
Research Statement

Geoffrey Ramseyer

My research bridges the design of high-performance
computer systems and the theoretical study of the
computational and economic tradeoffs implicit in system
architectures. I redesign system interfaces to guarantee
linear scalability, often through commutativity, which I
find provides additional surprising benefits. Conversely,
I study the tradeoffs in existing architectures, in order
to enable users to make informed decisions and to guide
my design of new architectures. Constructing these new
interfaces often requires translating theoretical computer
science and economics into practice, and in doing so I
am guided by my own theoretical analyses.

1 Overview
Too many applications cannot scale to a global deploy-
ment, both in terms of computational performance and in
terms of support for heterogeneous requirements. Com-
putatinally, countless systems, such as those built in the
classic replicated state machine architecture [2], execute
operations one by one, by design. This design prevents
most or all implementation parallelism on crucial work-
loads, and thus prevents applications from exploiting
the power of modern many-core datacenter hardware.
Furthermore, limited application interfaces constrain
user choices and give suboptimal economic outcomes.

For example, policymakers are interested in developing
new financial infrastructure [9]. Cryptocurrency compa-
nies have spent billions building this infrastructure at
so-called “scale.” Yet these systems typically reach only
dozens to hundreds of transactions per second, require lay-
ers of complex architecture, and, at best, only scale in nar-
row settings. These limitations force platforms to charge
exorbitant fees. This is absurd—payments should be too
cheap to bother metering—and yet these tradeoffs are ac-
cepted in the industry as inherent. Realizing the benefits
of new financial infrastructure, such as lower transaction
costs, improved interoperability, competition between dis-
parate systems, and improved access to financial services,
requires high-performance infrastructure that efficiently
supports heteregeneous economic tradeoffs.

I approach these problems by re-examining a system’s
overarching goals. Several of my projects redesign appli-
cation interfaces both to add commutativity (and thus
parallelism) as a first-class feature, and also to provide
the flexibility for users to choose their own tradeoffs.

These designs are not the standard solutions, but often
give surprising benefits beyond scalability, such as novel
forms of economic efficiency, fairness, and privacy—all
while simplifying a distributed implementation.

Conversely, I also examine the mathematical tradeoffs
inherent in existing architectures and interfaces. Many
systems give users the agency to make their own
well-informed cost-benefit analyses. Yet precise mathe-
matical understanding is required to make a cost-benefit
analysis; furthermore, some designs constrain users into
suboptimal tradeoffs. Theoretical understanding of the
underlying problems leads to improved system designs.

2 Speedex [12]
Interoperability between currencies requires an efficient
exchange between currencies. The standard design is a
continuous double-auction; that is, users submit offers to
trade, and the exchange sequentially either matches a new
offer against an earlier one or adds it to a list of open of-
fers. In the classic architecture [2], a fault-tolerant proto-
col replicates a totally ordered log of new offers, and repli-
cas of this state machine consume log entries sequentially.

This architecture prevents computational scalability.
A continuous double-auction is the worst-case workload
for optimistic parallelism. Every operation modifies
a single data structure, and the order between all
operations affects the exchange rate of each trade.

Furthermore, the architecture causes negative
economic externalities. Well-connected actors can
manipulate offer ordering (so-called “front-running,”
similar to “high-frequency trading”), extracting risk-free
profit at other users’ expense. This front-running is
especially prevalent on existing decentralized exchanges.
This architecture also explicitly matches offers pairwise,
implicitly grouping activity by the pair of traded assets.
Users therefore face the challenge of routing a trade
through intermediate assets, as trading pairs are not
uniformly liquid, and the most liquid trading pairs
generally involve a reserve currency, like the US Dollar.
This challenge makes the overall market less liquid than
it could be and creates risk-free arbitrage opportunities,
which act as a traffic multiplier and, in practice, have
overloaded decentralized exchanges.

