
SCALABLE INFRASTRUCTURE
FOR DIGITAL CURRENCIES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Geoffrey Ramseyer
September 2023

© 2023 by Geoffrey Daniel Ramseyer. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This dissertation is online at: https://purl.stanford.edu/wv519wt7540

ii

https://purl.stanford.edu/wv519wt7540

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

David Mazieres, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Boneh

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Ashish Goel

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Preface

Recent years have seen a significant increase in interest among policymakers and financial institu-
tions in digital currencies and a new generation of financial infrastructure. This thesis investigates
the design of computational infrastructure and economic mechanisms for these new systems. Specif-
ically, this thesis develops infrastructure that, unlike prior state-of-the-art systems, performs with
computational scalability that is nearly-linear on both best-case and worst-case workloads, and that
does not significantly limit the range of operations that a user can express. Building this infrastruc-
ture requires instantiating and therefore demonstrating the practical feasibility of previously-unused
types of economic mechanisms for exchanging digital currencies, with efficiency and fairness proper-
ties of independent interest. This thesis then studies the economic tradeoffs encoded in mechanisms
for exchanging assets, the tradeoffs involved when combining different mechanisms together, and
ways in which these mechanisms interact with the underlying computational infrastructure.

iv

Acknowledgments

This thesis would not exist without the kindness and support of so many people, to whom I owe
an immense debt of gratitude. I have been extremely lucky to have many people generously take
the time to teach me, for which I will always be thankful. First and foremost, I want to thank my
advisors, Ashish Goel and David Mazières. Not only have I learned so much from the very different
perspectives you bring to research problems, but you are two of the nicest people I have had the joy
of meeting. The PhD is a long journey but I have always felt well-supported and it is impossible
to leave a conversation with the two of you without coming away encouraged and enthusiastic, no
matter what else is going on. And thanks to David for letting me defend this thesis even though
I might not be quite ready to “survive on a desert island with nothing but an Arch Linux CD
and maybe an Ethernet connection.” Many thanks also to Dan Boneh and the rest of my defense
committee, David Tse and Markus Pelger.

I also would like to thank Maryanthe Malliaris for teaching me all about ultrafilters and model
theory while at the University of Chicago. This thesis does not directly touch on ultrafilters, but
your approach to mathematics and to research has proved extremely helpful.

Many thanks to my fantastic coauthor Mohak Goyal, and all of the people from whom I had the
chance to learn while at Stanford, whether by collaborating on a project, from so kindly taking the
time to explain something interesting, or just through chatting at a group lunch: Brian Axelrod,
Christie Di, Nikhil Garg, Lodewijk Gelauff, Jack Humphries, Zhihao Jiang, Anilesh Krishnaswamy,
Evan Laufer, Paul Liu, Joachim Neu, Alex Ozdemir, Ben Plaut, Sukolsak Sakshuwong, Sahasrajit
Sarmasarkar, Matthew Sotoudeh, Akshay Srivatsan, Nirvan Tyagi, Marco Vassena, Zachary Yedidia,
Gina Yuan, Greg Zanotti, and Hongyang Zhang.

I also want to thank the people at the Stellar Development Foundation for a wonderful summer
internship and especially Jon Jove, Graydon Hoare, Guiliano Losa, and Nicolas Barry for many
fruitful conversations around the challenges of taking a research project into practice.

I first realized that I enjoyed working on open-ended research problems in middle school when
some friends and I got together to start a FIRST Lego League team, The Battery-Powered Picklejar
Heads [29]. I want to thank all of the Pickles for creating such a wonderful collaborative (if chaotic)
environment, and I count myself lucky to consider you lifelong friends. I also would not be writing

v

this without the invaluable guidance and support of the team-coaches-turned-lifelong-mentors, Paul
Perry and Kevin Oye.

Thank you also to all of the friends from back home, from Chicago, and from California who
have supported me and who make life fun. I would not have made it through the long PhD without
the many wonderful times spent with all of you, whether backpacking, cycling, wine tasting (special
thanks to the Stanford Wine Society), traveling somewhere together, or just enjoying a quiet after-
noon. There are too many of you to list here, but know that I intend to thank all of you personally
the next time I see you.

And last but certainly not least, thank you to my parents, Mark Ramseyer and Norma Wyse,
and to my entire extended family, for supporting me and encouraging me for my entire life. Special
thanks to my sister Jenny Ramseyer for being a fantastic partner-in-crime over many adventures
and for always being there for me, and to my brother-in-law Eli Davis for being a wonderful addition
to the family. The ideas behind some of the chapters in this thesis were cooked up while stuck in
quarantine with you two in that tiny apartment.

vi

Contents

Preface iv

Acknowledgments v

1 Introduction 1
1.1 Thesis Objective . 3
1.2 Technical Overview . 5

1.2.1 Replicated State Machines . 5
1.2.2 Scalability and Computational Performance 7
1.2.3 Ordering and Information Flow . 9
1.2.4 Economic Performance . 11

1.3 Thesis Outline . 12

2 Groundhog:
Scaling Smart Contracting via Commutative Transaction Semantics 16
2.1 Introduction . 16
2.2 Architecture Overview . 18

2.2.1 Design Properties . 20
2.2.2 Design Motivation . 21

2.3 Commutative Semantics . 22
2.3.1 Snapshot Reads . 22
2.3.2 Typed Storage Objects . 23

2.4 Evaluation: Semantic Flexibility . 25
2.4.1 Tokens . 25
2.4.2 Locks . 26
2.4.3 Replay Prevention . 26
2.4.4 Auctions . 27
2.4.5 Money Market . 27
2.4.6 Sequencers and the Actor Model . 28

vii

2.5 Implementation . 29
2.5.1 Block Proposal via 2-Phase Locking . 30
2.5.2 Additional Details . 30

2.6 Evaluation: Scalability . 31
2.7 Extension: Incomplete External Calls . 37
2.8 Design Limitations . 38
2.9 Related Work . 39

2.9.1 Semantic Changes . 39
2.9.2 Parallel Execution . 39
2.9.3 Ordering Semantics . 40
2.9.4 Divided State . 40

2.10 Conclusion . 41

3 SPEEDEX:
A Scalable, Parallelizable, and Economically Efficient Decentralized EXchange 42
3.1 Introduction . 42

3.1.1 SPEEDEX: Towards an Ideal DEX . 44
3.1.2 SPEEDEX Overview . 45

3.2 System Architecture . 46
3.2.1 SPEEDEX Module Architecture . 48
3.2.2 Design Properties . 50

3.3 Commutative DEX Semantics . 51
3.4 Price Computation . 52

3.4.1 Requirements . 52
3.4.2 From Theory To Practice . 52

3.5 Price Computation: Tâtonnement . 53
3.5.1 Efficient Demand Queries . 54
3.5.2 Multiple Tâtonnement Instances . 54

3.6 Evaluation: Price Computation . 54
3.6.1 Accuracy and Orderbook Size . 55
3.6.2 Robustness Checks . 55

3.7 Evaluation: Scalability . 58
3.7.1 Alternative Scaling Techniques . 60

3.8 Design Limitations and Mitigations . 66
3.9 Implementation Details . 68

3.9.1 Blockchain Integration . 69
3.9.2 Caches and Tâtonnement . 69
3.9.3 Batched Trie Design . 70

viii

3.10 Related Work . 70
3.11 Conclusion . 72

4 Fair Ordering via Streaming Social Choice Theory 73
4.1 Introduction . 73

4.1.1 Our Results . 74
4.2 Preliminaries and System Model . 75
4.3 Related Work . 76
4.4 Defining Fair Ordering . 78

4.4.1 Batch Order Fairness . 78
4.4.2 Batch Minimality . 78
4.4.3 Comparison to Prior Work . 81

4.5 Ranked Pairs Voting . 82
4.6 Streaming Ranked Pairs . 83

4.6.1 Decisions Are Local . 84
4.6.2 A Streaming Algorithm . 85

4.7 Liveness and Efficiency . 88
4.7.1 Efficient Marginal Runtime . 88
4.7.2 Protocol Liveness . 89
4.7.3 Trading Accuracy for Liveness . 92

4.8 Protocol Instantiation . 92
4.9 Conclusion . 94

5 Finding the Right Curve:
Optimal Design of Constant Function Market Makers 95
5.1 Introduction . 95

5.1.1 Our Contributions . 96
5.1.2 Related Work . 100

5.2 Preliminaries . 101
5.3 Model . 102

5.3.1 Liquidity . 103
5.3.2 CFMM Inefficiency . 104
5.3.3 A Liquidity Provider’s Beliefs . 106
5.3.4 Belief Functions From Price Dynamics . 107

5.4 Optimizing for Liquidity Provision . 108
5.4.1 A Convex Program for Optimal Liquidity Allocation 108
5.4.2 Optimality Conditions . 111

5.5 Common CFMMs and Beliefs . 114

ix

5.5.1 The Uniform, Independent Belief: Constant Product Market Makers 114
5.5.2 Uniform Beliefs on Exchange Rate Ranges: Concentrated Liquidity Positions 115
5.5.3 Skew in Belief Function: Weighted Product Market Makers 116
5.5.4 Logarithmic Market Scoring Rule . 116

5.6 Market-Maker Profit and Loss . 117
5.6.1 Fee Revenue . 117
5.6.2 Liquidity Provider Loss . 118
5.6.3 Net Profit . 119
5.6.4 Divergence Loss Shifts Liquidity Away From the Current Exchange Rate . . . 120

5.7 Conclusion . 121

6 Augmenting Batch Exchanges with Constant Function Market Makers 122
6.1 Introduction . 122

6.1.1 Preliminaries . 123
6.1.2 System Model . 124
6.1.3 Our Results . 125
6.1.4 Related Work . 130

6.2 Axioms of Batch Exchanges with CFMMs . 132
6.2.1 Asset Conservation . 132
6.2.2 Uniform Valuations . 132
6.2.3 Limit Sell Orders Make a Best Response . 133
6.2.4 CFMM Design Specification . 133

6.3 Desirable Properties of Market Equilibria . 133
6.3.1 Pareto Optimality . 133
6.3.2 Price Coherence and Mitigating Cyclic Arbitrage 134
6.3.3 Joint Price Discovery and Mitigating Parallel Running 138
6.3.4 Locally Computable Response for CFMMs 139
6.3.5 Path Independence . 142

6.4 Beyond Market Equilibria Solutions . 144
6.5 A Convex Program for 2-asset WGS Demands . 146

6.5.1 From a Demand Function to a Continuum of Limit Orders 146
6.5.2 Convex Program . 148
6.5.3 Rationality of Convex Program . 151

6.6 Conclusion and Open Problems . 153
6.6.1 Open Problems . 153

7 Conclusions 154

x

A Chapter 3 Supporting Information 156
A.1 Mathematical Model Underlying SPEEDEX . 156

A.1.1 Arrow-Debreu Exchange Markets . 156
A.1.2 From SPEEDEX to Exchange Markets . 157
A.1.3 Existence of Unique* Equilibrium Prices . 158

A.2 Approximation Error . 159
A.3 Tâtonnement Modifications . 160

A.3.1 Price Update Rule . 160
A.3.2 Demand Smoothing . 162
A.3.3 Periodic Feasibility Queries . 162

A.4 Linear Program . 163
A.5 Market Structure Decomposition . 164
A.6 Alternative Batch Solving Strategies . 165

A.6.1 Convex Optimization . 166
A.6.2 Mixed Integer Programming . 167

A.7 Tâtonnement Preprocessing . 167
A.8 Buy Offers are PPAD-hard . 168
A.9 Deterministic Filtering Performance . 169
A.10 Block-STM Baseline . 169
A.11 Additional Implementation Details . 169

A.11.1 Data Organization . 171
A.11.2 Data Storage and Persistence . 171
A.11.3 Follower Optimizations . 171
A.11.4 Replay Prevention . 172
A.11.5 Fast Offer Sorting . 172
A.11.6 Nondeterministic Block Assembly . 172

A.12 Additional Replicas . 173

B Chapter 4 Supporting Information 175
B.1 Truncation of Ranked Pairs . 175
B.2 On the Difficulty of Statically Choosing γ . 176
B.3 Themis and Early Finalization . 176
B.4 Ranked Pairs and Interleaved Components . 178
B.5 Algorithm 2 Is Not Asymptotically Live . 180
B.6 Oracle Implementation . 181

xi

C Chapter 5 Supporting Information 182
C.1 CFMMs and Market Scoring Rules . 182
C.2 Continuous Trade Size Distributions . 183
C.3 Omitted Proofs . 184

C.3.1 Omitted Proofs of §5.2 and §5.3 . 184
C.3.2 Omitted Proof of Corollary 5.4.6 . 185
C.3.3 Omitted Proof of Corollary 5.4.7 . 185
C.3.4 Omitted Proof of Lemma 5.4.8 . 186
C.3.5 Omitted Proof of Lemma 5.4.10 . 186
C.3.6 Omitted Proof of Corollary 5.4.12 . 186
C.3.7 Omitted Proof of Corollary 5.4.15 . 187
C.3.8 Omitted Proof of Corollary 5.4.16 . 187
C.3.9 Omitted Proof of Corollary 5.4.17 . 187
C.3.10 Omitted Proof of Proposition 5.5.3 . 188
C.3.11 Omitted Proof of Proposition 5.5.5 . 188
C.3.12 Omitted Proof of Proposition 5.5.6 . 189
C.3.13 Omitted Proof of Proposition 5.6.4 . 189
C.3.14 Omitted Proof of Theorem 5.6.7 . 190

D Chapter 6 Supporting Information 193
D.1 Existence of Equilibra with Positive Valuations . 193
D.2 Trading Rule U and Parallel Running . 194

Bibliography 197

xii

List of Figures

2.1 A sampling of various applications implementable in Groundhog, and the changes
required to implement them in Groundhog’s commutative model. 21

2.2 Transactions per second on Groundhog, varying the number of accounts ("acc") and
batch size ("bch"). 33

2.3 Transactions per second on Block-STM [179], varying the number of accounts ("acc")
and batch size ("bch"). 34

2.4 Transactions per second on Groundhog with batches of size 100,000, varying the
number of accounts. 35

2.5 Transactions per second on Block-STM with batches of size 100,000, varying the
number of accounts. 36

3.1 Architecture of SPEEDEX module (4, 5, 6) inside one blockchain node. 47
3.2 Minimum number of offers needed for Tâtonnement to run in under 0.25 seconds

(Smaller is better. Times averaged over 5 runs). The x axis denotes offer behavior
approximation quality (µ), and the y axis denotes the commission (ε). 56

3.3 Transactions per second on SPEEDEX, plotted over the number of open offers. . . 59
3.4 Time to propose and execute a block, plotted over the number of open offers. . . . 61
3.5 Time to validate and execute a proposal, plotted over the number of open offers

(measurements from one replica). 62
3.6 Median transaction rates, varying block size and number of open offers (grouped into

buckets of 2M). Shaded areas plot 10th to 90th percentiles. 63
3.7 Throughput of SPEEDEX on batches of payment transactions with varying thread

counts (average of 100 trials). 65

xiii

5.1 Some natural or widely used CFMM trading functions. The lognormal belief function
arises when we consider a snapshot of the Black-Scholes process at a future time. The
entire Black-Scholes process can be considered (in expectation) for the purpose of our
optimization framework via time-discounting (in the plot, the discounting parameter
is 1). It can then be compiled into a single belief function as described in §5.3.4.
Our Python script in the Github repository https://github.com/gramseyer/cfmm-

liquidity-optimization computes the belief function for the Black Scholes model.
For any user-submitted belief function, our script also finds the optimal CFMM trad-
ing functions for minimizing CFMM inefficiency. 98

5.2 Constant belief function – leads to the constant product market maker. 99
5.3 Belief function ψ(pX , pY) =

pXpY
(pX+pY)2 – leads to the LMSR based market maker . . . 99

5.4 Belief function ψ(pX , pY) =
(
pX
pY

)1/5

– leads to the weighted product market maker. 99
5.5 Lognormal belief function – leads to the Black-Scholes based CFMM after time-

discounted aggregation of the belief function. 99
5.6 Belief functions on future prices of the underlying assets relative to a numeraire. The

plots are on beliefs defined on the range (0, 1] – this is without loss of generality per
Corollary 5.4.6. 99

6.1 Examples of LCR CFMM trading rules. The axes are the CFMM’s reserves. The
blue curve is a level curve of the CFMM trading function on which the initial state
lies. The slope of the tangent to the level curve denotes the CFMM’s spot price. The
slope of the dotted orange line is the negative of the batch price for this example.
Here, the green and the orange lines have the same slopes. Trading Rules S and
U are per Definitions 6.1.10 and 6.1.8. Trading Rules E and F are inspired by the
rebalancing strategy of Milionis et. al [244] and are defined later in §6.4. The line
segment between points E and F corresponds to the class of Strict-Surplus Trading
Rules (Definition 6.4.5). 127

A.1 Time to solve the convex program of Devanur et al. [146] using the CVXPY toolkit
[149], varying the number of assets and offers. 166

A.2 Throughput of Block-STM on batches of “Aptos p2p” transactions with varying
thread counts (average of 100 trials). 170

A.3 Transactions per second on SPEEDEX when running with 10 replicas (on weaker
hardware than in Fig. 3.3), plotted over the number of open offers. 173

xiv

Chapter 1

Introduction

Digital currencies have been the subject of much attention in recent years, for reasons both positive
and negative. Digital infrastructure for financial transactions that is well-designed from the ground
up could enable interoperability between the disparate computer systems in place today, reduce
the costs of digital transactions across the economy, and increase access to financial pathways. At
the same time, mania and investor excitement around so-called cryptocurrencies today has enabled
widespread market manipulation, large-scale fraud, and outright theft. As such, regulators and
policymakers today around the world are simultaneously pursuing experiments around new, digital
financial infrastructure [253, 85, 256], and pursuing criminal charges against many cryptocurrency
entrepreneurs.

These potential benefits are not merely the idle speculation of academics, but the subject of
serious consideration and investment of resources by policymakers. In 2023 alone, for example, the
United States Federal Reserve launched a new real-time payments service [253] and a digital currency
pilot project [116], and the European Central Bank launched an upgrade to its earlier real-time
payments system [85]. The European Union [84], the Bank of Japan [323], and many other nations
and central banks [8, 252, 170, 254, 251] have similarly piloted or begun pilot central bank digital
currency prototypes, and the People’s Bank of China recently started a limited deployment of a
central bank digital currency systems [256]. Private companies have similarly launched many private
payment networks over the last several decades, and more recently have launched “stablecoins,” [26,
293, 14] digital tokens on public blockchains pegged to the value of traditional currencies. In the
words of the policymakers behind the central bank digital currency projects (such as in [256,
116, 252, 83]), the goals of these projects explicitly include improving the efficiency of financial
transactions (including both domestic and cross-border payments), supporting competition between
retail payment services, preserving open interoperability between payment systems (to e.g. maintain
fungibility between deposits at different institutions), preserving the role of cash as a public good
in the digital age, and expanding access to financial infrastructure.

1

CHAPTER 1. INTRODUCTION 2

Nor are any potential drawbacks mere abstract concerns. Also in 2023, the United States Gov-
ernment famously brought charges for several kinds of fraud against the founders of cryptocurrency
exchanges and lending protocols, [53, 50, 48, 52], among others. The United States Securities and
Exchange Commission is similarly pursuing charges of violations of securities laws against multiple
cryptocurrency exchanges [49, 47]. 1 Fraudulent activity and the general bubble of speculation on
this topic have led to serious financial harms.

