under a

novel Internet hypothesis. SCP lets Stellar atomically commit

irreversible transactions across arbitrary participants who

don’t know about or trust each other. That in turn guaran-

tees new entrants access to the same markets as established

players, makes it secure to get the best available exchange

rates even from untrusted market makers, and dramatically

reduces payment latency.
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