Instead, my system, Speedex, leverages the the-
oretical literature on exchange markets to build a

1



currency exchange with near-linear computational
scalability (despite the worst-case workload), while
simultaneously addressing these economic challenges.
Instead of processing offers sequentially, the Speedex
replicated state machine consumes batches of offers
simultaneously. Batches execute in parallel, with min-
imal thread synchronization. Execution traces interleave
nondeterministically, but the end result of applying a
batch is deterministic—because Speedex uses a market
mechanism that makes offers in a batch commute.

Speedex achieves commutativity by settling all trades
in a batch at the same exchange rate, instead of at
different rates. Speedex also processes trades between
many currencies simultaneously, not just between pairs
of assets separately. Designing this mechanism means
translating a batch of offers into a model from the the-
oretical literature, the Arrow-Debreu exchange market
[1]. Exchange rates are quotients of asset “valuations”
computed on each batch. Conveniently, in any batch,
the valuations that clear the batch (each offer trades
iff its limit price is below the batch rate) are unique.1

Because every trade in the batch clears at the same
rate, this mechanism eliminates the type of front-running
(through order manipulation) that is especially prevalent
on decentralized exchanges. Additionally, because
rates are quotients of valuations, Speedex simplifies
trading in any pair of currencies, and eliminates the
trade routing problem and the resulting class risk-free
arbitrage opportunities.

A key technical challenge is in computing clearing
valuations at scale. Binary search solves the case where
a batch trades between two assets. However, when
many currencies are traded simultaneously, the problem
is equivalent to the much harder problem of computing
equilibria in linear Arrow-Debreu exchange markets.

Existing theoretical algorithms feature (1) poor asymp-
totic scaling, (2) unacceptable approximation error,
and (3) unworkable empirical performance. Speedex
starts with an iterative method [3], but scaling to tens
of millions of open offers and hundreds of thousands of
trades per second requires new ideas. I leverage market
structure not present in the theory to (1) improve the
asymptotics to a logarithmic runtime per iteration. I then
use a linear program to (2) shape approximation error
into acceptable forms, like trade fees. Finally, I achieve
good empirical performance through (3) close attention
to cache performance while parallelizing each iteration.

There are many natural extensions to Speedex’s
mechanism, so I also study their economic and
computational tradeoffs [13]. I show that several
natural economic desiderata are incompatible, so a
deployment of a batch trading mechanism must consider

1Unique up to rescaling, in nonempty markets.

its surrounding context.
Speedex is available open-source, both as a stan-

dalone implementation and as a prototype component
of a public blockchain.

Another surprising benefit of Speedex’s commutative
design is that it simplifies the process of deploying the
new mechanism. The prototype component uses only
10% of the code of the standalone implementation.
Changing a blockchains’s interface requires a complex,
coordinated upgrade, but the hard-to-audit parallel
code—which does not change the interface—can be
deferred to uncoordinated future upgrades.

3 Groundhog [14]
Speedex’s architecture, of blocks of commutative
transactions, generalizes to diverse applications far
outside of currency exchange.

Programmability enables self-serve innovation and
seamless extensibility, and is critical if a system is to
support a global population of heterogeneous users and
applications. In a replicated state machine, programma-
bility, taken to its limit, means letting each transaction
run arbitrary code (“smart contracts”) to modify, e.g., a
key-value store. Yet the standard sequential architecture
gives each transaction a global lock, and arbitrary code
can force sequential execution. Sequential execution
inherently limits system throughput, and is the root
cause of the absurdly high transaction fees in existing
blockchain infrastructure. How can a deterministic state
machine allow unrestricted programmability and linear
scalability through parallelism?

Through my system Groundhog, I tackle this
challenge with a novel set of semantics through which
arbitrary programs modify a state machine (a key-value
store). Like Speedex, it concurrently executes blocks of
transactions, while the semantics guarantee transactions
in a block commute. Transactions read from a snapshot
taken at the start of the block, and write typed
modifications to typed values. The key contribution is
the design of a minimal set of sufficiently powerful types.

For example, Groundhog maintains an “integer”
type, which is modified by addition and subtraction.
Addition and subtraction commute, so the runtime
deterministically resolves concurrent modifications to
the same key by computing the net change.