These criminal activities are no small problem for market regulators, but even absent fraud and
market manipulation, new digital financial infrastructure raises significant challenges for policymak-
ers. For example, policymakers may be concerned that an influx of money into digital currencies
may sap deposits from the traditional banking system. Citing precisely this concern, 2 a recent
digital currency pilot project from the Bank of Japan [323], for example, tested the technical feasi-
bility of various limits on digital currency holdings. Digital currencies have the potential to further
exclude from modern economic life those without access to mobile devices and those less familiar
with modern digital technology. Additionally, central banks may not want to engage in the business
of providing banking relationships directly to consumers. Policymakers might also worry that open-
ing access to financial infrastructure makes it easier for fraudulent and criminal activity to access
financial systems, which could hamper their ability to target criminal resources. Simultaneously,
citizens may worry that a digital currency that supplants physical cash could give governments un-
precedented visibility and control over the financial lives of individuals, and even in a legal system
with robust due process controls on such access, the possibility of cybersecurity breaches means that
bad actors or adversary governments may access this valuable information.

All this is to mention that the decision to deploy new digital financial systems, or to allow and
regulate private deployments of financial infrastructure, poses a host of policy questions fraught with
complicated tradeoffs between effects spanning across society and the economy. As such, the form
and functionality of any digital financial infrastructure is something that should be decided upon
by policymakers and the democratic process, with consideration of the policy preferences of many
different stakeholders.

In an ideal world, the one set of considerations that should not influence policy choices are the
techological. Balancing between competing policy interests in the democratic process is already
difficult enough. We should design infrastructure to satisfy a policy choice, not tailor our policy
choices to the constraints of our infrastructure or to the specifics of legacy systems. Of course, some
things are technologically impossible. We therefore seek to explore the Pareto-frontier of potential
infrastructure for digital financial systems, so as to enable policymakers to make the technological
choices that best match their policy objectives.

1There is no better summary of the case against Binance, one of the exchanges in question, than the words of its
chief compliance officer, “[w]e are operating as a fking unlicensed securities exchange in the USA bro.”

2" 経済的な設計の周辺機能は、銀行預金から CBDC への急激なシフトを招かないようにするための、各種セーフガー
ドについて取り上げた" §2 [323], approximately translates as "The experiments tested the feasibility of many economic
safeguards to guard against the rapid shift of money from bank deposits to CBDC holdings."

CHAPTER 1. INTRODUCTION 3

More importantly, we seek not only to illuminate policy choices but to design novel and improved
system architectures and economic mechanisms for digital financial systems. We find that while not
only does economic mechanism design influence computational architecture, but novel computational
architectures can inspire novel economic mechanisms with independently interesting properties.

1.1 Thesis Objective

The focus of this thesis is on the technological infrastructure underpinning any potential new dig-
ital currency systems. Regardless of what policy choices are made, if such a system is to prove
durable and of lasting, long-term societal value, the infrastructure should at least have the following
properties.

1. Scalability: More computational resources should translate into higher throughput. We can-
not know performance requirements a deployment will have, especially not one used many
decades from now. Furthermore, policy choices and usage patterns necessarily influence in-
frastructure requirements. A system that infrequently moves large amounts of money between
banks, for example, has very different latency and throughput requirements than one that
frequently moves small amounts of money between retail users. Our infrastructure should be
able to support whatever policies are chosen, and however many users and use-cases there may
be.

Each requirement, feature, and marginal user added to any system will slow it down, at
least marginally. Computational scalability breaks this tradeoff. Instead of weighing features
against performance, policymakers can weight features and performance against the required
computational resources (such as operating costs). Low costs are better than high costs, but
even high costs are better than impossibilities.

2. Extensibility: The system should seamlessly be upgradeable to accept new standards and
components. We cannot know what all of the use-cases for a digital currency will be, and
thus our infrastructure should be able to adapt and upgrade in response. New cryptographic
standards may be adopted (e.g., post-quantum standards [58], or the recent explosion of zero-
knowledge research [214, 212, 106, 213, 247, 173, 148, 187, 259, 107, 105, 91, 92, 61, 310, 98]
3), new data formats and user identification systems may be needed, and new products and
external integrations may need to be supported.

Ideally, upgrades of different components should be deployable independently and in a self-
service manner. Upgrading a small piece of a system is much easier than upgrading an entire
system. The dual of this desideratum is Robustness; one badly-designed or faulty part of the
system should not necessarily cause problems for the rest of the system.

3This is only a very incomplete list of very recent work on this topic.

CHAPTER 1. INTRODUCTION 4

Market regulators can (and should) maintain the ability to authorize new products and up-
grades. However, in terms of actually getting a new idea into production in a large-scale piece
of infrastructure that integrates with many different, independently operating banks and ser-
vices, there is a huge difference between a system where one bank can, with authorization,
unilaterally upgrade an implementation of one of its products, and a system where upgrades
require implementation by market regulators themselves or by all other parties involved with
the infrastructure. 4

3. Economic Efficiency: This criterion depends on context, but broadly speaking, digital fi-
nancial infrastructure should achieve the goals set out for it. Technical considerations of the
infrastructure should also crucially not introduce misaligned incentives or opportunities for me-
chanical manipulation of economic outcomes. As an example of negative outcomes to avoid,
existing public blockchains admit automatic manipulation of transaction ordering, which en-
ables widespread front-running on decentralized exchanges [143, 161]. High latency and low
throughput complicate cross-chain asset swaps, inadvertently requiring mechanisms to give
out what amounts to free options [189], and require high transaction fees to limit transaction
rates.

Towards our goals, the research of this dissertation is guided by the following set of principles.

1. Every tradeoff should be the result of a fundamental technological impossibility.
This principle goes without saying in many contexts. We emphasize, however, that our goal
here is to design systems from first principles on the Pareto-frontier of what is possible, and
explicitly designate compatibility with legacy systems as a secondary concern. For example,
when we design in chapter 2 Groundhog, a linearly-scalable execution engine for financial
transactions, we design the semantics of the engine from a blank slate, rather than trying to
modify the semantics of the engines used in many existing systems. As a result, Groundhog is
not only linearly scalable but also flexible and upgradeable (as transactions execute arbitrary
logic), and of course deterministic (and thus replicable and auditable).

This principle also leads us to explore redesigning the semantics of higher-level applications,
instead of taking existing application semantics as a hard constraint. In chapter 3, we design
a high-performance currency exchange by changing how the exchange matches and satisfies
trade requests. And finally, in chapter 4 we design protocols for sequencing transactions fairly
when faced with the fundamental impossibility of an obvious global, uniform transaction order.

2. The costs and benefits of tradeoffs should be transparent and well-understood.
Policymakers must be able to understand the effects of architectural tradeoffs in order to make

4Policymakers, bankers, and technologists all, quite naturally, have different areas of expertise. These should be
used complementarily.

CHAPTER 1. INTRODUCTION 5

informed choices. For example, chapters 2 and 3 demonstrate that small amount of latency in
transaction processing can be exchanged for a nearly-arbitrary amount of overall throughput.
A common design choice in public blockchains is to amortize the latency of a consensus protocol
by grouping transactions into blocks prior to invoking the consensus protocol. Our designs take
advantage of this block structure by designing applications that can process whole blocks of
transactions together (and computationally in parallel), instead of one-by-one. Chapter 3 also
shows that in the case of a currency exchange, this manner of processing blocks of transactions
together improves fairness of access and removes the problem of fragmenting liquidity between
pairs of assets.

From the opposite angle, we study in chapter 5 the fine-grained economic tradeoffs when
allocating capital for market-making in a widely-used, restricted class of automated strategies.

3. Architectural decisions around tradeoffs should be as fine-grained as possible.
To reiterate, digital platforms for financial transactions are often systems that are shared
between many stakeholders and subject to competing policy goals. As much as possible, each
stakeholder should be able to make their own decisions about what architectural tradeoffs are
most suited to their use-case.

Concretely, our digital currency engine Groundhog simultaneously supports multiple consis-
tency semantics, and is strictly more expressive and less restrictive than many systems deployed
in the real-world today. There are even some things that are possible to do within Groundhog
that are fundamentally impossible in traditional designs.

Applications running within this engine can, for example, either achieve scalable throughput
by (implicitly) processing whole blocks of transactions together, but applications that need to
operate sequentially can do so, at the cost of limited throughput. Additionally, such appli-
cations can choose their own policy for sequencing transactions, and chapter 4 exhibits one
potential policy.

1.2 Technical Overview

1.2.1 Replicated State Machines

Thus far, we have not precisely defined what digital financial infrastructure actually consists of,
and have deliberately mixed together terms like “digital asset,” “central bank digital currency,” and
“cryptocurrency.” These terms mean entirely different things in real-world applications, and are not,
in general, interchangeable. One USD deposited in a bank is legally distinct 5 from one USD’s worth
of liabilities issued by the US government and from one USD’s worth of digital or physical cash,

5I am not a lawyer, and this is not legal advice.

CHAPTER 1. INTRODUCTION 6

and is even distinct one USD deposited in a different bank. All of these carry completely different
significance from cryptocurrencies like Bitcoin [249] and Ethereum [308], which are again completely
different from ever more obscure (and very often dubious) financial products [37, 31, 51, 139, 305].
6

We mixed these terms introducing this dissertation because the differences between these objects
are, to a first approximation, unrelated to the subject of our research. All of these objects are repre-
sented as bits within a digital system, and ownership changes or other financial transactions reduce
to changing bits according to predefined sets of rules. The very real differences between these asset
classes comes from the meanings that are assigned to the bits, not the bits themselves. 7 Different
assets and different deployment contexts create different transaction patterns and infrastructure re-
quirements, but nevertheless, nearly all digital financial infrastructure operates under some variant
of the same underlying architectural paradigm.

That common paradigm is the replicated state machine. The infrastructure maintains some state;
for example, the state of a digital currency system might contain an account balance for each user
and configuration data. Users submit transactions, which modify state in some specified manner; for
example, a transaction might verify a digital signature, and then transfer money from one account
to another. For robustness against hardware failure, this state machine is often replicated across
multiple physical machines; one common configuration is one primary replica with several backup
replicas [230, 299, 257, 57], each of which is ready to take the place of the primary.

For this paradigm to be self-consistent, each copy of the state machine maintained by a backup
replica has to be identical to that maintained by the primary. A core challenge for this paradigm is
in maintaining this consistency between replicas as the state machine evolves over time, in response
to user transactions. The most straightforward approach, used in a wide variety of applications in-
cluding not just digital currency prototypes [249, 64, 234] but also networked filesystems, distributed
databases, and many others [257, 299, 230, 114], is to break the challenge into two pieces. First,
replicas use some consensus protocol8 to agree on a totally ordered log of transactions, where log
entries are only appended to the end of the log and the log grows monotonically over time. And
second, each replica sequentially executes the transactions in the log, according to the agreed-upon
order, to update the state machine over time.

As long as each transaction can be executed deterministically 9 and transactions execute in the
6Which are all again different assets like so-called “non-fungible tokens” [159] that purport to represent ownership

of art objects or to prove identity [306]. One wishes Walter Benjamin’s treatise on art and mechanical reproducibility
were more widely read [93].

7Digital financial infrastructure is entirely digital, without direct ability to manipulate any physical objects, except
in as much as the physical world grants it the ability to do so by means of agreement that changes in the digital
system should be reflected in the physical world. To borrow Saussure’s philosophy of language [279], social consensus
creates a relationship between the “signifier” bits and ownership of the “signified” assets.

8Such as one of [222, 316, 242, 181, 274, 198, 257, 114]. Different protocols have different performance characteristics
and operate in different contexts.

9To be pedantic, what is strictly necessary is that a transaction’s execution is the same in each copy of the state
machine. Randomization would be possible if every replica has access to the same (pseudo)random bits. For example,
replicas could start with a shared seed for a pseudorandom generator, or a primary replica could insert the random

CHAPTER 1. INTRODUCTION 7

same order at each replica, then every replica of the state machine will compute the same state (after
any finite index in the log). This decomposition has the convenient property that the computational
work of executing transactions need not proceed strictly in lock-step between all replicas, as it suffices
for replicas to simply agree on a transaction log. Similarly, this computational work is not on the
critical path between receiving a transaction request (e.g., from a client) and confirming that the
transaction is added to the log.

At first glance, this sequential model is simple to reason about and a straightforward founda-
tion upon which to build other applications (like digital currencies). However, this simplicity belies
some fundamental flaws and abstracts away details of the infrastructure that can have a profound
impact on the overall usefulness of an application. In particular, the architecture suffers from poor
computational scalability, and financial applications suffer degraded economic performance due to a
mismatch between this model and how information actually flows through the system. This thesis,
therefore, investigates the interconnections between computational performance, economic perfor-
mance, and the ordering semantics (and information flow) of replicated state machines. Crucially,
it is the study of these aspects together, and not in isolation, that gives rise to systems, such as
SPEEDEX in chapter 3, which can simultaneously improve both the computational scalability and
the economic performance over systems built on the sequential replicated state machine model.

1.2.2 Scalability and Computational Performance

Unfortunately, the sequential architecture introduces a fundamental performance limitation. While
the speed of computer hardware has historically grown faster every year, a CPU can only execute a
finite number of operations in a finite amount of time. Increasing the throughput of any computer
system beyond the limit of any one CPU requires using many CPUs together. As Moore’s law nears
its (predicted) end, the ability of any computer system’s design to scale its performance with the
number of CPUs available becomes increasingly important. In particular, financial infrastructure
may need to last for a long time and over time may need to be upgraded with additional features and
support more and more users transacting more and more frequently, which makes scalability all the
more important. While much work has been devoted to accelerating the performance of sequential
transactions using techniques like speculative execution [120] optimistic concurrency control [179,
309], and even reordering transactions to better suit these techniques [294], if any change to the
order of transactions affects the final state of the system, then it remains fundamentally impossible
to perform better than just sequentially executing transactions on one CPU.

And even when these techniques perform well, the computational overhead of these techniques
becomes a limiting factor even under best-case scenarios, meaning that systems cannot take full
advantage of the available CPU hardware [234, 179]—see e.g. Fig. 2.5 plotting the performance
of [179] on a payments workload, as compared to our linearly-scalable system in chapter 2 on that

bits it uses to execute a transaction into the log.

CHAPTER 1. INTRODUCTION 8

workload in Fig. 2.4. For critical infrastructure like a digital currency platform, slow performance on
some transaction patterns is not merely an inconvenience but a potential security threat. Worst-case
patterns might conceivably be exploited by an adversary to slow down the system, and could occur
naturally when, for example, a large company pays its employees or around tax payment deadlines.
10

Unfortunately, this limitation, that blockchain architectures based on replicated state machines
have to be slow and offer only limited throughput has unfortunately become accepted as “con-
ventional wisdom,” and acts as a justification for high transaction fees, complicated architectural
tradeoffs, and other negative externalities. We demonstrate in this thesis that this so-called wis-
dom is false. Specifically, chapters 2 and 3 build near-linearly scalable systems to support digital
currencies in the replicated state machine paradigm.

Our systems achieve this scalability by making two changes to the sequential paradigm. First,
we change how transactions modify the state machine. Many existing systems attempt to increase
performance in this manner, such as by dividing a user’s money into multiple distinct units [249,
234, 84, 116] or dividing the state machine into several distinct sub-machines [38, 40, 10, 11].
Unfortunately, on their own, these designs provide only limited scalability (while complicating system
architecture) 11 or severely limit expressivity. 12 Systems focused only on payments sometimes
move activity into privately-run “payment channels” [263], but incur significant (and nontrivial to
quantify) economic costs [268, 183]. 13

And secondly, we change what it means for transactions to be ordered in the state machine’s
log. Instead of computing a total ordering on all transactions, our systems in chapters 2 and 3
compute only a partial ordering. When two transactions are not ordered relative to each other, our
systems execute these transactions in parallel without any sequencing coordination between CPU
cores. Given the nondeterminism of thread scheduling and relative CPU performance, this means
the transaction pair is ultimately executed in a nondeterministic ordering (and may interleave the
two transactions). Done naively, this nondeterminism would obviously have the potential to create
nondeterminism in a state machine, leading to divergence between state machine replicas.

10For example, suppose that a digital currency system records amounts in accounts, and every transaction includes
a read-modify-write operation, such as a withdrawal, on the same account. Then this transaction distribution is a
worst-case scenario for optimistic concurrency control.

11In such a design, the fact that each component state machine can execute transactions separately provides
opportunities for computational parallelism, although each component still has the same performance limitations.
Additionaly, these designs substantially complicate cross-component transactions, which adds (often substantial)
latency. In the case of a digital currency system, these designs make money not entirely fungible, as money in one
component is no longer the same as money in another.

12The commonly used “Unspent Transaction Output” (UTXO) model of [249, 234, 84, 116] divides money into
discrete “coins”, each of which is constrained to only be spent once. This constraint makes it extremely difficult to
coordinate modifications to shared state between users without an out-of-band communication channel. Done naively,
any users might modify one object, but only one will succeed, and the rest must wait until the block containing the
successful transaction is published before retrying. More complex systems require dedicated external coordination
systems with complicated incentive structures, as in, e.g., [218].

13As well as significant architectural complexity, security risks [287, 96], and a more complicated user experience
[80, 266].

CHAPTER 1. INTRODUCTION 9

However, what we show is that combining these two ideas together leads to system designs
that are both linearly scalable (through computational parallelism) and deterministic (and therefore
replicable), without many of the drawbacks of excessively constrained state models. Specifically, the
key insight is to design a set of transaction semantics so that transactions which are not ordered
relative to each other are semantically commutative. That is, no matter the nondeterminism of
a replica’s thread scheduling and other internal operational details, the end result of applying a
partially ordered log of transactions is still deterministic.

To demonstrate this potential of this architectural paradigm, chapter 2 develops a set of general-
purpose commutative transaction semantics that not only is strictly more flexible than the semantics
used in several nominally general-purpose cryptocurrency systems [40, 38], but also admits func-
tionality that fundamentally cannot be implemented in the traditional sequential model. 14 Many
but not every application can be implemented effectively in this commutative model, but these se-
mantics admit a fallback to sequential execution. As such, each application built within Groundhog
can choose on a fine-grained level what level of ordering between operations that it requires, with a
corresponding tradeoff in performance of that application.

In order for digital currencies to effectively support cross-border payments, users need to be able
to easily trade one currency for another. But traditional designs of exchange systems for currencies
(or trading systems for other assets) have inherently noncommutative semantics, and would not
be implementable on top of Groundhog without the (throughput-limited) fallback to sequential
execution. In chapter 3, therefore, we redesign the semantics of a exchange to build SPEEDEX,
an exchange for digital currencies that operates at near linear scalability in the same commutative
model as in Groundhog.

1.2.3 Ordering and Information Flow

The partial ordering that both Groundhog and SPEEDEX use is the ordering that arises directly
out of how the overall replicated state machine paradigm operates. Each system uses some kind
of consensus protocol to ensure every replica’s transaction log is (eventually) identical, but these
consensus protocols can be resource-intensive and may often require multiple network round-trips
between replicas, adding considerable latency to transactions. As such, most systems amortize the
cost of consensus by grouping transactions into blocks, and then invoking consensus on these blocks
(and not on each transaction individually). This means that most systems append transactions to the
log in blocks at discrete times (hence the term “blockchain”). As such, the partially-ordered design
paradigm of Groundhog and SPEEDEX is not removing ordering information from the system, but

14Groundhog executes many transactions in parallel, instead of sequentially. As such, if one transaction stalls, the
systems can pause execution of that thread and move to other productive work. By contrast, if transactions were
executed sequentially, results of later transactions could depend on the stalled transaction.

This ability to stall allows transactions to call into external services and systems that might not return results
quickly. We use this feature to solve the so-called “free option” problem in §2.7.

CHAPTER 1. INTRODUCTION 10

rather, merely refusing to artificially fabricate information not already present in the architecture.
This observation points towards a more fundamental question: what do ordering and time mean

in a distributed system? In a system architecture that commits transactions in blocks, information
about what transactions are committed, and therefore what the current state of the system is, can
only propagate to downstream clients at discrete intervals. In other words, the most recent state of
the state machine that a user might observe, i.e., prior to sending a transaction, is always a state
reached after applying an entire block of transactions, and not an intermediate state after only some
transactions in a block are executed.

Groundhog’s semantic design, therefore, reflects the information that users actually would possess
in a real-world instantiation, and indeed this alignment between semantics and real-world informa-
tion flow prevents a class of security issues present in systems that execute transactions sequentially.
Furthermore, by eliminating the need to fabricate an ordering between transactions within a block,
this design paradigm eliminates the ability of any actor in the system to deliberately manipulate that
fabricated ordering for their own benefit. This type of manipulation, often called “front-running,”
is widespread in existing decentralized exchanges [143, 265] and can be highly profitable, at the
expense of other users receiving worse exchange rates. 15 In contrast, SPEEDEX, by the mere fact
of not ordering the transactions within a block, entirely eliminates this class of front-running. To
reiterate, these application benefits, that result from aligning application semantics with the overall
system design, are entirely independent of the performance benefits that this architectural paradigm
grants.

Alternatively, some applications might need process transactions in a strictly total ordering.
There thus arises a need to be able to recover a total ordering in a well-founded manner from a
distributed system that does not directly provide one. The core problem is that information spreads
through a distributed network non-uniformly. That is to say, every position in the network—every
replica, and every network observer—will receive new transactions in a (possibly) different order. The
front-running mentioned above is particularly rampant on today’s decentralized exchanges precisely
because at any given time, one agent has sole, dictatorial authority to determine the ordering of new
transactions.

However, any system designer that wants to avoid giving any one agent dictatorial control over
the transaction ordering, while maintaining a set of basic properties of the output ordering 16

quickly runs into Arrow’s Impossibility Theorem [76]. As we show in chapter 4, this problem is a
“streaming” instance of the classic problem of social choice theory. The distributed system must
order a countably infinite set of transactions Instead of a finite set of “candidates,” and must do so
with only partial information at any point in time. This perspective on the problem enables us to

15An analogous phenomenon occurs in traditional markets, where market participants compete for low-latency
access to exchanges [103].

16A basic set of properties might naturally include unanimity (if every part of the distributed system sees transaction
A before transaction B, then A should be sequenced before B) and independence of irrelevant alternatives (how
transaction C propagates through the system should not affect whether A is sequenced before B).

CHAPTER 1. INTRODUCTION 11

study the problem in a well-founded theoretical manner and adapt classical ranking algorithms into
our streaming setting.

1.2.4 Economic Performance

Not only do computational concerns constrain the implementation of economic mechanisms, 17 but
in fact, the novel partially-ordered paradigm discussed above actually enables the design and effi-
cient implementation of new economic mechanisms with new, useful economic properties. Chapter 3
develops an exchange, SPEEDEX, for digital currencies in this paradigm. Because SPEEDEX exe-
cutes large batches of transactions together, and not individually, the exchange need not myopically
focus on an individual trade and can compute at a higher level how to most efficiently clear the
entire market. To be precise, instead of myopically computing a (varying) exchange rate for each
trade request, SPEEDEX is able to offer every trade request in a batch the same exchange rate.
An exchange rate where the buy volume equals the sell volume is computable efficiently precisely
because SPEEDEX can access all of the information of a batch simultaneously. In fact, such a
mechanism is required to provide transaction commutativity, and reflects the fact that every trade
request in one batch is committed to the underlying replicated state machine at the same time.

Moreover, this paradigm enables SPEEDEX to work not just with isolated pairs of currencies
but with many currencies simultaneously. Instead of fragmenting market liquidity between specific
trading pairs, SPEEDEX offers an exchange rate between every pair, and ensures that these exchange
rates are free of cyclic arbitrage. 18 Rather than explicitly routing trades through intermediate
assets (as one might have to in a traditional design, if a given trading pair is not listed or illiquid),
SPEEDEX, in effect, automatically routes trades through all available liquidity.

Additionally, this mechanism eliminates the need for ultra-low-latency access to the exchange;
all users see the same exchange rates, so long as a user’s network latency is sufficiently shorter
than SPEEDEX’s batch frequency (∼ seconds—milliseconds matter, but not microseconds). This
fairness property would be important for a system used for cross-border payments by users in widely-
separated geographic locations, and it has been argued that under some circumstances, such systems
reduce the cost of liquidity provision [103]. And as mentioned above, because every trade in a batch
sees the same exchange rates, the type of risk-free front-running, powered by advesarial ordering
manipulation that is widespread on existing decentralized exchanges, is impossible.

Implementing SPEEDEX requires computing in every batch the solution to an optimization
problem (the equilibrium of a linear instance of an Arrow-Debreu exchange market [78]). In theory,
solutions can be approximated in polynomial time, but developing algorithms that can run efficiently

17Perhaps the canonical example of this interaction between economic design and computational tractability is the
combinatorial auction, famously used for allocating wireless spectrum [275].

18Within a batch, no user could profit or lose money by sending a set of trades along a cycle of assets. For any
sequence of assets A1, ...An, the product of the exchange rates rA,B along this cycle rA1,A2

×· · · rAn−1,An×rAn,A1
=

1.

CHAPTER 1. INTRODUCTION 12

in practice, even as the number of market participants grows, requires taking advantage of additional
market structure present in our problem instances. Namely, that while the number of people in the
world is large, the number of currencies is relatively small. Additionally, cross-border payments
trade one currency into one other, so the linear utility functions in the exchange market have
positive marginal utility for only two assets. SPEEDEX also uses a linear program to shape the
approximation error of the theoretical algorithms into forms (such as transaction fees) acceptable for
real-world contexts, and this same piece of additional market structure makes this linear program
small and empirically tractable.

And from the opposite viewpoint on this topic, chapter 5 studies the precise economic tradeoffs
embedded in a class of exchange mechanisms that are explicitly designed to require as little compu-
tation as possible to operate. Minimizing compute requirements is especially important in a system
that executes transactions sequentially (as such systems lack scalability, as discussed above). 19

These mechanisms are parametrized by a choice of “trading curve,” each choice of which implicitly
encodes tradeoffs in economic performance. Chapter 5 studies these tradeoffs and gives an explicit
convex program that characterizes, for any scenario, the optimal choice of curve. This program ad-
ditionally is analytically tractable, which means that it can explain precisely the informal rationale
behind the curves chosen in practice.

Finally, chapter 6 studies the interaction between batch exchanges like SPEEDEX and CFMMs.
These two market design innovations operate in different economic contexts and computational
paradigms. For example, CFMMs are market-makers, and traders interact directly with CFMMs,
but in a batch exchange, traders interact with each other, and with no market-maker. CFMMs
trade immediately using a predictable pricing mechanism, while batch exchanges settle after a short
time (with less price predictability). In a batch exchange, a CFMM’s curve can act akin to an
efficient parametrization of a (short-term) market-making strategy. As such, there is not an obviously
correct method for integrating the two mechanisms, and in fact different batch exchanges have made
qualitatively different choices. These different choices lead to different economic outcomes.

1.3 Thesis Outline

Chapter 2 presents the design of Groundhog, a replicated state machine designed to provide a scalable
infrastructure platform for a central bank digital currency. Transactions execute arbitrary smart
contracts, which provides the system with flexibility and enables seamless upgrades over time.

The novelty of Groundhog’s design is that it concurrently executes blocks of commutative trans-
actions. Unlike prior work, transactions within a block in Groundhog are not ordered relative to
one another. Instead, our key design insights are first, to design a set of commutative semantics

19Furthermore, market-making mechanisms, such as the ones studied here, tend to require read-modify-update
operations on a single data structure, which is the worst case scenario for techniques for accelerating sequential
workloads mentioned in §1.2.2.

CHAPTER 1. INTRODUCTION 13

that lets the Groundhog runtime deterministically resolve concurrent accesses to shared data.
Second, some storage accesses (such as withdrawing money from an account) conflict irresolv-
ably; Groundhog therefore enforces validity constraints on persistent storage accesses via 2-phase
locking when assembling new blocks of transactions.

These two ideas give Groundhog a set of semantics that, while not as powerful as traditional
sequential semantics, are flexible enough to implement a wide variety of important applications,
and are strictly more powerful than the semantics used in some production blockchains today.

Unlike prior smart contracting engines, transactions throughput never suffers from contention
between transactions. Using 96 CPU cores, Groundhog can process more than half a million
payment transactions per second, whether between 10M accounts or just 2.

This chapter is based on joint work with David Mazières [271].

Chapter 3 presents the design of SPEEDEX, a decentralized asset exchange designed to operate in
the partially-ordered, replicated state machine paradigm described in Chapter 2.

SPEEDEX offers several advantages over prior decentralized exchanges. It achieves high throughput—
over 200,000 transactions per second on 48-core servers, even with tens of millions of open offers.
SPEEDEX runs entirely within a Layer-1 blockchain, and thus achieves its scalability without
fragmenting market liquidity between multiple blockchains or rollups. It eliminates internal ar-
bitrage opportunities, so that a direct trade from asset A to asset B always receives as good a
price as trading through some third asset such as USD. Finally, it prevents certain front-running
attacks that would otherwise increase the effective bid-ask spread for small traders.

SPEEDEX’s key design insight is its use of an Arrow-Debreu exchange market structure that
fixes the valuation of assets for all trades in a given block of transactions. We construct an
algorithm, which is both asymptotically efficient and empirically practical, that computes these
valuations while exactly preserving an exchange’s financial correctness constraints. Not only
does this market structure provide fairness across trades, but it also makes trade operations
commutative and hence efficiently parallelizable. SPEEDEX is prototyped but not yet merged
within the Stellar blockchain [233], one of the largest Layer-1 blockchains.

This chapter is based on joint work with Ashish Goel and David Mazières, published at the 20th
Usenix Symposium on Networked Systems Design and Implementation in 2023 [269].

Chapter 4 studies the question of “fairly” ordering transactions in a replicated state machine. Each
replica receives transactions over a network from clients in a possibly different order, and the
system aggregates these orderings into a single order. This problem is akin to the classic problem
of social choice, where rankings on candidates are aggregated into an election result.

Two features make this problem novel and distinct. First, the number of transactions is un-
bounded, and an ordering must be defined over a countably infinite set. And second, decisions

CHAPTER 1. INTRODUCTION 14

must be made quickly and with only partial information. Additionally, some faulty replicas
might alter their reported observations; their influence on the output should be bounded and
well understood.

We specifically focus on the Ranked Pairs method. Analysis of how missing information moves
through the algorithm allows our streaming version to know when it can output a transaction.
Manipulation of a tiebreaking rule ensures our algorithm outputs a transaction after a bounded
time (in a synchronous network).

Prior work proposes a “γ-batch-order-fairness” property, which divides an ordering into contigu-
ous batches. If a γ fraction of replicas receive a transaction tx before another transaction tx′,
then tx′ cannot be in an earlier batch than tx.

We strengthen this definition to require that batches have minimal size, which must be handled
carefully in the presence of faulty replicas. This gives the first notion of order-fairness that cannot
be vacuously satisfied by arbitrarily large batches and that is satisfiable in the presence of faulty
replicas. Prior work relies on a fixed choice of γ and bound on the number of faulty replicas f ,
but we show that Ranked Pairs satisfies our definition for every γ simultaneously and for any f ,
where fairness guarantees linearly degrade as f increases.

This chapter is based on joint work with Ashish Goel [267].

Chapter 5 studies a class of exchange markets, known as Constant Function Market Makers (CFMMs).
These mechanisms have been deployed widely in prediction markets, but have recently be-
come especially prominent in the modern Decentralized Finance ecosystem. The reason is that
their operation requires very little computation; this feature is highly atractive in the highly
computationally-constrained (sequential) environments of many public blockchains. A CFMM is
parametrized by a trading “curve,”20 which defines which trades the CFMM will accept. Each
curve encodes a different set of accepted trades and thus a different set of economic tradeoffs;
how should a CFMM operator choose one curve over another?

We show that for any set of beliefs about future asset prices, an optimal CFMM trading function
exists that maximizes the expected fraction of trades that a CFMM can settle. We formulate
a convex program to compute this optimal trading function. This program, therefore, gives a
tractable framework for market-makers to compile their belief function on the future prices of
the underlying assets into the trading function of a maximally capital-efficient CFMM.

Our convex optimization framework further extends to capture the tradeoffs between fee revenue,
arbitrage loss, and opportunity costs of liquidity providers. Analyzing the program shows how
the consideration of profit and loss leads to a qualitatively different optimal trading function.
Our model additionally explains the diversity of CFMM designs that appear in practice. We show

20The level set of an eponymous trading function.

CHAPTER 1. INTRODUCTION 15

that careful analysis of our convex program enables inference of a market-maker’s beliefs about
future asset prices, and show that these beliefs mirror the folklore intuition for several widely
used CFMMs. Developing the program requires a new notion of the liquidity of a CFMM, and
the core technical challenge is in the analysis of the KKT conditions of an optimization over an
infinite-dimensional Banach space.

This chapter is based on joint work with Mohak Goyal, Ashish Goel, and David Mazières,
published at the 24th ACM Conference on Economics and Computation in 2023 [185].

Chapter 6 studies the interaction between CFMMs and batch exchanges. Different real-world imple-
mentations have used fundamentally different approaches towards integrating CFMMs in batch
exchanges, and yet different approaches lead to different economic and computational tradeoffs.

We first provide a minimal set of axioms that express the well-accepted rules of batch exchanges
and CFMMs. These are asset conservation, uniform valuations, a best response for limit orders,
and non-decreasing CFMM trading function. In general, many market solutions may satisfy all
of these axioms.

We then describe several economically useful properties of market solutions. These include Pareto
optimality for limit orders, price coherence of CFMMs (as a defence against cyclic arbitrage), joint
price discovery for CFMMs (as a defence against parallel running), path independence for simple
instances, and a locally computable response of the CFMMs in equilibrium (to provide them
predictability on trade size given a market price). We show fundamental conflicts between some
pairs of these properties. We then provide two ways of integrating CFMMs in batch exchanges,
which attain different subsets of these properties.

We further provide a convex program for computing Arrow-Debreu exchange market equilibria
when all agents have weak gross substitute (WGS) demand functions on two assets – this program
extends the literature on Arrow-Debreu exchange markets and may be of independent interest.

This chapter is based on joint work with Mohak Goyal, Ashish Goel, and David Mazières [270].

Chapter 2

Groundhog:
Scaling Smart Contracting via
Commutative Transaction
Semantics

2.1 Introduction

Blockchains offer many attractive features such as resiliency, transparency, and, most importantly,
the ability to transact atomically across mutually distrustful parties. A blockchain could potentially
act as a global cross-service coordinator, allowing atomic transactions across arbitrary databases
that were not explicitly built to work with each other. Smart-contracts provide extensibility as
revolutionary as JavaScript in the browser or apps on phones, and have had a huge multiplier effect
on innovation by attracting more developers with self-serve deployment. But are we ever going to
see blockchains used for significant payment volume and throughput? What would it take for a
central bank or consortium of commercial banks to adopt a blockchain for fiat currency payments?

One realistic path for mainstream adoption is to implement a wholesale central bank digital
currency (wCBDC). A wCBDC would connect banks and other financial institutions to each other
and to power-users and developers, which would lower the bar for innovation without the need for
average citizens to manage crypto wallets or the threat of liquidity leaving our fractional reserve
banking system. Unfortunately, existing blockchains offer inadequate payment-per-second rates
for such a critical application. Worse than actual throughput numbers, blockchains have poor
asymptotic scaling—they derive limited benefit from more CPU cores, particularly in the worst case

16

CHAPTER 2. GROUNDHOG 17

of high contention ([179, 174, 278]). Designs that divide state between “shards” [9, 321, 307, 291]
or “roll-ups” [263, 203, 18, 10, 262, 11, 35, 183] accelerate only particular payment patterns and
complicate any cross-shard transaction.

A core challenge is that most blockchains are structured as deterministic replicated state ma-
chines, which in existing systems has hindered expressiveness, the use of hardware parallelism, or
both. Outside the blockchain context, transaction processing typically exploits hardware parallelism
by using locks for serialization in case of transaction contention.

Unfortunately, if transaction results depend on ordering (e.g., the second of two $10 payments
from an account with only $15 must fail), then inter-thread scheduling will introduce non-determinism
in transaction results, replicas will diverge, and the blockchain will fail.

Specifically, a state machine implementing a wCBDC must display at least the following prop-
erties.

• Deterministic Operation Replicas of the state machine must stay in consensus, and fur-
thermore, past transactions must be replayable to enable auditing of historical data.

• Flexibility The state machine should support executing arbitrary, untrusted computations,
so as to support as-yet-uninvented applications, data formats, and protocols.

• Scalability Any significant piece of financial infrastructure is extremely difficult to modify
once deployed. A wCBDC design should be able to scale to transaction volumes far beyond
those seen today.

• Robustness No malicious smart contract, nor any bug in any contract, should be able to
degrade system performance or reduce transaction throughput.

Our Contribution: Groundhog This paper presents Groundhog, a deterministic smart-contract
wCBDC ledger designed to achieve high and scalable worst-case performance. Groundhog introduces
a new point in the design space: totally ordered blocks of unordered transactions. To execute a block
of unordered transactions deterministically, we must ensure they commute—i.e., have semantics
unaffected by execution order (which enables efficient parallelization [125]). Groundhog achieves
commutativity by executing every transaction in a particular block on the identical snapshot of the
ledger state at the start of the block. It collects and defers transaction side-effects, most of which are
commutative (e.g., increment an integer) and can be combined independently in the local memory
of each CPU before being applied to the global ledger state at the end of execution.

Of course, smart contracts do sometimes need sequencing—e.g., to avoid double-spending a token
balance. Groundhog shifts the burden of synchronization from the ledger to smart contracts, which
must ensure that transactions that require sequential execution cannot be included in the same
block. More generally, contracts can dynamically provide to Groundhog a set of constraints on
ledger state, and replicas, when proposing a block of transactions, ensure that these constraints are

CHAPTER 2. GROUNDHOG 18

always satisfied. A process akin to 2-phase locking makes the block assembly problem efficient and
scalable.

A few simple abstractions in the API make this much simpler than it sounds. For instance,
Groundhog provides non-negative integers to which contracts can commutatively add and subtract
values. Conceptually, one can think of the subtractions happening at the beginning of the block and
the additions at the end. A set of transactions conflicts and cannot be included in the same block if
the subtractions would ever bring the integer below zero. These non-negative integers are a perfect
primitive to represent account balances and semaphores. Groundhog also provides simple byte
strings (where two writes of different values conflict) and ordered sets (where duplicate insertions
conflict).

Although these snapshot semantics are not as general as strictly serializable semantics (as
Groundhog cannot execute arbitrary ordered transactions in the same block), we are nonetheless
able to implement all of the popular smart contract types we tried, including payments, auctions,
an automated market maker, and a partially-collateralized algorithmic money-market protocol. Im-
plementing these applications in Groundhog typically requires only small API changes. As such, we
expect most users to not use Groundhog’s APIs directly, but rather, to write contracts leveraging
higher-level application-specific APIs.

Groundhog’s semantics are strictly more powerful than the asynchronous message-passing archi-
tectures implemented in some large-scale blockchains [40, 38]. Furthermore, Groundhog does not
require sharding or otherwise subdividing the blockchain’s state to achieve its parallel execution,
does not require precomputation of transaction writesets, and does not rely on any manual analysis
of untrusted smart contracts.

As an additional benefit compared to other blockchains, Groundhog eliminates the ability for
block producers to extract value by ordering the transactions within a block, a widespread phe-
nomenon in current systems [143, 265] (although a malicious replica can still delay transactions to
a future block). Our evaluation of Groundhog shows that it scales nearly linearly to 96 cores (the
most we have available) no matter the level of contention between transactions, and handles more
than half a million payments per second between 10M accounts.

2.2 Architecture Overview

Groundhog is a deterministic, scalable execution engine for a replicated state machine, and consists
of the following components.

• Smart contracts, implemented as WebAssembly modules, are deployed at 32-byte addresses.