Applications also need constraints, such as nonnega-
tivity in account balances. Groundhog maintains con-
straints through precise assembly of transaction blocks,
using a reserve-commit system. Block assembly is as
scalable (i.e., linearly) as the process of executing a block
of transactions and checking for constraint violations.

Surprisingly, our nonnegative integer primitive, a natu-
ral fit for account balances, also implements a semaphore.
Applications therefore can implement only the locks

2



they need, instead of having to pay for a global lock.
Groundhog demonstrates that this nonnegative

integer primitive, along with a bytestring type and a
sorted set type, suffice to implement a wide variety of
applications. Importantly, they implement, as a fallback,
the message-passing “actor” model. Thus, although
Groundhog’s design differs from the standard, it
is strictly more expressive than several production
systems, and lets each application choose its own
locks and throughput. Applications written to be
scalable run at high throughput, and low-throughput
applications run slowly, but slow applications cannot
slow down fast applications. In other words, applications
built in Groundhog could implement individual fee
mechanisms, but only if necessary, and users would only
pay for the costs they incur—and never pay the absurd
cost of a global lock.

My open-source implementation handles more
than half a million payments per second. Unlike all
prior systems, my implementation is linearly scalable
and reaches this throughput regardless of how often
transactions contend on the same account.

3.1 Privacy Through Commutativity
A surprising benefit of Groundhog’s commutativity
is that it enables efficient account audits (and publicly-
verifiable proofs of fraud) in the traditional privacy
model of financial institutions, without expensive
cryptography [15]. This fills a crucial gap in the
literature for proving institutional solvency [4]: namely,
proving correctness of the movement of funds, not just
correctness at snapshots.

Users typically expect their data to be private to
only them, their financial institution, and, in certain
instances, the government. Yet public blockchains
require all transaction history to be public. This
requirement is inherent to sequential systems, because
verifying one transaction (verifying correctness of reads
and writes) requires replaying the entire history.

In contrast, in Groundhog, all transactions in one
block read from the same snapshot, and modifications
are applied at the end of the block. Thus, it suffices for
an institution to publish at each block a commitment
to ledger state, to the set of transactions, and to an
index of state modifications. A user can verify their own
account history with appropriate commitment openings.

Crucially, a user only accesses their own subset of the
ledger. Not only does this enable standard access controls,
but also means that a user’s computational requirements
are proportional only to their own usage. For comparison,
in a sequential system, each new user imposes additional
costs on every other user. Those costs inherently limit
a sequential system’s ability to scale to many users.

These efficient audits also allow limited end-user hard-

ware to meaningfully interact with a high-performance
ledger on datacenter hardware. Equivalently, by
publishing a limited set of commitment openings,
Groundhog can efficiently prove to external systems
that an event (or fraud) happened.

4 Theoretical Tradeoffs in Sys-
tems Design

The other side of my research studies the computational
and economic tradeoffs inherent in system architectures.
Understanding these tradeoffs both enables users to
make informed cost-benefit tradeoffs, and guides my
research into new system designs, like Speedex, that
bypass these tradeoffs.

4.1 Market-Making
As an example, recent years have seen interest in
market-making through simple, automated strategies,
parametrized by a “trading curve.”2 How can market-
makers who use these systems pick one curve over
another? I give an explicit transformation [7], through
the KKT conditions of an optimization problem, that
maps implicit beliefs on future prices and volatility into
an optimal curve. The simplicity of these strategies
is an artefact of the computational constraints of
public blockchains—but my analysis shows the baseline
performance of market-making under these limits.

Additionally, users trading with these passive
market-makers may want to hide their opinions on asset
prices (implicitly, to obscure the size of their trades).
Yet adding noise to trades, as in differential privacy,
perturbs the market-maker’s price quotes, which creates
arbitrage opportunities. We characterize [6] the noise
distributions that can be appropriately priced, so that
privacy-conscious traders pay for exactly the arbitrage
they create. Importantly, the resulting mechanism
allows each user to choose their own personalized noise
distribution based on their own privacy requirements.