• Each contract may possess some local storage, which consists of typed objects (§2.3.2). Each
object is referenced by a 32-byte identifier in the contract’s namespace (so each object has a
unique 64-byte identifier).

CHAPTER 2. GROUNDHOG 19

• Each transaction is a function call on some smart contract, specified by a contract address, a
method number, a bytestring input for the function, and some metadata. Contracts may call
into other contracts arbitrarily.

What makes Groundhog unique is the way that it processes blocks of transactions. Instead of
executing transactions sequentially, Groundhog makes a snapshot of the entire state machine before
processing any transactions in a block, and then executes each transaction in the block against this
snapshot (§2.3.1). Transactions in Groundhog are only partially ordered, and there is no ordering
between transactions in the same block. Note, however, that the contract and storage addressing
scheme and cross-contract call semantics are the standard design for many real-world blockchains
(e.g. [308, 41]).

Write Conflicts A core challenge in the design of Groundhog is in managing the write conflicts
that result from this novel consistency guarantee. The Groundhog runtime carefully tracks the
side-effects of each transaction as a set of typed, commutative modifications to persistent storage.
Because contracts provide the Groundhog runtime with this small amount of semantic information,
Groundhog can deterministically resolve multiple modifications in one block to the same object. For
example, a contract transferring money would instruct the runtime to add to and subtract from
various accounts, and addition operations form an Abelian monoid.

Object Constraints However, some financial operations may semantically conflict, and as such
many smart contracts need to maintain constraints on their state. For example, a digital cash
system might require that every user’s account balance be nonnegative. Groundhog allows contracts
to explicitly express a set of constraints on their local storage. For example, the Groundhog runtime
offers a “nonnegative integer” object type in a contract’s local storage (§2.3.2), to which a transaction
can add and subtract; the runtime, by conservatively excluding transactions when assembling a block,
ensures that the value of the integer is nonnegative after applying the block of transactions. In a
traditional digital currency system with sequential semantics, if two transactions spend the same
coin, one transaction would succeed while the second would fail; instead, Groundhog ensures that a
block contains no such conflicting pairs.

Deployment Context We envision Groundhog deployed within a large-scale digital currency
system, where each replica is operated by a central bank or a large financial institution—institutions
with the resources to deploy high-performance systems with many CPUs. These replicas would be
connected with some consensus protocol. Groundhog is agnostic to the choice of protocol, but is
designed around a context where a leader periodically (once per second, perhaps) proposes a block
of transactions, such as in SCP [233], HotStuff [316], or BA⋆ [181]. Proposed blocks would then be
checked for correctness (that is, the absence of conflicting transactions) by other replicas.

CHAPTER 2. GROUNDHOG 20

Repeated proposal of invalid blocks is a potential denial of service vector for a system using
Groundhog. In this context, we imagine that replica operators themselves can be sanctioned if
they repeatedly violate the protocol by proposing invalid blocks. However, end users and contract
authors may be anonymous or difficult to trace, and are potentially malicious. Our implementation of
Groundhog allows an honest replica to include potentially malicious transactions executing untrusted
smart contracts in a block without compromising block validity.

2.2.1 Design Properties

Our design for Groundhog meets our requirements for the execution engine of a digital currency
system.

Deterministic Operation The output of each transaction is a set of modifications to persistent
storage. Groundhog ensures that when two transactions in a valid block modify the same object, the
two modifications are elements of the same Abelian monoid. Deterministic operation follows from
this commutativity.

Parallel Proposal and Execution The semantics of Groundhog are designed to enable effec-
tive parallelization of block proposal and execution while minimizing inter-thread synchronization
overhead. Because each transaction in a block reads from a snapshot of state, and never reads
data written by transactions in the same block, an implementation can largely avoid cross-thread
synchronization. The only coordination required is for the maintenance of object constraints, which
our implementation achieves using only hardware-level atomic memory instructions (§2.5.1). After
iterating over all transactions in a block, Groundhog iterates (again, in parallel) over every modified
object to produce the state snapshot for the next block.

To emphasize, Groundhog’s parallelism is guaranteed for all replicas, both when proposing a block
(as a leader) and when executing a proposal from another replica (as a follower). In fact, leaders and
followers execute nearly the same code path. When the 2-phase locking algorithm of §2.5.1 identifies
a conflict, a leader drops the offending transaction from the proposal it is assembling, while a follower
raises an error and rolls back the block. There is never a fallback to sequential execution.

Semantic Flexibility Furthermore, Groundhog enables users to execute arbitrary code within
a transaction, giving the system the flexibility to adapt to new use-cases and applications over
time. The semantics of Groundhog are different from the strictly serializable semantics of many
blockchains. However, as described in Fig. 2.1, we are able to implement many widely-used applica-
tions in these semantics, with minimal changes to the APIs these applications give to downstream
smart contracts. Furthermore, these semantics are strictly more powerful than those based on
message-passing actors (§2.4.6) used in some blockchains deployed in production today.

CHAPTER 2. GROUNDHOG 21

Application Implementable API Changes Atomic
Composability

(§2.4.6)
Tokens (ERC20
Standard [301],
§2.4.1)

✓
increaseAllowance,

decreaseAl-
lowance[151, 300]

✓

k-th Price Auction
✓

None
✓

Automated
Market-Maker
(Uniswap v2 [55],
§2.4.6)

✓
None

$

Money market
(Compound v3 [37],
§2.4.5)

✓
Separate Borrow and

Supply Accounts ✓

Payment Channels
[263] ✓

None
✓

Figure 2.1: A sampling of various applications implementable in Groundhog, and the changes re-
quired to implement them in Groundhog’s commutative model.

Robustness to Malicious Contracts We emphasize that contracts in Groundhog can be un-
trusted, arbitrary scripts subject to no static analysis or manual review. Although of course smart
contracts deployed on Groundhog may contain bugs, malicious or erroneous code cannot break down
the operation of Groundhog. A transaction may consume excessive compute resources, but because
each transaction executes in isolation against a static snapshot of state, a malicious transaction can-
not manipulate the execution engine to cause, for example, worst-case performance of a concurrency
control algorithm.

2.2.2 Design Motivation

Conceptually, in one block, Groundhog concurrently executes a collection of user-designed state
machines. Instead of trying to accelerate these unknown state machines, Groundhog leaves it up to
users to design their state machines to support concurrency. A state machine that relies on strictly
sequential semantics can take out a lock on its state, but others might allow more fine-grained locking
or may not even require locks. This isolates the performance (in terms of transaction throughput)
of well-written state machines from that of incorrect, slow, or malicious state machines.

Our claim is not that every state machine can be reimagined as one that admits arbitrary commu-
tative semantics. Rather, we argue that many important financial applications can be implemented
to support at least some level of concurrent execution. And §2.4.6 gives a worst-case fallback option
for contracts that need to interact with other contracts but require sequential semantics (such as
constant function market makers, §2.4.6).

CHAPTER 2. GROUNDHOG 22

2.3 Commutative Semantics

The commutative semantics of Groundhog rely on two design features; first, all transactions in a
block read from the same snapshot of state, and not the output of other transactions in a block. And
second, in order to develop useful state machines, Groundhog carefully manages the typed output
of transactions to resolve what would be write conflicts in other systems.

To implement these semantics, our Groundhog implementation provides to the WebAssembly
runtime a set of typed methods to access persistent storage. It additionally provides a basic set of op-
erations common to many blockchain contexts, such as get_block_number(), get_caller_address(),
and get_self_address().

2.3.1 Snapshot Reads

Groundhog provides a different notion of consistency than is typically used in distributed databases.
Before processing a block of transactions (or assembling a new block to propose), Groundhog com-
putes a snapshot of system state. Whenever a transaction queries for some address in the currently
executing contract’s local storage, the transaction reads from this snapshot, and no modifications
made by other transactions in that block are visible.

These semantics may be unusual in existing systems, but they mirror the way in which users
interact with blockchains today. Unless a user has a privileged relationship with a a block proposer,
the user, when deciding whether to send a transaction, is typically only able to see the state of the
blockchain at the close of the most recent block. Any transaction analysis or preflight simulation
done by the user, therefore, will execute against this snapshot, without seeing any modifications
made by other transactions in the block. The potential for differences between a user’s snapshot
view of state and sequential semantics has caused security challenges in real-world systems [300].

However, these semantics introduce the possibility of non-serializable execution traces. If a
contract needs stronger serializability guarantees, Groundhog places the responsibility for ensuring
serializability onto the contract. Contracts must take out locks on their internal state, if such locks
are needed for the application. For example, these semantics admit write-skew anomalies, where one
transaction might read two variables X and Y , and then write to Y , while another transaction in
the same block reads the same two variables and writes to X. If such behavior is incompatible with
the contract’s higher-level application requirements, then the transactions should acquire a lock on
X and Y (so only one could be included in a block).

Unlike designs based on eventual consistency and conflict-free replicated data types (CRDTs) [286],
Groundhog’s data structures need not support delayed updates from transactions arbitrarily far in
the past, but rather, only concurrent updates from transactions in the same block. This property is
crucial to implement, for example, asset transfers between account balances. CRDTs, for example,
cannot maintain an integer counter that enforces a nonnegativity constraint and allows subtraction.

CHAPTER 2. GROUNDHOG 23

However, because a transaction in block k is guaranteed to see all of the outputs of transactions
that were in block k − 1 and none from transactions in block k + 1, Groundhog’s runtime can im-
plement this primitive (§2.3.2) by looking only at a finite set of transactions. Furthermore, state
machines can synchronize with each other at block boundaries (as in, e.g., §2.4.6), without requiring
Groundhog to track complicated dependency chains between transactions.

2.3.2 Typed Storage Objects

Objects in Groundhog have distinct types, and are modified in structured patterns. This type
information enables Groundhog to deterministically resolve concurrent writes to the same object in
a way that is semantically useful, and to enforce constraints on object state.

Objects are created lazily with a type-specific default value when a transaction attempts to write
to a nonexistent object. Two transactions conflict if they attempt to create objects of different types
at the same location.

Transactions can delete keys, and two deletions on the same key do not conflict. As with writes,
a deletion by some transaction is not made visible to other transactions in the same block, but rather
deferred to the end of block processing, after all Abelian operations have been performed.

Groundhog provides a has_key() method if a transaction must know whether a particular object
exists.

Byte Strings

Most applications need to store some amount of configuration data, be it public keys, expiration
times, or contract addresses. Two transactions irresolvably conflict if they write different values to
the same object. A write from one transaction overwrites an earlier write from that same transaction.
The default value is an empty bytestring.

This is not an effective way to move money. If a user’s balance is stored as a bytestring, then
every access would need an exclusive lock (§2.4.2) so as to prevent the types of serialization anomalies
mentioned in §2.3.1 (which could, for example, let a user spend money twice).

Nonnegative Integers

Groundhog uses nonnegative integers to represent account balances. Contracts can call set(int64),
get() → int64, and add(int64) methods on these values, and the Groundhog runtime ensures that
the value of these integers does not drop below 0. This constraint would be impossible for a single
transaction to enforce in the snapshot-read model. Integers implicitly created by a call to add(·) use
a default value of 0.

A transaction that calls set(x1) conflicts with a transaction that calls set(x2) if x1 ̸= x2, but
two calls to set(·) of the same value do not conflict. If one transaction calls set() multiple times,

CHAPTER 2. GROUNDHOG 24

the transaction must input the same value to each set() call. A collection of add(·) calls is invalid if
they would drive the value of a nonnegative integer below 0.

This primitive allows Groundhog to efficiently implement digital money. The usage pattern for
this primitive is to set() the integer (an account balance) to its value in the prior snapshot, and
then add or subtract from that value. A payment transaction is thus akin to calling add(x) and
add(−x) on different balances—checking for an overdraft on an account is left to the Groundhog
runtime (e.g., as in §2.4.1).

However, other usage patterns might use different values of set(); for example, a semaphore
(§2.4.2) can be implemented as a method that always calls set(1) and then add(−1). Our implemen-
tation of a lending protocol (§2.4.5) set()s the value of an integer to an account’s interest-adjusted
borrowing limit. In fact, contracts can use this primitive to express to Groundhog arbitrary linear
constraints on their state variables. Two linear constraints can enforce a requirement that an integer
lie between 0 and some upper bound.

Additionally, we allow the input to set(·) to be negative; in this case, add(·) is invalid on any
negative input.

Our implementation uses 64-bit signed integers, and caps the value of each integer accordingly
(even if a set of transactions would have driven the value above INT64_MAX).

In a valid block, multiple transactions may set() an integer to the same value, and then add()s
to it. Therefore, when many transactions modify the same integer, the result, after applying all
transactions, is equivalent to one set() call followed by all add() calls. To be precise, the value of
an integer after a set of transactions that collectively call {set(X), ..., set(X), add(Y1), ..., add(Yk)}
is min(X +

∑
i Yi, INT64_MAX).

A contract implementing money might use a two-sided constraint for each balance (to prevent
accidental loss of funds), or might limit the total supply of money to INT64_MAX (making overflow
checks redundant). The choice is up to the implementer; Groundhog just supplies the minimal linear
constraint primitive.

Ordered Sets

Any digital currency system needs a mechanism to prevent transaction replay; that is, users should
be able to guarantee that each transaction executes at most once. Most blockchains use sequence
numbers [23, 308] or ensure that each “coin” is spent only once [249, 36].

Contracts running in Groundhog can implement a replay prevention mechanism using “ordered
sets”. Each element is a pair (tag, hash), where the tag is a 64-bit integer, and the hash is a unique
256-bit string. A transaction can insert() an element (t, h). An insert(·) call fails if there is already
some pair (t′, h) in the set and conflicts with another transaction inserting (t′, h) in the same block.
The default value is the empty set. One could implement an idempotent set abstraction, allowing
multiple insertions of the same value, but we did not need this abstraction.

CHAPTER 2. GROUNDHOG 25

To bound resource usage (and encourage garbage collection), we implement a maximum size on
each set (specifically, each set starts with a default bound of 64, which can be increased by another
method up to a maximum of 65535). Contracts can garbage collect set contents by clear(·)ing a
set of all entries, or clearing it of all entries below a specified tag value (semantically, Groundhog
processes all insertion calls and then applies all clear(·) calls;

These sets can implement not just a replay prevention mechanism (§2.4.3), but also k-th price
auctions (§2.4.4) and transaction sequencers (§2.4.6) in a message-passing “Actor” model. Objects
in a set are sorted by the tag (with ties broken by the hash), which means that contracts can place
their own notion of ordering on set elements. a replay prevention mechanism can order a set of
transaction hashes by expiration time, and an auction can order a set of bids by their offered prices.

Note that it suffices, albeit complicating garbage collection, to represent sets of arbitrary data
items with sets of 32-byte strings, by inserting to the set keys to persistent storage.

2.4 Evaluation: Semantic Flexibility

We demonstrate the flexibility Groundhog’s semantics by discussing how we implemented a variety
of applications commonly used on existing blockchains.

2.4.1 Tokens

Groundhog’s semantics implement a contract that semantically represents a fungible token. In fact,
Groundhog can implement the widely-used ERC20 standard token API [301] (although we have not
implemented all of the possible extensions). The core logic is nearly identical to the token transfer
logic used in existing blockchains (such as [135]).

Token balances are stored as nonnegative integers (§2.3.2). The primary difference between an
implementation in Groundhog and traditional blockchains lies in the authorization framework. In
the ERC20 standard, one contract can authorize another to transfer a bounded number of tokens
on its behalf. Groundhog adjusts allowances by adding and subtracting to them, rather than setting
them to particular values (as in the standard).

This API both enables an efficient implementation in Groundhog’s commutative semantics, and
avoids a double-spend attack present in existing blockchains [300]. Under sequential semantics,
if one contract consumes an allowance immediately before a user changes the authorized amount,
the contract can immediately withdraw the entirety of the newly authorized amount, effectively
using more of the user’s balance than the user intended to authorize. A widely used open-souce
implementation of the standard [151] recommends this API change.

A minimal token implementation suffices itself to enable Groundhog to implement payment
channels [263], atomic token swaps, and a subclass of decentralized exchanges, such as 0x [304], that
perform offer matching off-chain. We have implemented a sample of these applications.

CHAPTER 2. GROUNDHOG 26

Empirical analysis of Ethereum’s history [174] shows that the majority of conflicts between trans-
actions that (under sequential semantics) prevent parallel execution result from integer counters and
token balances (which are counters with a linear constraint). In other words, this historical analysis
suggests that a vast majority of functionality could be implemented with just the nonnegative integer
primitive (§2.3.2) and a set of exclusive locks (§2.4.2).

2.4.2 Locks

Applications may wish to ensure that an action is only performed once, or that the data that a
transaction reads is not concurrently modified by another transaction (avoiding, e.g., the serialization
anomaly outlined in §2.3.1).

The nonnegative integer set and add methods implement such a lock. A contract can dedicate
a storage address to a nonnegative integer and acquire a lock by calling set(1); add(−1) on that
address. Recall from §2.3.2 that, conceptually, all of the set calls are applied before the add calls.
Hence, a transaction that executes these operations can succeed once and only once in a batch of
transactions.

This interface implements shared read-write locks as well. Exclusive access translates to a
set(1); add(−1) call, while shared access translates to a set(0) call. That said, Groundhog does
not have a mechanism for prioritizing which transactions succeed in the case of contention on a lock.
A rudimentary solution would be for readers and writers to divide access between even and odd
block numbers.

2.4.3 Replay Prevention

A transaction can ensure that it only executes once by inserting a hash of itself into one of the ordered
sets of §2.3.2. This would cause the transaction to conflict with any concurrent or future invocation
of itself. We imagine that most user transactions would first call into a “wallet” contract implements
such a mechanism (as well as performing authorization checks, such as signature validation).

In this context, the tag on the ordered set acts as a garbage collection measure. It would be
impractical for a ledger to store indefinitely (outside of high-latency archival storage) the hash of
every transaction in its history; most blockchains implement or propose some way to reclaim stale
data [87, 20, 109].

Therefore, a replay mechanism can include on each transaction an expiration time (batch num-
ber). The mechanism can check whether the transaction has expired, and (if not) insert the trans-
action’s hash into a set, using as the tag the expiration batch number. Clearing the set of all entries
with tags less than the current batch number thus garbage collects entries no longer necessary for
replay prevention.

CHAPTER 2. GROUNDHOG 27

2.4.4 Auctions

Auctions form another core component of many financial applications. Some protocols, such as
MakerDAO (the service behind the Dai stablecoin [14]), use auctions to liquidate collateral when a
borrower’s collateral to debt ratio falls. Many services issue indivisible assets (such as NFTs [160])
using competitive auctions. Contention of many transactions on a small set of auctions can become
so fierce as to take down entire blockchains [280].

Put simply, the input to an auction is a set of bids, and the output is the winner (or winners)
and a winning price. Typically, the highest bidder pays the bid offered by the second-highest bidder.

We implement such an auction using the ordered sets of §2.3.2. Users submit records of bids
(an offered price, and the user’s identity), which are then hashed and inserted into a set. The tag
associated with the bid is the offered price. After the auction closes (either by an external action or
after a certain time passes) the bids in the set will be in an order sorted by their price—so a contract
can easily compute the second highest bid. Users send the auction contract capital to cover their
bids when creating a bid, and can refund this capital after the auction ends. To prevent a bid from
being refunded twice, users insert the hash of their bid into a second set after activating a refund.

A second-price auction need only keep track of the top two bids. Low bids (that might otherwise
fill a set to the maximum limit) can be refunded and cleared from the sets (both the bid set and
the refund replay-prevention set) when necessary. When receiving a new bid, the contract should
check to ensure that the new bid offers a price at least as high as the current second-highest bid.
To avoid filling up the ordered set, the contract could also require each bidder to refund and delete
a superseded bid, though we have not yet implemented such a feature.

2.4.5 Money Market

We additionally implemented a lending and borrowing protocol. We specifically implemented version
3 (the most recent version) of the Compound protocol [37, 221], which currently manages several
billion dollars worth of assets [44]. Other money market protocols operate on similar principles. In
this system, users can supply or borrow a “base” asset (in practice, a USD-pegged token). Lenders
and borrows receive and pay interest, respectively.

Interest is implemented through shared compound interest index variables. Base asset amounts
are stored relative to amounts hypothetically deposited at the beginning of the protocol and con-
verted to present value using these indices (so updating the indices implicitly updates every user’s
present balance). Borrowing and lending occur at different rates, and maintain separate indices.

In the sequential implementation, each transaction that touches the protocol updates these in-
dices, based on the time elapsed since the indices were last updated. Because time advances once per
block in a blockchain, these indices are effectively updated once per block. This type of update is
implementable naturally in Groundhog’s semantics, as two writes of the same value to a bytestring
do not conflict.

CHAPTER 2. GROUNDHOG 28

In Compound, borrowing is overcollateralized by deposits of other assets. Users are not allowed
to borrow more of the base asset or withdraw collateral if that would cause their existing borrowing
to be undercollateralized. Groundhog implements this via a linear constraint on each user’s state
(using a nonnegative integer primitive). As collateral prices may fluctuate and user balances change
each block (due to interest), the value of this constraint may change from block to block. As such,
every transaction on the protocol recomputes the maximum remaining amount a user can borrow in
that block, and sets the value of the constraint (via the set(·) method) to this value, before adding
and subtracting to this value (as the user performs actions). Two transactions in the same block
from the same user will compute the same initial constraint, and therefore this constraint does not
cause a conflict.

Compound computes variable interest rates based on the relative amounts of the base asset bor-
rowed from and supplied to the contract. Our implementation uses contract-wide integer counters to
compute these values, but to update these counters, each transaction must know whether a transfer
of the base asset out of the account is borrowing more or supplying less. The sequential implemen-
tation stores a user’s base asset balance as a single, signed integer. However, our implementation
must split a user’s base asset balance into two nonnegative integer counters, one for borrowing and
one for supplying. Transactions then specify whether a transfer is to reduce supply or to borrow
more (or some combination), instead of having these amounts be computed automatically. This
could result in a user simultaneously borrowing and supplying, so we also add a method to cancel
out this situation.

2.4.6 Sequencers and the Actor Model

The ordered set mechanism of §2.3.2 can add back sequential (strictly serializable) semantics to
contracts in which noncommutativity is inherent. For example, in each batch, a contract can create
a new set, and transactions can submit an action (i.e. a function call) to this set. Then, in a
subsequent batch, one transaction can load all of the actions from the set of a previous batch (e.g.,
loading batches in sequential order), and apply all of the actions in sequence in that transaction.
Certain decentralized exchanges, such as Serum [24] and SundaeSwap [292] use precisely this type of
mechanism already, even when the underlying blockchain guarantees strictly serializable semantics.
The implementation allocates one ordered set per block, in which events are accumulated. Then,
at a later block, anyone can iterate over and apply all events accumulatd in the earlier block.Our
implementation sorts accumulated events by a fee bid, which is collected and paid out to whoever
executes the events.

Observe that if access to every contract were gated by such a sequencer, then the result would be
a world where all contracts would only interact via asynchronous message-passing (the Actor Model
[195]). This is precisely the semantics of contracts implemented in CosmWasm [38] and the Near
blockchain’s [15] runtime system [40].

CHAPTER 2. GROUNDHOG 29

In other words, Groundhog’s semantics are at least as expressive as the semantics used in produc-
tion today by two of top 50 (by market capitalization [130]) blockchains. However, message passing
semantics do not allow atomic transactions between contracts. Groundhog, therefore, is strictly more
powerful than this message-passing model because it enables contracts that do not need sequenc-
ing to call one another directly—which is especially important for fundamental, commonly-used
contracts such as token contracts.

Example: Constant Function Market Makers

We used the sequencer paradigm to implement a Constant Product Market Maker [55, 65]. Users
submit operations (make a trade, deposit liquidity, or withdraw liquidity). All of the operations
submitted in one Groundhog block are gathered into the same ordered set. Our implementation
requires users to pay fees on their transactions. Fees are collected by whoever sends the transaction
that executes the set of operations, as in [24]. The fee paid is used as the tag on the set (thereby
sorting operations by fee).

The main Groundhog introduces is that the runtime cannot reject individual operations on the
exchange as they execute in one transaction. If any operation causes the overall transaction to
conflict with another transaction (e.g., by overdrafting an account), then Groundhog will reject the
entire transaction and not execute any operations in the set.

As such, a good implementation would perform any changes to persistent storage that could
cause a conflict (such as withdrawing money from an account) in the transaction that submits an
operation to a set, not during the transaction that applies a set of operations. This would mean
withdrawing sufficient assets to cover a trade when sending an operation to the sequencer, not when
executing the event. And the transaction that executes a set of operations should be the only one
logically allowed to disburse funds from the contract.

2.5 Implementation

Our implementation of Groundhog consists of approximately 22k lines of C++. Our contract SDK
is currently written in C++, but Groundhog itself is agnostic to the choice of source language.
Contracts are compiled to WebAssembly and then executed using the Wasm3 interpreter [27]. Before
executing a contract, Groundhog instruments the WebAssembly module with execution duration
metering (“gas metering”) via [43].

Groundhog and our example contracts are available open-source at https://github.com/scslab/

smart-contract-scalability.

https://github.com/scslab/smart-contract-scalability
https://github.com/scslab/smart-contract-scalability

CHAPTER 2. GROUNDHOG 30

2.5.1 Block Proposal via 2-Phase Locking

When assembling a block of transactions or executing a proposed block from another replica, Ground-
hog first executes each transaction individually, which translates each transaction from a WebAssem-
bly function call into a list of changes to be applied to persistent storage. It then uses a process akin
to 2-phase locking to decide whether a transaction conflicts with another transaction already added
to the proposed block (or with another transaction in the block, when executing another replica’s
proposal).

The simplest manner for performing these checks would be, for each transaction, to iterate over
the transaction’s changes and acquire a lock on each relevant object in persistent storage. Then,
with the locks acquired, a thread could check whether each change to an object is consistent with
the object’s constraint, and then either commit or unwind all changes before releasing the locks.

Of course, a design based on exclusive locks on shared data does not scale when many trans-
actions modify a single object. Our implementation lets threads reserve the right to later perform
modifications to state using only hardware atomics. A reservation to write a bytestring at some
address can be granted, for example, if there is no reservation (committed or otherwise) to write a
different bytestring at that address, and this can be implemented using an atomic pointer swap, an
atomic counter, and unique tags.

Similarly, a reservation for a set(x1) call fails if another transaction has reserved set(x2) with
x1 ̸= x2 on that nonnegative integer. Reservations for add(y) always succeed for y ≥ 0 (overflows are
capped at INT64_MAX), but fail when y < 0 if the total amount reserved for subtraction would
exceed the base value of the counter. Internally, Groundhog compiles all of the calls to set() and
add() from one transaction on one integer into a single “set_add(x, y)” operation—to know whether
the initial value of an object is high enough to subtract y from and remain nonnegative, Groundhog
must know what the initial value is.

This system, combined with the commutative semantics of §2.2 , lets a block proposer guarantee
that after applying all transactions in a proposed block, each storage object is in a valid state. In
fact, our implementation guarantees further that every subset of a valid block is itself also a valid
block.

2.5.2 Additional Details

Our implementation stores persistent state in a Merkle-Patricia trie; this is required for an imple-
mentation to produce short proofs of state or of a transaction’s execution. After executing a batch
of transactions, Groundhog must iterate over all modified storage objects to compute a new state
snapshot for the next batch. It does this by first building another Merkle-Patricia trie that logs only
which storage locations were modified in the batch, and uses this record to efficiently iterate over
the first (possibly much larger) trie. Groundhog also builds a trie logging all of the transactions in
a batch. Finally, Groundhog recomputes the root hashes of each of these tries.

CHAPTER 2. GROUNDHOG 31

Our goal is to implement the features important to a real-world deployment that require direct
integration with Groundhog. A deployment of a digital currency would include Groundhog as one
part of a much larger system. Our implementation stores all data in memory, but a deployment
would log transactions to persistent storage. Groundhog builds a trie capturing all of the modified
storage locations to enable an efficient implementation to identify all locations that must be rewritten
to persistent storage.

Our implementation includes transaction runtime metering but not a default unit of money. A
deployment could implement a fee token using a standard token contract (§2.4.1) deployed at a
hard-coded location.

Batching for Qualitative Simplification We observe that our batch execution model can lead
to qualitatively simpler implementations than we otherwise would need. For example, we avoid the
multi-version data structures common in other forms of concurrency control. Garbage collection can
be deferred to the end of a batch, at which point each thread can know that no other thread is using
a reference to any of its locally-accumulated garbage memory.

Additionally, we implement our set objects (§2.3.2) using atomic hash sets. The sets themselves
contain only 4-byte pointers (offsets) into threadlocal static buffers. Allocation of a hash set entry
simply increments a threadlocal counter, and the set implementation needs no locks, only hardware
atomic memory operations. After a batch of transactions, the contents of the atomic hashset are
moved to a snapshot and the hashset is cleared, so our atomic hashset implementation needs only
to provide a limited interface (insert, erase, and a single dump at the end of the block).

2.6 Evaluation: Scalability

We compare the throughput and scalabiltity of Groundhog against Block-STM [179], an approach
based on optimistic concurrency control for deterministic execution of batches of transactions on a
replicated state machine. Like Groundhog, Block-STM executes transactions that contain untrusted,
arbitrary user-submitted code and targets financial applications. It is in production use by the Aptos
blockchain [288].

Our experiments in this section run on one c6a.metal instance in an Amazon Web Services
datacenter. The system has two 48-core AMD EPYC 7R13 processors and 384 GB of memory. We
ran our experiments with hyperthreading disabled.

Payments Workload To control for transaction complexity, the performance measurements of
this section use payment transactions, modeled on the “Aptos p2p” payment transactions of [179].
These transactions read from 8 memory locations and write to 5 locations, while the implementation
of this functionality in Groundhog uses 3 adjustments to nonnegative integers (using the ERC20
token implementation of §2.4.1), two reads of configuration data, one set insertion, and one set

CHAPTER 2. GROUNDHOG 32

clear (for the replay prevention mechanism of §2.4.3). This roughly translates to reading 6 memory
locations and writing to 4. Each transaction verifies an authorization signature. Of course, in any
transaction execution engine, transactions that require more computation would run more slowly
and reduce throughput numbers accordingly.

Each transaction is a payment between two accounts, chosen uniformly at random. Varying the
number of accounts therefore varies the level of contention between transactions.

Varying Contention Fig. 2.2 plots the end to end transaction throughput rate of Groundhog
on batches of payment transactions. The measurements are averages over 10 trials, after 5 warmup
rounds. These experiments vary the number of accounts and the size of each batch of transactions.

There is a certain amount of work that must be performed once per batch; larger batch sizes
amortize this constant (or less effectively parallelizable) work over more transactions. The replay
prevention sets in this experiment expanded to their maximum capacity (65535). When serialized,
each transaction is 196 bytes in size, so 100, 000 transactions per second would need a network
capable at minimum of handling at least 20 MB/s of sustained traffic.

What makes Groundhog unique is that the level of contention between transactions does not
significantly affect throughput. When every payment transaction is between the same two accounts,
then every transaction modifies the same memory locations. Under any approach using sequential
semantics, all transactions in this scenario would conflict and execution would be inherently serial-
ized. However, Groundhog achieves the same throughput in this high-contention setting as in a very
low contention setting.

As another comparison, SPEEDEX [269] achieves a similar level of scalability on payment trans-
actions, using a design also based on batched execution of commutative transactions. However,
SPEEDEX only supports a small set of fixed types of transactions, specialized for one application,
whereas transactions in Groundhog can execute arbitrary, untrusted computation.

By contrast, Fig. 2.3 plots the throughput of Block-STM on the same hardware and transaction
distribution patterns. This design is based on optimistic concurrency control, which must fall back
to nearly sequential execution under high contention (while still paying for concurrency control
overhead).

In the real world, it may be unlikely that two individuals would send bursts of thousands of
transactions between each other; however, it is quite likely that single accounts may send or receive
bursts of payment traffic. Large e-commerce websites or the Internal Revenue Service, for example,
might need to occasionally receive a high volume of payments, and accounting services might need
to send salary payments to a large number of employees in a short period of time. Groundhog’s
commutative semantics allow institutions to build scalability into their payments infrastructure and
simultaneously guarantee that other users are not affected by contented data elsewhere in the system.

CHAPTER 2. GROUNDHOG 33

Figure 2.2: Transactions per second on Groundhog, varying the number of accounts ("acc") and
batch size ("bch").

CHAPTER 2. GROUNDHOG 34

Figure 2.3: Transactions per second on Block-STM [179], varying the number of accounts ("acc")
and batch size ("bch").

CHAPTER 2. GROUNDHOG 35

Figure 2.4: Transactions per second on Groundhog with batches of size 100,000, varying the number
of accounts.

Scalability to Many Accounts The cost of access to a user’s account data increases as the
number of users increases. Fig. 2.4 plots the throughput of Groundhog as the number of accounts
increases, with a fixed batch size of 100, 000.

The replay prevention sets (§2.4.3) are at their default capacity (64), except when the number of
accounts is 1,000 or smaller, when we again expand them to their maximum capacity (65535). Our
lockfree hash set implementation (§2.5) uses 4 bytes for every slot of capacity (with a preallocated
buffer), and our system does not have enough memory to support 10 million accounts with maximum
capacity sets (this would require over 2 terabytes of memory). However, when the number of accounts
is small, each account must be able to send a large number of transactions in a batch (to reach a
batch size of 100, 000).

As expected, the throughput of Groundhog decreases as the number of users increases, largely
due to the increased lookup time per account. The single-threaded throughput with 10 million
accounts, for example, is 88% of the throughput with 10 thousand accounts. More accounts also

CHAPTER 2. GROUNDHOG 36

Figure 2.5: Transactions per second on Block-STM with batches of size 100,000, varying the number
of accounts.

slows down the work that is done in each block after iterating over the transactions, slightly reducing
scalability. The throughput with 96 threads and 10 million accounts is, for example, 76% of that
with 10 thousand accounts (a 75× speedup vs. a 64× speedup over the single-threaded benchmark,
respectively).

We do not try to optimize Groundhog for the precise details of our machine’s NUMA architecture;
we suspect that some of the scalability decrease comes from increased variability of memory access
times when all cores are active.

As a comparison, Fig. 2.5 plots the throughput of Block-STM on this workload. Like Groundhog,
Block-STM’s throughput falls as the number of accounts increases. However, note that scalability
is quite limited, even in the extreme case where there are millions of accounts and there is virtually
no contention between transactions. The overhead of concurrency control appears to become the
dominant runtime factor, even when there are no concurrency conflicts.

CHAPTER 2. GROUNDHOG 37

Conclusions More important than any topline number is the scalability of Groundhog. As dis-
cussed in §2.5, our implementation includes what we believe to be a minimal complete set of fea-
tures. However, any deployed system may want additional features, each of which adds overhead
to each transaction. For example, transactions might require multiple authorization signatures, or
an implementation might choose a slower but simpler (and easier to audit) implementation of the
WebAssembly sandbox.

Sequential semantics inherently force a deployment to choose between more features and higher
throughput. SCS adds a dimension of cost to this tradeoff. A deployment can compensate for addi-
tional features (and any resulting throughput drop) by simply adding additional compute hardware.
It may be unlikely that any near to medium term deployment of a digital currency would need
multiple hundreds of thousands of transactions per second, but this scalability enables a deployment
to smoothly compensate for future feature demands and increased workload.

These measurements only count as throughput the rate of successful transactions. If many
transactions sent to Groundhog are invalid for some reason, then when proposing a batch, a replica
would execute these transactions but not include them in a proposal. The measured throughput
would fall accordingly, but the scalability properties of Groundhog would be largely unaffected (in
fact, transactions that are not included in a proposal do not influence the amortized per-batch
overhead). To put these numbers in context, it may be quite unlikely that any near to medium
term deployment of a digital currency would need multiple hundreds of thousands of transactions
per second. 1

2.7 Extension: Incomplete External Calls

Groundhog’s commutative semantics enable behavior not directly implementable in a sequentially
executing state machine. When assembling a proposed block, Groundhog can pause the execution
and reallocate resources to a different transaction, without disrupting the execution of any other
transaction. This enables transactions in Groundhog to call into external, possibly incomplete
computations. If an external call fails to terminate (within a time bound), Groundhog can simply
drop the transaction, without affecting the operation of any other transaction or wasting any compute
resources (besides those for the dropped transaction).

Replication requires that the results of external calls be self-authenticating (e.g., signed by a
relevant authority). A block proposer must include these results in its block proposal. Access to
external information is an important business in existing blockchains [100], but suffers from high la-
tency, as queries can only return results in subsequent blocks. These calls in Groundhog let contracts
directly access external information; for example, a bank might hold personal information privately
and authorize transfers based on queries to this data without revealing the private information.

1If you’re reading this far into this thesis, you must be interested in the topic and I’d love to chat with you! Feel
free to send me an email, and I’ll buy you a coffee if you mention you found this footnote.

CHAPTER 2. GROUNDHOG 38

Atomic Swaps External calls can enable efficient off-chain market-making, addressing the so-
called “free option” problem of existing decentralized exchanges that execute atomic swaps [189,
262]. In an atomic swap, two users agree to a trade between two assets at some exchange rate.
Implementing this requires making two asset transfers in one transaction, and requires authorization
from both users. Typically, one user signs the transaction first, and then sends the transaction to
the other, who signs it and submits it to the blockchain.

However, upon receipt of the first user’s signature, the second user has the option of dropping
the transaction. To minimize swap failures due to network delay or blockchain congesion, swap
transactions often include a relatively long expiration time. The optionality benefits the second user
at the expense of the first [189].

By contrast, in Groundhog, if a swap is initiated within a transaction via a call to an external
service (i.e., a request for quote API), both swap participants know that if the swap settles, then
it will settle within the same block—within the smallest discrete amount of time that a blockchain
can measure. The Groundhog replica has the option to cancel the swap, but neither of the swap
participants do.

2.8 Design Limitations

Development Difficulty The execution semantics of Groundhog may make developing applica-
tions more difficult than in a sequentially executing system. Anecdotally, we found it helpful to
conceptualize a contract’s API as a set of actions that a caller might perform, subject to a set of
constraints. Our conjecture is not all but a majority of important applications can be built in a
manner that admits some commutativity. Ramseyer et al. [269] additionally find that redesigning
an API to add commutativity can introduce useful economic properties.

However, as discussed in §2.4.6, production blockchains today [38, 15] use semantics, based on
asynchronous message passing, that are strictly weaker than those of Groundhog. This gives a
natural baseline implementation for any contract used in those systems. We do not implement it
here, but message-passing designs may wish to programmatically schedule a transaction to execute
in a future block.

Leader-based Design Groundhog’s commutative semantics eliminate the ability of one replica
to manipulate the ordering of transactions for its own profit within a batch, but a malicious batch
proposer might easily censor or delay transactions. Censorship and delay resistance are properties
of a consensus protocol, not the execution engine. We envision Groundhog in an environment
with large-scale, regulated financial institutions operating replicas, where regulation ensures non-
malicious replica operation in most cases, but Groundhog’s leader-based proposal process complicates
an integration with leaderless consensus protocols [144, 206] that may be more censorship-resistant.

CHAPTER 2. GROUNDHOG 39

The challenge is that Groundhog cannot maintain object constraints if transactions in a batch
conflict. If Groundhog is given a batch that may cause a constraint violation it must first remove
sufficient transactions to prevent any violations. We do not implement it here, but Groundhog could
add a generalization of the deterministic filtering mechanism of [269].