4.2 Payment Channel Networks
Payment channels give another tool for accelerating
computationally-limited blockchains. In a payment chan-
nel, two users deposit collateral and transact by privately
changing ownership records of the collateral. Bilateral
channels can link together into a network, with payments
routed across the graph. Yet not every payment can
be routed safely, if, for example, one side of a channel
owns all of the collateral. A payment channel network
multiplies blockchain throughput, but not infinitely.

Users face a complex tradeoff between network
structure, capital costs, and network performance. We

2These are often referred to as “Constant-Function Market
Makers,” and are closely related to prediction markets.[8]

3



show [5] how to understand this tradeoff, and how a
user’s individual choices relate to the network’s geometry.
But we also show that this tradeoff is inherently
suboptimal [11]. The fact that a user allocates capital
to specific pairwise channels, instead of to all of their
channels simultaneously, causes an at-least quadratic
reduction in asymptotic performance.

4.3 Distributed Sequencing
Distributed systems need a principled way to sequence
operations, especially when ordering carries economic
consequences. Yet different parts of a georeplicated
system may have different local views on transaction
arrival order. The overall system ordering should take
each individual view into account.

I argue that this problem is a streaming, unbounded
analogue of a classic social choice problem [10]. Adapting
a classical algorithm to this setting gives a mathemat-
ically well-founded method for reconciling individual
preferences on ordering. In fact, the resulting algorithm
has strictly stronger fairness and liveness guarantees
than the state of the art solutions to this problem in
the blockchain literature.

5 Future Directions
From the systems-building side of my research, my
implementations empirically support many millions
of users, but horizontal scaling to the billions of
people in the world requires horizontally scaling across
many machines, not just one. Dividing work over
physical machines raises the cost of any cross-thread
synchronization, but commutativity means that this cost
should be marginal in a natural extension of my designs.

One already identifiable challenge will be managing
a distributed database tuned for Groundhog and
Speedex’s workloads. Unlike most applications, my sys-
tems make very few (atomic) database transactions, but
each transaction is massive and constructed in parallel.
Additionally, public-facing infrastructure should hide the
layout of data between machines, to help guard against
denial of service attacks against a single machine. Yet
layout randomization appears in tension with the data
locality needed to quickly compute commitments to a
key-value store, such as Merkle-Patricia trie root hashes.

Speedex and Groundhog add a new design point
to a long literature on deterministic databases and
consistency in distributed systems. This architecture
could apply to use cases beyond financial infrastructure,
but may require new abstractions beyond Groundhog’s
primitives, or new big-picture methods for clearing
batches of operations, as in Speedex. Additionally,
because this architecture differs from the standard
sequential model, developers may find it challenging to
verify application code correctness. However, scalability

presents new opportunities. For example, Groundhog
might run real-time security analyses, such as runtime
checking of user-written security predicates.

And conversely, I want to continue to study the inter-
action of computation and economics in my new system
interfaces. As a concrete example, Speedex’s ability
to compute equilibria efficiently relies on the fact that
all offers trade from one asset to one other asset. In the
Arrow-Debreu exchange market model, this corresponds
to agents with marginal utility for only two assets. We
show this class of utilities can be generalized well beyond
linear utilities [13] while retaining computational effi-
ciency, but natural use-cases in the real world necessitate
more complex utilities. For example, a trader might offer
to sell stock in exchange for any combination of cash and
government bonds, or might sell a bitcoin in exchange
for any combination of USD-pegged tokens. Assets
with varying fungibility, such as bonds with varying
maturities, present new challenges for Speedex’s design.

I also suspect that continued study of the tradeoffs
in existing systems will continue to point to interesting
system designs. Preliminary results suggest that different
ways of combining the peer-to-peer transaction systems
can lead to qualitatively different system dynamics. novel
combinations of some of the peer-to-peer transaction sys-
tems I have studied on their own qualitatively change the
economic calculus of individual users. And my study [13]
of the interaction between my systems’ batch execution
model and other economic primitives has only begun
to scratch the surface of a fascinating research area.