Specifically, Groundhog could execute all transactions in a block, and identify any objects on
which transactions conflict or that are put in a constraint-violating state. Groundhog can then
compute, for each object, a “conflict set” of conflicting transactions. For example, if several trans-
actions write different values to a bytestring, then all of these transactions are in the conflict set. If
a nonnegative integer’s constraint is broken, then all transactions that subtract from its value form
the conflict set. Removing transactions cannot cause additional conflicts in Groundhog, so removing
the union of all conflict sets leaves a block with no constraint violations.

2.9 Related Work

2.9.1 Semantic Changes

Our approach is modeled on the Scalable Commutativity Rule of Clements et al. [125], who build
scalability into an operating system by designing commutative system call semantics. CoWSwap
[7, 12] and Penumbra [17] also implement specific state machines that execute transactions in un-
ordered batches. Our design of SPEEDEX in chapter 3 uses a similar semantic model to operate a
decentralized exchange that concurrently executes batches of unordered transactions.

Garamvölgyi et al. [174], resolve some write conflicts by adding a “commutative add” instruction.
Their design, however, maintains sequential semantics, and does not support subtraction from a
counter in a commutative manner. Studies of historical Ethereum data [278, 174] find that most
conflicts come from token contracts and other integer counters.

Conflict-free Replicated Data Types [286] give commutative interfaces to data structures in a
distributed environment, but guarantee that operations can be applied after any amount of de-
lay. They cannot, therefore, implement an account balance that admits subtraction while ensuring
nonnegativity.

2.9.2 Parallel Execution

Block-STM [179] optimistically executes transactions in parallel, re-executing in case of conflict.
This meets our requirements for a digital currency engine, except that its throughput does not scale
under limited contention. Chen et al. [120] speculatively execute Ethereum transactions, and Lin et
al. [229] instrument Ethereum execution traces to reduce re-execution overhead after concurrency
conflicts.

Eve [204] executes batches of transactions concurrently, but relies on an application-specific

CHAPTER 2. GROUNDHOG 40

conflict checker to assemble batches of nonconflicting transactions. This checker requires advance
knowledge of transaction read and write sets, and performance degrades substantially when this
checker produces errors. Malicious users could attack any conflict checker with malicious code to
introduce errors. By contrast, transactions in Groundhog execute arbitrary, untrusted code, and
Groundhog needs no advance knowledge of read or write sets.

LiTM [309] takes a batch of transactions and executes on a single snapshot as many nonconflicting
transactions as possible, then recomputes a new state snapshot and continues. However, throughput
is limited by round frequency, because a data item can only be updated once per round, and
Gelashvili et al. [179] found throughput scalability of LiTM to be limited under contention.

Strife [264] dynamically splits a batch of transactions into partitions where transactions in differ-
ent partitions do not conflict, and executes these subsets in parallel. Bohm [164] deterministically
executes batches of transactions using a multi-version data structure. Both approaches rely on
advance knowledge of transaction read and write sets.

Basil [289] builds a key-value store in a context where replicas and users may be faulty, boosting
performance by adapting optimistic techniques to this setting. However, the system relies on users
to execute transactions, which means that it cannot ensure correct execution or prevent Byzantine
clients from overwriting the data of correct users.

Other approaches compute nonconflicting transaction sets [89, 317, 196] or include conflict reso-
lution information in block proposals [150, 71, 70]. Ruan et al. [277] reorder transactions to reduce
conflict rates.

2.9.3 Ordering Semantics

Li et al. [226, 225] propose RedBlue consistency, in which a transaction can be broken into non-
commutative (Red) and commutative (Blue) components. Red components must still be executed
sequentially, limiting scalability, and Blue components may or may not be visible to Red ones, mak-
ing system operation nondeterministic. PoR consistency [227] generalizes this notion to more fine-
grained ordering requirements, but has the same challenges in our context. Systems like COPS [231]
likewise relax consistency guarantees to increase performance but do not guarantee reproducible
operation.

As discussed in §2.3.1, Groundhog deliberately builds no ordering between transactions in a
block. Other decentralized systems build a “fair ordering” assuming a bounded fraction of malicious
replicas [209, 322, 100, 267] or allow a replica to cryptographically commit to an ordering before
revealing the contents of a transaction [126, 320, 282, 184].

2.9.4 Divided State

Several blockchain scaling approaches divide blockchain state into independently-running state ma-
chines (“shards”) [9, 321, 307, 291, 145] or side-chains (“Layer-2 networks”) [263, 203, 18, 10, 262,

CHAPTER 2. GROUNDHOG 41

11, 35, 183]. Each component can run independently, but these designs complicate any interaction
across components and limit throughput between components.

Some designs operate each smart contract independently (in parallel), allowing communication
between contracts only through asynchronous messages [38, 40, 285, 202]. This model complicates
many common tasks, such as asset transfers (which would ideally be done atomically), as each call
to a token contract is asynchronous.

Several systems, such as Bitcoin [249] and Project Hamilton [234], divide user balances into
pieces, where each piece is an “Unspent Transaction Output” (UTXO). Use of UTXOs enables some
parallelism (as in e.g. [313]), but complicates the user experience—each user must track a large set
of UTXOs, not just one account balance—and complicates any abstraction built on top of them.
Project Hamilton [234] furthermore observed that even committing to a total ordering between
payment transactions became a throughput bottleneck. Groundhog, by contrast, gets its scalability
without making this tradeoff.

2.10 Conclusion

We presented here Groundhog, our novel design for a smart contract execution engine. Groundhog is
designed to execute blocks of transactions in parallel, but unlike prior work, Groundhog semantically
places no ordering between transactions in a block.

Groundhog’s key insight is to design a set of commutative semantics that allow the Groundhog
runtime to deterministically resolve concurrent writes to the same object. To support contexts
where transactions may irresolvably conflict (such as when withdrawing money from an account),
Groundhog lets contracts express constraints about their data objects. Groundhog maintains these
constraints by using a 2-phase locking protocol to assemble and propose blocks that contain no
conflicts.

These semantics enable Groundhog to execute transactions in parallel with minimal synchroniza-
tion overhead between threads. Crucially for any real-world deployment of a digital currency system,
this parallel execution enables Groundhog to scale its transaction throughput as it is given more
compute resources. Furthermore, the commutativity ensures that the rate at which transactions
modify the same objects (which would lead to conflicts in designs based on optimistic concurrency
control) does not meaningfully affect throughput.

Our implementation of Groundhog achieves more tha half a million payments per second between
10M accounts, but achieves even more than that when transacting between only 2 acccounts.

Chapter 3

SPEEDEX:
A Scalable, Parallelizable, and
Economically Efficient
Decentralized EXchange

3.1 Introduction

Digital currencies are moving closer to mainstream adoption. Examples include central bank dig-
ital currencies (CBDCs) such as China’s DC/EP [256], commercial efforts [197, 169], and many
decentralized-blockchain-based stablecoins such as Tether [293], Dai [14], and USDC [26]. These
currencies vary wildly in terms of privacy, openness, smart contract support, performance, regula-
tory risk, solvency guarantees, compliance features, retail vs. wholesale suitability, and centralization
of the underlying ledger. Because of these differences, and because financial stability demands dif-
ferent monetary policy in different countries, we cannot hope for a one-size-fits-all global digital
currency. Instead, to realize the full potential of digital currencies (and digital assets in general), we
need an ecosystem where many digital currencies can efficiently interoperate.

Effective interoperability requires an exchange: an efficient system for exchanging one digital
asset for another. Users post offers to trade one asset for another on the exchange, and then the
exchange matches mutually compatible offers together and transfers assets according to the offered
terms. For example, one user might offer to trade 110 USD for 100 EUR, and might be matched
against another user who previously offered to trade 100 EUR for 110 USD. A typical exchange
maintains orderbooks of all of the open trade offers.

42

CHAPTER 3. SPEEDEX 43

The ideal digital currency exchange should, at minimum,

• not give any central authority undue power over the global flow of money,

• operate transparently and auditably,

• give every user an equal level of access,

• enable efficient trading between every pair of currencies (make effective use of all available
liquidity), and

• support arbitrarily high throughput, without charging significant fees to users.

Scalability is crucial for a piece of financial infrastructure that must last far into the future, as
the number of individuals transacting internationally continues to grow. Furthermore, the above
feature list is by no means complete; a deployment may want any number of additional features, such
as persistent logging, simplified payment verification [249], or integrations with legacy systems, each
of which slows down the system’s performance. Scalability, viewed from another angle, enables the
system to add features without decreasing overall transaction throughput (at the cost of additional
compute hardware).

The gold standard for avoiding centralized control is a decentralized exchange, or DEX: a transpar-
ent exchange implemented as a deterministic replicated state machine maintained by many different
parties. To prevent theft, a DEX requires all transactions to be digitally signed by the relevant asset
holders. To prevent cheating, replicas organize history into an append-only blockchain. Replicas
agree on blockchain state through a Byzantine-fault tolerant consensus protocol, typically some vari-
ant of asynchronous or eventually synchronous Byzantine agreement [115] for private blockchains or
synchronous mining [249] for public ones.

Unfortunately, existing DEX designs cannot meet the last three desiderata.

Equality of Access In existing exchange designs, users with low-latency connections to an ex-
change server (centralized or not) can spy on trades incoming from other users and front-run these
trades. For example, a front-runner might spy an incoming sell offer, and in response, send a trade
that buys and immediately resells an asset at a higher price [97, 223]. In a blockchain, where a
block of trades is either finalized entirely or not at all, this front-running can be made risk-free.
More generally, some users form special connections with blockchain operators to gain preferential
treatment for their transactions [143]. This special treatment typically takes the form of ordering
transactions in a block in a favorable manner. The result is hundreds of millions of dollars siphoned
away from users [265].

Effective Use of Liquidity Existing exchange designs are filled with arbitrage opportunities. A
user trading from one currency A to another B might receive a better overall exchange rate by

CHAPTER 3. SPEEDEX 44

trading through an intermediate reserve currency C, such as USD. Users must typically choose
a single (sequence of) intermediate asset(s), leaving behind arbitrage opportunities with other in-
termediate assets. This challenge is especially problematic in the blockchain space, where market
liquidity is typically fragmented between multiple fiat-pegged tokens.

Computational Scalability DEX infrastructure must also be scalable. The ideal DEX needs to
handle as many transactions per second as users around the globe want to send, without limiting
transaction rates through high fees. Trading activity growth may outpace Moore’s law, and should
not be limited by the rate of increase of single-CPU-core performance. An ideal DEX should handle
higher transaction rates simply by using more compute hardware.

Unfortunately, folk wisdom holds that DEXes cannot scale beyond a few thousand transactions
per second. Naïve parallel execution would not be replicable across different blockchain nodes.
This wisdom has led to many alternative blockchain scaling techniques, such as off-chain trade
matching [304], automated market-makers [55], transaction rollup systems [21, 30], and sharded
blockchains[9] or side-chains [262]. These approaches either trust a third party to ensure that orders
are matched with the best available price, or sacrifice the ability to set traditional limit orders that
only sell at or above a certain price (reducing market liquidity). Offchain rollup systems, sharded
chains, and side-chains further fragment market liquidity, leading to cross-shard arbitrage and worse
exchange rates for traders.

A challenge for on-chain limit-order DEXes is that the order of operations affects their results.
Typically, a DEX matches each offer to the reciprocal offer with the best price: e.g., the first offer to
buy 1 EUR might consume the only offer priced at 1.09 USD, leaving the second to pay 1.10 USD.
Each trade is a read-modify-write operation on a shared orderbook data structure, so trades must
be serialized. This serialization order must be deterministic in a replicated state machine, but naïve
parallel execution would make the order of transactions dependent on non-deterministic thread
scheduling.

3.1.1 SPEEDEX: Towards an Ideal DEX

This paper disproves the conventional wisdom about on-chain DEX performance. We present
SPEEDEX, a fully on-chain decentralized exchange that meets all of the desiderata outlined above.
SPEEDEX gives every user an equal level of access (thereby eliminating a widespread class of
risk-free front-running), eliminates internal arbitrage opportunities (thereby making optimal use of
liquidity available on the DEX), and is capable of processing over 200,000 transactions per second
when deployed on 48-core machines (Figure 3.3). SPEEDEX is designed to scale further when given
more hardware.

Like most blockchains, SPEEDEX processes transactions in blocks—in our case, a block of
500,000 transactions every few seconds. Its fundamental principle is that transactions in a block

CHAPTER 3. SPEEDEX 45

commute: a block’s result is identical regardless of transaction ordering, which enables efficient
parallelization [125].

SPEEDEX’s core innovation is to execute every order at the same exchange rate as every other
order in the same block. SPEEDEX processes a block of limit orders as one unified batch, in which,
for example, every 1 EUR sold to buy USD receives exactly 1.10 USD in payment. Furthermore,
SPEEDEX’s exchange rates present no arbitrage opportunities within the exchange; that is, the
exchange rate for trading USD to EUR directly is exactly the exchange rate for USD to YEN
multiplied by the rate for YEN to EUR. These exchange rates are unique for any (nonempty) batch
of trades. Users interact with SPEEDEX via traditional limit orders, and SPEEDEX executes a
limit order if and only if the batch’s exchange rate exceeds the order’s limit price.

This design provides two additional economic advantages. First, the exchange offers liquid trading
between every asset pair. Users can directly trade any asset for any other asset, and the market
between these assets will be at least as liquid as the most liquid market path through intermediate
reserve currencies. Second, SPEEDEX eliminates a class of front-running that is widespread in
modern DEXes. No exchange operator or user with a low-latency network connection can buy an
asset and resell it at a higher price, within the same block. (Note that this is not every type of
front-running; §3.8 and §3.10 contrast SPEEDEX’s guarantees with those of other mitigations, and
how they can be combined.)

Furthermore, this economic design enables a scalable systems design that is not possible using
traditional order-matching semantics. Unlike every other DEX, the operation of SPEEDEX is effi-
ciently parallelized, allowing SPEEDEX to scale to transaction rates far beyond those seen today.
Transactions within a block commute with each other precisely because trades all happen at the
same shared set of exchange rates. This means that the transaction processing engine has no need
for the sequential read-modify-update loop of traditional orderbook matching engines. Account
balances are adjusted using only hardware-level atomics, rather than locking.

3.1.2 SPEEDEX Overview

SPEEDEX is not a blockchain itself; rather, it is a DEX component that can be integrated into
any blockchain. A copy of the SPEEDEX module should run inside every replica of a blockchain
using the system. SPEEDEX does not depend on any specific property of a consensus protocol,
but automatically benefits from throughput advances in consensus and transaction dissemination
(such as [144]). SPEEDEX heavily uses concurrency and benefits from uninterrupted access to CPU
caches, and as such is best implemented directly within blockchain node software (instead of as a
smart contract).

We implemented SPEEDEX within a custom blockchain using the HotStuff consensus protocol
[316]; this implementation provides the measurements in this paper. We created a second imple-
mentation as a component of the Stellar blockchain[233], which is considering a Layer-1 SPEEDEX

CHAPTER 3. SPEEDEX 46

deployment.
Implementing SPEEDEX introduces both theoretical algorithmic challenges and systems design

challenges. The core algorithmic challenge is the computation of the batch prices. This problem maps
to a well-studied problem in the theoretical literature (equilibrium computation of Arrow-Debreu
Exchange Markets, §A.1.1); however, the algorithms in the theoretical literature scale extremely
poorly, both asymptotically and empirically, as the number of open limit orders increases.

We show that the market instances which arise in SPEEDEX have additional structure not
discussed in the theoretical literature, and use this structure to build a novel algorithm (based on
the Tâtonnement process of [127]) that, in practice, efficiently approximates batch clearing prices.
We then explicitly correct approximation error with a follow-up linear program.

Our algorithm’s runtime is largely independent of the number of limit orders—each Tâtonnement
query has a runtime of O(#assets2 · lg(#offers)) and the linear program has size O(#assets2). This
gives a crucial algorithmic speedup because in the real world, the number of currencies is much
smaller than the number of market participants. (The experiments of §3.6 and §3.7 use 50 assets
and tens of millions of open offers.)

On the systems design side, to implement this exchange, we design natural commutative trans-
action semantics and implement data structures designed for concurrent, batched manipulation and
for efficiently answering queries about the exchange state from the price computation algorithm.

In recent years, the economics literature has begun discussing the use of batched trading sys-
tems in traditional markets to combat front-running and externalities associated with high-frequency
trading [74, 103, 101]. This literature focuses only on the case of trading between two assets (where
price computation is simple) or where all trades use a single numeraire currency [104]. Our contri-
bution to this line of work is to demonstrate the feasibility of a batch trading system that exchanges
many assets and many numeraire currencies simultaneously, thereby expanding the design space of
implementable market structures.

3.2 System Architecture

SPEEDEX is an asset exchange implemented as a replicated state machine in a blockchain archi-
tecture (Fig. 3.1). Assets are issued and traded by accounts. Accounts have public signature keys
authorized to spend their assets. Signed transactions are multicast on an overlay network (Fig.
3.1, 1) among block producers. At each round, one or more producers propose candidate blocks
extending the blockchain history (Fig. 3.1, 2). A set of validator nodes (generally the same set or
a superset of the producers) validates and selects one of the blocks through a consensus mechanism
(Fig. 3.1, 3). SPEEDEX is suitable for integration into a variety of blockchains, but benefits from a
consensus layer with relatively low latency (on the order of seconds), such as BA⋆ [181], SCP [233],
or HotStuff [316].

CHAPTER 3. SPEEDEX 47

Blockchain
Node

Overlay
Network (1)

Block
Proposal (2)

Consensus
(3)

SPEEDEX

Core DEX
Engine (4)

Batch Pricing
Algorithm (5)

DEX State Database (6)

Persistent
Log (7)

Demand
Queries

Pricing Queries

State
Updates

Figure 3.1: Architecture of SPEEDEX module (4, 5, 6) inside one blockchain node.

CHAPTER 3. SPEEDEX 48

The implementation evaluated here uses HotStuff [316], while the the Stellar blockchain imple-
mentation relies on Stellar’s existing consensus protocol, SCP [242].

Most central banks and digital currency issuers maintain a ledger tracking their currency hold-
ings. SPEEDEX is not intended to replace these primary ledgers. Rather, we expect banks and
other regulated financial institutions to issue 1:1 backed token deposits onto a blockchain that runs
SPEEDEX and provide interfaces for moving money on and off the exchange. These assets could be
digital-native tokens as well; any divisible and fungible asset can integrate with SPEEDEX.

SPEEDEX supports four operations: account creation, offer creation, offer cancellation, and send
payment. Offers on SPEEDEX are traditional limit orders. For example, one offer might offer to sell
100 EUR to buy USD, at a price no lower than 0.91 USD/EUR. Offers can trade between any pair
of assets, in either direction. Another offer, for example, might offer to sell 100 USD in exchange
for EUR, at a price no lower than 1.10 EUR/USD.

What makes SPEEDEX different from existing DEXes is the manner in which it processes new
orders. Traditional exchanges process trades sequentially, implicitly computing a matching between
limit orders. SPEEDEX, by contrast, processes trades in batches (typically, one batch would consist
of all of the limit orders in one block of the blockchain).

In a blockchain, all of the transactions in a block are appended at the same clock time, so there
is no reason a priori why a DEX should pick one ordering over another. SPEEDEX, by design,
imposes no ordering whatsoever between transactions in a block. Side effects of a transaction are
only visible to other transactions in future blocks.

Logically, when the SPEEDEX core engine (Fig. 3.1, 4) receives a finalized block of trades, it
applies all of the trades at exactly the same time and computes an unordered set of state changes,
which it passes to its exchange state database (Fig. 3.1, 6). This database records orderbooks and
account balances, and is periodically written to the persistent log (Fig 3.1, 7).

3.2.1 SPEEDEX Module Architecture

To implement an exchange that operates replicably where trades in a block are not ordered relative
to each other, SPEEDEX requires a set of trading semantics such that operations commute.

Traditional exchange semantics are far from commutative: one offer to buy an asset is matched
with the lowest priced seller, and the next offer to buy is matched against the second-lowest priced
seller, and so on. Hence, every trade can occur at a slightly different exchange rate.

Instead, to make trades commutative, SPEEDEX computes in every block a valuation pA for
every asset A. The units of pA are meaningless, and can be thought of as a fictional valuation asset
that exists only for the duration of a single block. However, valuations imply exchange rates between
different assets—every sale of asset A for asset B occurs at a price of pA/pB. Unlike traditional
exchanges, SPEEDEX does not explicitly compute a matching between trade offers. Instead, offers
trade with a conceptual “auctioneer” entity at these exchange rates. Trading becomes commutative

CHAPTER 3. SPEEDEX 49

because all trades in one asset pair occur at the same price.
The main algorithmic challenge is to compute valuations where the exchange clears—i.e., the

amount of each asset sold to the auctioneer equals the amount bought from the auctioneer.
When the auctioneer sets exact clearing valuations, an offer trades fully with the auctioneer if

its limit price is strictly below the auctioneer’s exchange rate, and not at all if its limit price exceeds
the auctioneers rate. When the limit price equals the exchange rate, SPEEDEX may execute the
offer partially. Note that an exchange is a zero-sum system; as compared to sequential execution,
some users may see better prices and some may see worse, but SPEEDEX guarantees that no user’s
price is worse than their minimum limit price.

Theorem 3.2.1. Exact clearing valuations always exist. These valuations are unique up to rescal-
ing.1

Theorem 3.2.1 is a restatement of a general theorem of Arrow-Debreu exchange market theory
[146] (§A.1.3).

Concretely, whenever the core SPEEDEX engine (Fig 3.1, 4) receives a newly finalized block,
one of its first actions is to query an algorithm that computes clearing valuations (Fig 3.1, 5). It
then uses the output of this algorithm to compute the modifications to the exchange state (Fig 3.1,
6).

As valuations that clear the market always exist for any set of limit orders, there is no adversarial
input that SPEEDEX cannot process. And because these valuations are unique, SPEEDEX oper-
ators do not have a strategic choice between different sets of valuations. SPEEDEX’s algorithmic
task is to surface information about a fundamental mathematical property of a batch.

Unfortunately, we are not aware of a practical method to compute clearing prices exactly. (The
number of bits required to represent exact clearing prices may be extremely large [146], and in a
natural extension of the SPEEDEX model [270] the clearing prices are not even rational.) SPEEDEX
therefore uses approximate clearing prices.

At nonexact clearing prices, the conceptual auctioneer will not have enough of some asset(s)
to pay out all offers willing to accept the market price. SPEEDEX addresses this deficit in two
ways. First, the auctioneer proportionally reduces the amount it pays out to offers by a small
fraction—in other words, it charges a commission. Commissions are common for exchanges, whether
decentralized or not, though SPEEDEX does it for market clearing rather than profit reasons. To
avoid incentivizing high trading costs, the implementation returns commissions to the asset issuers,
and one goal of our price computation algorithm’s design is to make this commission as low as
computationally practical. Second, the auctioneer can refrain from filling some marketable offers.
Whereas in a perfect Arrow-Debreu exchange market, offers at the market price may be partially
filled or not filled, in SPEEDEX the same applies to offers very close to the market price, even if
they still beat the market price by a small percentage.

1And technical conditions (§A.1.3), e.g. everything clears an empty market.

CHAPTER 3. SPEEDEX 50

SPEEDEX always rounds trades in favor of the auctioneer. Our implementation burns collected
transaction fees and accumulated rounding error (effectively returning them to the issuer by reducing
the issuer’s liabilities). The Stellar implementation eliminates the fee and returns the accumulated
rounding error to asset issuers.

3.2.2 Design Properties

Computational Scalability SPEEDEX’s commutative semantics allow effective parallelization
of DEX operation. Because transactions within a block are not semantically ordered, DEX state
is identical regardless of the order in which transactions are applied. This exact replicability is,
of course, required for a replicated state machine. The order-independence also means SPEEDEX
transactions can be executed in parallel by all available CPU cores despite the fact that thread
interleaving is nondeterministic in multicore machines. Almost all coordination occurs via hardware-
level atomics (e.g., atomic add on 64-bit integers) without spinlocks.

SPEEDEX stores balances in accounts, rather than in discrete, unspent coins (often called
“UTXOs”). It also supports single-currency payment operations, which are simpler than DEX
trading. Hence, SPEEDEX disproves the popular belief [234, 272] that account-based ledgers are
not compatible with horizontal scalability.

No risk-free front running Well-placed agents in real-world financial markets can spy on sub-
mitted offers, notice a new transaction T , and then submit a transaction T ′ (that executes before
T) that buys an asset and re-sells it to T at a slightly higher price. In some blockchain settings, T ′

can be done as a single atomic action [143]. However, since every transaction sees the same clearing
prices in SPEEDEX, back-to-back buy and sell offers would simply cancel each other out. Relatedly,
because every offer sees the same prices, a user who wishes to trade immediately can set a very
low minimum price and be all but guaranteed to have their trade executed, but still at the current
market price.

Risk-free front-running is one instance of the widely discussed “Miner Extractable Value” (MEV)
[143] phenomenon, in which block producers reorder transactions within a block for their own profit
(or in exchange for kickbacks). By eliminating the ordering of transactions within a block, SPEEDEX
eliminates a large source of MEV. However, this does not eliminate every type of front-running
manipulation, such as delaying victim transactions to a future block (see §3.8).

No (internal) arbitrage and no central reserve currency An agent selling asset A in ex-
change for asset B will see a price of pA/pB. An agent trading A for B via some intermediary asset
C will see exactly the same price, as pA

pC
· pCpB = pA

pB
. Hence, one can efficiently trade between assets

without much pairwise liquidity with no need to search for an optimal path. By contrast, many
international payments today go through USD because of a lack of pairwise liquidity. The multitude

CHAPTER 3. SPEEDEX 51

of USD-pegged stablecoins in modern blockchains further fragments liquidity. Of course, there can
still be arbitrage between SPEEDEX and external markets.

3.3 Commutative DEX Semantics

To propose or execute a block of transactions, the SPEEDEX core engine performs the following
three actions.

1 For each transaction in the block (in parallel), check signature validity, collect new limit offers,
and compute available account balances after funds are committed to offers or transferred
between accounts. When proposing a block of transactions, SPEEDEX discards potentially
invalid transations.

2 When proposing a block, compute approximate clearing prices and approximation correction
metadata.

3 Iterate over each offer, making a trade or adding it to the resting orderbooks (based on the
prices and metadata).

For transaction processing in step 1 to be commutative, it must be the case that the step 1
output effects (specifically: create a new account, create a new offer, cancel an existing offer, and
send a payment) of one transaction have no influence on the output effects of another transaction.
This means that one transaction cannot read some value that was output by another transaction
(in the same block), and that whether one transaction succeeds cannot depend on the success of
another transaction.

To meet the first requirement, traders include all parameters to their transactions within the
transaction itself. The second requirement necessitates precise management of transaction side
effects. At most one transaction per block may alter an account’s metadata (such as the account’s
public key or existence), and metadata changes take effect only at the end of block execution.
Similarly, an offer cannot be created and cancelled in the same block. As payments and trading are
the common case, we do not consider these restrictions a serious limitation.

SPEEDEX must also ensure that no account is overdrafted. That is to say, after processing all
transactions in a block, the unlocked balance of every account must be nonnegative (where an open
offer locks the offered amount of an asset for the duration of its lifetime). Unlike most distributed
ledgers, SPEEDEX cannot simply deem the second of two conflicting transactions to fail—after all,
transactions have no ordering. Instead, our implementation requires a block proposer to ensure that
a block cannot cause overdrafts; every node rejects blocks that violate this property. To generate
valid blocks, proposers use a conservative process outlined in §A.11.6. The design requires passing
information from the SPEEDEX database (Fig 3.1, 6) to the proposal module (Fig 3.1, 2).

The core remaining technical challenge is the batch price computation (Fig 3.1, 5).

CHAPTER 3. SPEEDEX 52

3.4 Price Computation

3.4.1 Requirements

As discussed earlier, in every block, SPEEDEX computes batch clearing prices and executes trades
in response to these prices. Every DEX is subject to two fundamental constraints:

• Asset Conservation No assets should be created out of nothing. As discussed in §3.2, offers
in SPEEDEX trade with a virtual auctioneer. After a batch of trades, this auctioneer cannot
be left with any debt. We do allow the auctioneer to burn some surplus assets as a fee.

• Respect Offer Parameters No offer trades at a worse price than its limit price.

Additionally, SPEEDEX should facilitate as much trade volume as possible. (Otherwise, the
constraints could be vacuously met by never trading.) Furthermore, price computation must be
efficient, as it occurs for each block of trades, every few seconds. Finally, SPEEDEX should minimize
the number of offers that trade partially; asset quantities are stored as integer multiples of a minimum
unit, so each partial trade risks accumulating a rounding error of up to one unit.

3.4.2 From Theory To Practice

The problem of computing batch clearing prices is equivalent to the problem of computing equi-
libria in linear Arrow-Debreu Exchange Markets (§A.1). Our algorithm is based on the iterative
Tâtonnement process from this literature [127].

However, the runtimes of the theoretical algorithms scale very poorly, both asymptotically and
empirically. They also output approximate equilibria for notions of approximation that violate the
two fundamental constraints above (for example, Definition 1 of [127] permits equilibria to mint new
assets and to steal from a user).

We develop a novel algorithm for computing equilibria that runs efficiently in practice (§3.6)
and explicitly ensures that (1) asset amounts are conserved and (2) every offer trades at exactly
the market prices, and only if the offer’s limit price is at or below the batch exchange rate. First,
Tâtonnement approximates clearing prices (§3.5). We show that the structure of the types of trades
in SPEEDEX lets each iteration run in time logarithmic in the number of open limit offers (via a
series of binary searches), giving an algorithm asymptotically faster than that within the theoretical
literature.

We then explicitly correct for the approximation error with a linear program (§A.4). Crucially,
the size of this linear program is linear in the number of asset pairs, and has no dependence on the
number of open trade offers. The linear program ensures that, no matter what prices Tâtonnement
outputs, (1) asset amounts are conserved, and (2) no offer trades if the batch price is less than its
limit price.

To be precise, our algorithm outputs the following:

CHAPTER 3. SPEEDEX 53

• Prices: For each asset A, SPEEDEX computes an asset valuation pA. One unit of A trades
for pA/pB units of B.

• Trade Amounts: For each asset pair (A,B), SPEEDEX computes an amount xA,B of asset
A that is sold for asset B (again, at exchange rate pA/pB).

For every asset pair (A,B), SPEEDEX sorts all of the offers selling A for B by their limit prices,
and then executes the offers with the lowest limit prices, until it reaches a total amount of A sold
of xA,B (tiebreaking by account ID and offer ID).

As a bonus, this method ensures that at most one offer per trading pair executes partially,
minimizing rounding error.

3.5 Price Computation: Tâtonnement

Tâtonnement is an iterative process; starting from an (arbitrary) initial set of prices, it iteratively
refines them until the prices reach a stopping criterion.

Each iteration of Tâtonnement starts with a demand query. The demand of an offer is the net
trading of the offer (with the auctioneer) in response to a set of prices, and the demand of a set of
offers is the sum of the demands of each offer. Tâtonnement’s goal is to find prices such that the
amount of each asset sold to the auctioneer matches the amount bought from it (in other words, the
net demand is 0).

Example 3.5.1. Suppose that a limit order offers to sell 100 USD for EUR with a minimum price of
0.8 EUR per USD. If the candidate prices are such that α =

pUSD
pEUR

> 0.8, then the limit order would
like to trade, and its demand is (−100 USD, 100α EUR). Otherwise, its demand is (0 USD, 0 EUR).

Iterative Price Adjustment. If more units of an asset are demanded from the auctioneer than
are supplied to it (a positive net demand, meaning a deficit for the auctioneer), then the auctioneer
raises the price of the asset. Otherwise, the auctioneer has a surplus, so it lowers the price of the
asset. Implementing this process effectively requires careful numerical normalization in response to
differences in prices and trade volumes, which we describe in detail in §A.3.1.

Tâtonnement repeats this process until the current set of prices is sufficiently close to the market
clearing prices (or it hits a timeout). Specifically, Tâtonnement iterates until it has a set of prices
such that, if the auctioneer charges a commission of ε, then there is a way to execute offers such
that:

1 The auctioneer has no deficits (assets are conserved)

2 No offer executes outside its limit price bound

CHAPTER 3. SPEEDEX 54

3 Every offer with a limit price more than a (1− µ) factor below the auctioneer’s exchange rate
executes in full.

The last condition is a formalization of the notion that SPEEDEX should satisfy as many trade
requests as possible. Informally, an offer with a limit price equal to the auctioneer’s exchange rate is
indifferent between trading and not trading, while one with a limit price far below the auctioneer’s
exchange rate strongly prefers trading to not trading.

3.5.1 Efficient Demand Queries

Implemented naïvely, Tâtonnement’s demand queries would consist of a loop over every open ex-
change offer. This is impossibly expensive, even if the loop is massively parallelized. Concretely, one
invocation of Tâtonnement can require many thousands of demand queries. Every demand query
therefore must return results in at most a few hundred microseconds.

This naïve loop appears to be required for the (more general) problem instances studied in the
theoretical literature. However, all of the offers in SPEEDEX are traditional limit orders that sell
one asset in exchange for one other asset at some limit price. An offer with a lower limit price always
trades if an offer with a higher limit price trades. Therefore, SPEEDEX groups offers by asset pair
and sorts offers by their limit prices. We drive the marginal cost of this sorting to near zero by using
an offer’s limit price as the leading bits (in big-endian) of the keys in our Merkle tries (§A.11.5).

SPEEDEX can therefore compute a demand query with a sequence of binary searches (§A.7).
Individual binary searches can run on separate CPU cores. The number of open offers (say, M) on
an exchange is vastly higher than the number of assets traded (say, N). Our experiments in §3.7
trade N = 50 assets with M = tens of millions of open offers; the complexity reduction from O(M)

to O(N2 lg(M)) is crucial.

3.5.2 Multiple Tâtonnement Instances

§A.3 describes several other Tâtonnement adjustments that help it respond well to a wide variety
of market conditions. Some of these adjustments are parametrized (such as how quickly one should
adjust the candidate prices); rather than pick one set of control parameters, we run several instances
of Tâtonnement in parallel and take whichever finishes first as the result. (In the case of a timeout, we
choose the set of prices that minimizes the unrealized utility [§3.6.2].) SPEEDEX includes the output
of Tâtonnement and the subsequent linear program in the headers of proposed blocks (§A.11.3).

3.6 Evaluation: Price Computation

Tâtonnement’s runtime depends primarily on the target approximation accuracy, the number of
open trade offers, and the distribution of the open trade offers. The runtime increases as the

CHAPTER 3. SPEEDEX 55

desired accuracy increases. Surprisingly, the runtime actually decreases as the number of open
offers increases. And like many optimization problems, Tâtonnement performs best when the input
is normalized, meaning in this case that the (normalized, §A.3.1) volume traded of each asset is
roughly the same.

Tâtonnement runs once per block. To produce a block every few seconds, Tâtonnement must
run in under one second most of the time. Our implementation runs Tâtonnement with a timeout
of 2 seconds, but it typically converges much faster.

3.6.1 Accuracy and Orderbook Size

We find that Tâtonnement converges more quickly as the number of open offers increases. Tâtonnement
converges fastest when small price changes do not cause comparatively large changes in overall net
demand. However, an offer’s behavior is a discontinuous function (of prices); it does not trade below
its limit price and trades fully above it.

There are two factors that mitigate these “jump discontinuities.” First, Tâtonnement approxi-
mates optimal offer behavior by a continuous function (§A.2). Smaller µ means a closer approxima-
tion. Second, the more offers there are in a batch, the smaller any one offer’s relative contribution
to overall demand. This last factor explains why Tâtonnement converges more quickly when there
are more offers on the exchange. A real-world deployment might raise accuracy as trading increases.

Fig. 3.2 plots the minimum number of trade offers that Tâtonnement needs to consistently find
clearing prices for 50 distinct assets in under 0.25 seconds (for the same trade distribution used
in §3.7). To put these fee rates in context, BinanceDex [2] charged a fee of either 0.1% ≈ 2−10

or 0.04% ≈ 2−11.3. Uniswap [55, 56] charges 1%, 0.3%, or 0.05% (∼2−6.6, ∼2−8.4, and ∼2−11,
respectively), and Coinbase charges 0.5% to 4% [5] (∼ 2−7.6 to ∼ 2−4.6).

Though our experiments rarely experienced Tâtonnement timeouts, Tâtonnement timeouts caused
by sparse orderbooks may be self-correcting: If SPEEDEX proposes suboptimal prices, fewer offers
will find a counterparty and trade. When fewer offers clear in one block, more are left to facilitate
Tâtonnement in the next block. §A.6 describes an alternative algorithm that is effective on small
batches.

3.6.2 Robustness Checks

As a robustness check, we run Tâtonnement against a trade distribution derived from volatile cryp-
tocurrency market data. In an ideal world, we could replay trades from another DEX through
SPEEDEX. Unfortunately, doing so poses several problems. First, in practice, almost all DEX
trades go through four de facto reserve currencies (ETH, USD, USDC, and USDT), three of which
are always worth close to $1. The decomposition between a few core “pricing” assets and a larger
number of other assets makes price discovery too simple. Second, transaction rates on existing
DEXes are too low to provide enough data. Finally, we suspect users would submit different orders

CHAPTER 3. SPEEDEX 56

Figure 3.2: Minimum number of offers needed for Tâtonnement to run in under 0.25 seconds (Smaller
is better. Times averaged over 5 runs). The x axis denotes offer behavior approximation quality
(µ), and the y axis denotes the commission (ε).

CHAPTER 3. SPEEDEX 57

to SPEEDEX than they might on a traditional exchange, due to the distinct economic properties of
batch trading systems.

Experiment Setup. As a next-best alternative, we generate a dataset based on historical price
and market volume data. We took the 50 crypto assets that had the largest market volume on
December 8, 2021 (as reported by coingecko.com) and for each asset, gathered 500 days of price
and trade volume history. We then generated 500 batches of 50,000 transactions. A new offer in
batch i sells asset A (and buys asset B) with probability proportional to the relative volume of
asset A (and asset B, conditioned on A ̸= B) on day i, and demands a minimum price close to the
real-world exchange rate on day i. The extreme volatility of cryptocurrency markets and variation
between these 50 assets make this dataset particularly difficult for Tâtonnement. To further challenge
Tâtonnement, we use a smaller block size of ∼ 30, 000 (compared to 500, 000 in §3.7).

The experiment charged a commission of ε = 2−15 ≈ 0.003%, and attempted to clear offers with
limit prices more than 1− µ below the market prices, for µ = 2−10 ≈ 0.1% (§A.2).

Experiment Results. The experiment ran for 500 blocks. Each block created about 25,000 new
offers and a few thousand cancellations and payments.

Tâtonnement computed an equilibrium quickly in 350 blocks, and in the remainder, computed
prices sufficiently close to equilibrium that the follow-up linear program facilitated the vast majority
of possible trading activity.

We measure the quality of an approximate set of prices by the ratio of the “unrealized utility” to
the “realized utility.” The utility gained by a trader from selling one unit of an asset is the difference
between the market exchange rate and the trader’s limit price, weighted by the valuation of the
asset being sold. Note that the units do not matter when comparing relative amounts of “utility.”

In the blocks where Tâtonnement computed an equilibrium quickly, the mean ratio of unrealized
to realized utility was 0.71% (max: 4.7%), and in the other blocks, the mean ratio was 0.42% (max:
3.8%).