The near future represents an opportunity for engi-
neers and policymakers to build new digital infrastructure
linking together all of the disparate systems that we have
today. Secure, distributed transactions across systems
that today remain locked in proprietary silos could
provide seamless interoperability, increased competition,
and accelerated innovation. But realizing these benefits
requires infrastructure that is high-performance, exten-
sible, and that supports customizable, flexible economic
tradeoffs. However, the system interfaces we build we
will be stuck with for decades, making good interface de-
sign crucial. No existing, sequential architecture is up to
this task. Academia’s neutral status between government
and industry makes it the ideal place to do this research
and to collaborate with policymakers, with the financial
industry, and with the broader research community.

References
[1] Kenneth J Arrow and Gerard Debreu. Existence

of an equilibrium for a competitive economy.
Econometrica: Journal of the Econometric Society,
pages 265–290, 1954.

[2] Miguel Castro, Barbara Liskov, et al. Practical

4



byzantine fault tolerance. In OsDI, volume 99,
pages 173–186, 1999.

[3] Bruno Codenotti, Benton McCune, and Kasturi
Varadarajan. Market equilibrium via the excess de-
mand function. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing,
pages 74–83, 2005.

[4] Gaby G Dagher, Benedikt Bünz, Joseph Bonneau,
Jeremy Clark, and Dan Boneh. Provisions:
Privacy-preserving proofs of solvency for bitcoin ex-
changes. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications
Security, pages 720–731, 2015.

[5] Ashish Goel and Geoffrey Ramseyer. Continuous
credit networks and layer 2 blockchains: Mono-
tonicity and sampling. In Proceedings of the 21st
ACM Conference on Economics and Computation,
pages 613–635, 2020.

[6] Mohak Goyal and Geoffrey Ramseyer. Pricing
personalized preferences for privacy protection in
constant function market makers. In Proceedings
of the 2023 ACM CCS Workshop on Decentralized
Finance and Security, 2023.

[7] Mohak Goyal, Geoffrey Ramseyer, Ashish Goel,
and David Mazières. Finding the right curve:
Optimal design of constant function market makers.
EC ’23, page 783–812, New York, NY, USA,
2023. Association for Computing Machinery. DOI
10.1145/3580507.3597688.

[8] Robin Hanson. Logarithmic markets coring rules
for modular combinatorial information aggregation.
The Journal of Prediction Markets, 1(1):3–15, 2007.

[9] Board of Governors of the Federal Reserve Sys-
tem. Federal reserve announces that its
new system for instant payments, the fed-
now® service, is now live. https://web.
archive.org/web/20230721012415/https:
//www.federalreserve.gov/newsevents/
pressreleases/other20230720a.htm, June 2023.

[10] Geoffrey Ramseyer and Ashish Goel. Fair ordering
via streaming social choice theory. arXiv preprint
arXiv:2304.02730, 2023.

[11] Geoffrey Ramseyer, Ashish Goel, and David
Mazières. Liquidity in credit networks with
constrained agents. In Proceedings of The Web
Conference 2020, pages 2099–2108, 2020.

[12] Geoffrey Ramseyer, Ashish Goel, and David
Mazières. SPEEDEX: A scalable, parallelizable,
and economically efficient decentralized EXchange.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 849–
875, Boston, MA, April 2023. USENIX Association.

[13] Geoffrey Ramseyer, Mohak Goyal, Ashish Goel,
and David Mazières. Augmenting batch exchanges
with constant function market makers. arXiv
preprint arXiv:2210.04929, 2022.

[14] Geoffrey Ramseyer and David Mazières. Groundhog:
Scaling smart contracting through commutative
transaction semantics. 2023.

[15] Geoffrey Ramseyer and David Mazières. Heteroge-
nous and efficient partial auditing of replicated
state machines. 2023.

5

https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm

	Overview
	Speedex speedex
	Groundhog groundhog
	Privacy Through Commutativity

	Theoretical Tradeoffs in Systems Design
	Market-Making
	Payment Channel Networks
	Distributed Sequencing

	Future Directions