Recall that Tâtonnement terminates as soon as a stopping criteria is met; roughly, “does the
supply of every asset exceed demand,” so one mispriced asset will cause Tâtonnement to keep
running. However, every Tâtonnement iteration continues to refine the price of every asset. This
is why Tâtonnement actually gives more accurate results in the batches it found challenging. A
deployment might enforce a minimum number of Tâtonnement rounds.

Qualitatively, Tâtonnement correctly prices assets with high trading volume and struggles on
sparsely traded assets (as might be expected from Fig. 3.2). Tâtonnement also adjusts its price
adjustment rule in response to recent market conditions (§A.3.1), a tactic which is less effective on
volatile assets.

Should this pose a problem in practice, a deployment could choose to vary the approximation
parameters by trading pair.

coingecko.com

CHAPTER 3. SPEEDEX 58

3.7 Evaluation: Scalability

We ran SPEEDEX on four r6id.24xlarge instances in an Amazon Web Services datacenter. Each
instance has 48 physical CPU cores divided over two Intel Xeon Platinum 8375CL chips (32 total
cores per socket, 24 of which are allocated to our instances), running at 2.90Ghz with hyperthreading
enabled, 768GB of memory, 4 1425GB NVMe drives connected in a RAID0 configuration. We use
the XFS filesystem [290]. These experiments use the HotStuff consensus protocol [316], and do not
include Byzantine replicas or a rotating leader.

Experiment Setup. These experiments simulate trading of 50 assets. Transactions are charged
a fee of ε = 2−15(0.003%). We set µ = 2−10, guaranteeing full execution of all orders priced below
0.999 times the auctioneer’s price. The initial database contains 10 million accounts. Tâtonnement
never timed out, and typically required fewer than 1,000 iterations.

Transactions are generated according to a synthetic data model—every set of 100,000 transactions
is generated as though the assets have some underlying valuations, and users trade a random asset
pair using a minimum price close to the underlying valuation ratio. The valuations are modified (via
a geometric Brownian motion) after every set. Accounts are drawn from a power-law distribution.

Each set is split into four pieces, with one piece given to each replica. Replicas load these sets
sequentially and broadcast each set to every other replica. Each replica adds received transactions
to its pool of unconfirmed transactions.

Replicas propose blocks of roughly 500,000 transactions. In these experiments, each block consists
of roughly 350,000–400,000 new offers, 100,000–150,000 cancellations, 10,000–20,000 payments, and
a small number of new accounts. We generate 5,000 sets of input transactions. Some of these
transactions conflict with each other and are discarded by SPEEDEX replicas. Each experiment
runs for 700–750 blocks.

Every five blocks, the exchange commits its state to persistent storage in the background (via
LMDB [124], §A.11.2).

Performance Measurements. Fig. 3.3 plots the end-to-end transaction throughput rate of
SPEEDEX as the number of worker threads inside SPEEDEX increases. The x-axis plots the
number of open offers on the exchange.

Most importantly, Fig. 3.3 demonstrates that SPEEDEX can efficiently use its available CPU
hardware. The speedup is near-linear, until the number of threads approaches the number of CPU
cores—from 6 to 12, ∼ 1.9x, from 12 to 24, ∼ 1.8x, and from 24 to 48, ∼ 1.4x. The thread counts
are only for the number of threads directly for SPEEDEX’s critical path, and not for many of the
tasks that the implementation must perform in the background, such as logging data to persistent
storage (logging the account database uses 16 threads), consensus, and garbage collection, and these
threads begin to contend with SPEEDEX as the number of SPEEDEX worker threads increases.

CHAPTER 3. SPEEDEX 59

Figure 3.3: Transactions per second on SPEEDEX, plotted over the number of open offers.

CHAPTER 3. SPEEDEX 60

Secondly, Fig. 3.3 demonstrates the scalability of SPEEDEX with respect to the number of open
offers. The number of open offers SPEEDEX works with in these experiments is already quite large,
but most importantly, as the number of open offers goes from 0 to the 10s of millions, SPEEDEX’s
transaction throughput falls by only ∼ 10%. This slowdown is primarily derived from a Tâtonnement
optimization (the precomputation outlined in §3.9.2). Tâtonnement is the one part of SPEEDEX
that cannot be arbitrarily parallelized, so we design our implementation towards making it as fast
as possible. An implementation might skip this work in some parameter regimes.

To focus on the performance of SPEEDEX, Figs. 3.4 and 3.5 plot the time to propose and execute
blocks, and to validate and execute proposals, respectively, when we disable signature verification
(which is trivial to parallelize). First, note that both proposal and validation scale with the number of
threads; validation scales better than proposal due to the aforementioned Tâtonnement optimization.
Second, note that validating and executing a proposal from another replica is substantially faster
than proposing a block; this lets a replica that is somehow delayed catch up.

The runtime variation in Fig. 3.4 results from the fact that SPEEDEX without signature verifi-
cation runs too quickly for our persistent logging implementation.

SPEEDEX is not a consensus protocol, and these experiments (one consensus invocation every
few seconds) do not come close to stressing the consensus throughput of Hotstuff. However, network
bandwidth requirements necessarily scale (at least) linearly with transaction rate. Recent work, such
as [144, 206, 314], develops consensus protocols that maximally use available network bandwidth.
However, integrating SPEEDEX with any consensus protocol requires understanding the tradeoffs
between batch size, transaction rate, and consensus frequency. Fig. 3.6 plots this tradeoff running
SPEEDEX on the same transaction workload as in Fig. 3.3. We also ran SPEEDEX with more
replicas on different hardware and observed the same scalability trends, as outlined in §A.12 (albeit
with lower overall throughput on weaker hardware).

Conclusions. To reiterate, SPEEDEX achieves these transaction rates while operating fully on-
chain, with no offchain rollups and no sharding of the exchange’s state. To make SPEEDEX faster,
one can simply give it more CPU cores, without changing the transaction semantics or user interface.
This scaling property is unique among existing DEXes.

3.7.1 Alternative Scaling Techniques

Traditional Exchange Semantics. The core logic of just an exchange system can be imple-
mented extremely efficiently with almost no code. The logic of the constant product market maker
UniswapV2 [55], for example, is less than 10 lines of simple arithmetic code. An orderbook-based
exchange requires more code but can still be made very fast, as most operations modify only a small
number of data objects. We implemented a bare-bones orderbook exchange with two assets using

CHAPTER 3. SPEEDEX 61

Figure 3.4: Time to propose and execute a block, plotted over the number of open offers.

CHAPTER 3. SPEEDEX 62

Figure 3.5: Time to validate and execute a proposal, plotted over the number of open offers (mea-
surements from one replica).

CHAPTER 3. SPEEDEX 63

Figure 3.6: Median transaction rates, varying block size and number of open offers (grouped into
buckets of 2M). Shaded areas plot 10th to 90th percentiles.

CHAPTER 3. SPEEDEX 64

the same data structures as in SPEEDEX—each transaction checks the orderbook for a match-
ing offer or offers and either makes appropriate transfers or adds the new offer to the orderbook.
These operations are extremely fast when the number of accounts is small; our implementation
runs ∼ 1.7 million of these transactions per second when there are only 100 accounts. However,
every database lookup becomes slower as the as the number of accounts grows; when there are 10
million accounts in the database (as in the above experiments), throughput falls 8x to ∼ 210, 000

per second. Yet that is before adding all of the other SPEEDEX features one needs in a real DEX,
such as state hashes, transaction fees, structures for simple payment verification [249], replication,
or durable logging. The scalability of the full SPEEDEX implementation lets it surpass that rate
even when slowed down by all of these features.

Note that every orderbook operation affects every subsequent transaction—each transaction in-
fluences the exchange rate observed in the next transaction—and as such, their execution cannot
be parallelized. SPEEDEX’s design, therefore, enables parallel execution of what would otherwise
be a strictly serial workload. To isolate the effect of SPEEDEX’s parallelizable semantics on its
transaction throughput, we therefore turn to a workload that does not touch the DEX at all—one
where every transaction is a payment between random accounts.

Optimistic Concurrency Control. A widely explored class of alternative designs for parallel
transaction execution use optimistic concurrency control, and of these approaches the most closely
related state of the art design appears to be Block-STM [179], which is deployed in Aptos [36]. This
approach optimistically executes batches of transactions, retrying after conflicts as necessary.

We therefore design the measurements of Fig. 3.7 to mirror the experiments in [179]. The “Aptos
p2p” transactions in [179] are payments between two random accounts, and consist of 8 reads of
5 writes. Each of our payments consists of two data reads (source account public key and last
committed sequence number), two atomic compare_exchange operations (subtract payment and
fee from source), an atomic fetch_xor (reserve sequence number), and an atomic fetch_add (add
payment to destination)—implemented without atomics, this would be 6 reads and 4 writes. All
payments are of the same asset.

Fig. 3.7 plots the throughput rates of SPEEDEX on this transaction workload for the parameter
settings measured in Block-STM (Figs. 7 and 8, [179]). Note that for large batch sizes, the trans-
action throughput is largely independent of the number of accounts, even though every transaction
in the two account setting contends with every other transaction. Furthermore, unlike Block-STM,
SPEEDEX achieves near-linear scalability on sufficiently large batches. For small batch sizes, a
large number of accounts actually slows down SPEEDEX, largely due to increased sensitivity to
cache performance and our system’s NUMA (two socket) architecture on small timescales. We also
ran this experiment on a single-socket system (an AWS c5a.16xlarge, as in [179]), and found only
negligle impact of the number of accounts on throughput. Fig. 3.7 was run with hyperthreading
disabled, to compare against Block-STM experiments. The rest of our experiments were run with

CHAPTER 3. SPEEDEX 65

Figure 3.7: Throughput of SPEEDEX on batches of payment transactions with varying thread
counts (average of 100 trials).

CHAPTER 3. SPEEDEX 66

hyperthreading enabled (because of the many background tasks in SPEEDEX); enabling hyper-
threading on this payments workload causes a negligible performance degradation for large batches
(approximately 1-6%), and a larger (up to 25%) on small batches. As a baseline comparison, §A.10
graphs the performance of Block-STM on these parameter settings on our hardware.

We also ran SPEEDEX on an only-payments workload with 10 million accounts and 50 assets, and
measured a throughput of approximately 375k, 215k, 114k, and 60k transactions per second using
48, 24, 12, and 6 threads, respectively (a 34.8x, 20.0x, and 10.6x, and 5.6x speedup over the single-
threaded measurement). We disabled data persistence for these trials—again, the logging off of the
critical path contends with SPEEDEX at these transaction rates, especially for payment transactions
that modify two accounts, instead of just one (as when creating an offer). The throughput reached
255k transactions per second with data persistence enabled.

Production Systems. Finally, we ran the Ethereum Virtual Machine (Geth 1.10 [16]) on a work-
load of UniswapV2 [55] transactions, and measured a rate of ∼ 3000 transactions per second (a result
in line with other Ethereum benchmarks [303]). The Loopring exchange, built as an L2 rollup on
Ethereum, claims a maximum rate of ∼ 2000 per second [39], a number calculated from Ethereum’s
per-block computation limit [35], which is in turn set based on the real computational cost of serial
transaction execution [261, 108, 117, 59]. Precise measurements of the Stellar blockchain’s orderbook
DEX suggest that its implementation could handle ∼ 4000 DEX trades per second.

3.8 Design Limitations and Mitigations

Latency. Batch trading inherently introduces latency (between order submission and order execu-
tion) not present on traditional, centralized exchanges, simply because an order cannot execute until
a batch has been closed and clearing prices have been computed. This latency is already present in
a blockchain context (a transaction is not finalized until the consensus protocol adds it to a block),
so in this context, SPEEDEX introduces no additional latency.

The latency may have downstream economic effects. Market-making may be more (or less)
profitable operating in a batch system, which could lead to reduced (or increased) liquidity. Budish
et al. [74] argue that batch trading (between 2 assets) would reduce costs for market-makers, which
could lead to increased liquidity. However, they study a higher batch frequency (approximately once
per millisecond); our lower batch frequency is less studied (see Q9, [101]).

Tâtonnement Nondeterminism. The algorithms evaluated in §3.6 can be viewed as a random-
ized approximation scheme, which raises the question of whether a malicious operator can manipulate
the approximation. Note that the level of approximation error (as defined in §A.2) can be measured,
so non-anonymous node operators can be penalized for malfeasance. When regulation is not possi-
ble, Tâtonnement can be made deterministic by fixing a set of control parameters for each instance

CHAPTER 3. SPEEDEX 67

and choosing the solution with the lowest approximation error (or lowest unrealized utility, §3.6.2).
The Stellar implementation uses a static set of control parameters with one Tâtonnement instance.
Node operators could also compete to compute prices accurately, as in [12].

Nondeterministic Overdraft Prevention. SPEEDEX needs to prevent an account from spend-
ing more than its balance of an asset. As discussed in §3.3, our implementation considers a proposal
valid only if no account is overdrafted after applying the block. This design complicates pipelining of
consensus with execution, gives plausible deniability for delaying transactions, and is incompatible
with cryptographic commit-reveal schemes.

Instead, given a fixed block of transactions, an implementation could first compute, for each
account, the total amount of each asset debited from the account (before applying any credits). If
there is any possibility for an account to overdraft in this block, then this amount must exceed the
account’s balance. As such, to ensure that no accounts overdraft, the implementation can remove
all transactions from accounts that might overdraft. Note that this determination is made on a per-
account basis, before any transactions are removed, so this filtering requires only one, parallelizable
pass over a block of transactions, adding only minimal overhead (§A.9). Furthermore, only accounts
that attempt to overdraft are affected.

Other commutativity conflicts, such as cancelling an offer twice or reusing a sequence number,
can be handled similarly, by removing all transactions involved in these conflicts. Note that using
these filtering criteria, removing a transaction cannot cause a commutativity conflict. The Stellar
blockchain plans this approach.

Other Types of Front-Running. The set of pending transactions is public in many blockchains.
One might estimate the clearing prices in a future batch and arbitrage the batch against low-latency
markets. This could lead to negative externalities (see [102], footnote 1), and could merit combining
SPEEDEX with a commit-reveal scheme such as [320, 126]. Such a design requires the deterministic
overdraft-prevention scheme above.

Malicious nodes might also delay transactions. An implementation could buffer several blocks of
transactions from a consensus protocol into a single SPEEDEX batch. If even one of these consensus
blocks is from an honest replica (that does not censor transactions), a user could ensure that their
transaction cannot be delayed from one SPEEDEX batch to the next (by broadcasting to all replicas).
This requires a consensus protocol with sufficient chain quality [175]. Alternatively, some DAG-based
protocols [144, 206] simultaneously commit many blocks of transactions from different replicas.
Grouping these blocks into one SPEEDEX batch, instead of ordering them arbitrarily, achieves
the same censorship-resistance property. These designs would likewise require the deterministic
overdraft-prevention scheme.

CHAPTER 3. SPEEDEX 68

Linear Program Scalability. The runtime to solve the linear program increases dramatically
beyond 60-80 assets, limiting the number of assets in a SPEEDEX batch. A deployment could take
advantage of market structure—there are many assets (e.g., stocks) in the real world, but most
are linked to one geographic area or economy, and are primarily traded against one currency. We
formally show in §A.5 that in this case, the price computation problem can be decomposed between
core pricing (i.e., numeraire) currencies and the external stocks. After running Tâtonnement on the
core currencies, each stock can be priced on its own relative to a core currency. This lets SPEEDEX
support real-world transaction patterns with an arbitrary number of assets and a small number of
pricing currencies.

§A.4 points out that setting the commission to 0 simplifies the linear program to one that is more
algorithmically tractable at larger numbers of assets. The Stellar implementation uses this version
of the linear program.

Limited Trade Types. Trades on SPEEDEX are limited to trades selling a fixed amount of one
asset in exchange for as much as possible of another. SPEEDEX does not implement offers to buy
a fixed amount of an asset in exchange for as little as possible of another. These buy offers admit
the same logarithmic transformation as in §3.5.1, but make the price computation problem PPAD-
hard, a complexity class that is widely conjectured to be algorithmically intractable in polynomial
time (§A.8). One could compute prices using only sell offers and integrate buy offers in the linear
programming step.

Ramseyer et al. [270] show how to integrate Constant Function Market Makers (CFMMs) [69] into
the exchange market framework and Tâtonnement. The Stellar implementation uses this integration
with its own CFMMs.

3.9 Implementation Details

The standalone SPEEDEX evaluated in §3.6 and §3.7 is a blockchain using HotStuff [316] for con-
sensus. A leader node periodically mints a new block from the memory pool and feeds the block to
the consensus algorithm. Other nodes apply the block once it has been finalized by consensus. A
faulty node can propose an invalid block. Consensus may finalize invalid blocks, but these blocks
have no effect when applied.

The implementation is available open source at https://github.com/scslab/speedex and con-
sists of ∼30,000 lines of C++20, plus ∼5,000 lines for our Hotstuff implementation. It uses Intel’s
TBB library [13] to manage parallel work scheduling, the GNU Linear Programming Kit [237] to
solve linear programs, and LMDB [124] to manage data persistence (for crash recovery).

Exchange state is stored in a collection of custom Merkle-Patricia tries; hashable tries allow
nodes to efficiently compare state (to check consensus) and build short state proofs.

https://github.com/scslab/speedex

CHAPTER 3. SPEEDEX 69

The rest of this section outlines additional design choices built into SPEEDEX. Additional design
choices in §A.11. All optimizations (save §3.9.1) are implemented in the evaluated system.

3.9.1 Blockchain Integration

An existing blockchain with its own (non-commutative) semantics can integrate SPEEDEX by split-
ting block execution into phases: first applying all SPEEDEX transactions (in parallel), then ap-
plying legacy transactions (sequentially). SPEEDEX’s scalability lets a blockchain charge only a
marginal fee for transactions (to prevent spam). A proof-of-stake integration of SPEEDEX could
penalize faulty proposals.

SPEEDEX’s economic properties are desirable independent of scalability. The initial Stellar
implementation uses two-phase blocks, but the SPEEDEX phase is still implemented sequentially.
As a result, the initial implementation is simple (adding only ∼5,000 lines to the server daemon) and
the primary benefits are economic. However, because the transaction semantics are commutative,
engineers can work to parallelize the implementation as needed, without formally upgrading the
protocol (which is more difficult than releasing a software update).

3.9.2 Caches and Tâtonnement

Tâtonnement spends most of its runtime computing demand queries. Each query consists of sev-
eral binary searches over large lists, so the runtime depends heavily on memory latency and cache
performance. Towards the end of Tâtonnement, when the algorithm takes small steps, one query
reads almost exactly the same memory locations as the previous query, so the cache miss rate can
be extremely low.

Instead of querying the offer tries directly, we precompute for each asset pair a list that records,
for each unique limit price, the amount of an asset offered for sale below the price (§A.7). Laying
out this information contiguously improves cache performance.

We also execute the binary searches of one Tâtonnement iteration in parallel. One primary
thread computes price updates and wakes helper threads. However, each round of Tâtonnement is
already fast on one thread—with 50 assets and millions of offers, one round takes 400–600µs. To
minimize synchronization latency and avoid letting the kernel migrate threads between cores (which
harms cache performance), we operate these helper threads via spinlocks and memory fences. In
the tests of §3.6, we see minimal benefit beyond 4–6 helper threads, but this suffices to reduce each
query to 50–150µs.

Finally, there is a tradeoff between running more copies of Tâtonnement with different settings
and the performance of each copy. More concurrent replicas of Tâtonnement mean more cache traffic
and higher cache miss rates.

We accelerate the rest of Tâtonnement by exclusively using fixed-point arithmetic (rather than
floating-point).

CHAPTER 3. SPEEDEX 70

3.9.3 Batched Trie Design

Our tries use a fan-out of 16 and hash nodes with the 32-byte BLAKE2b cryptographic hash [79].
Both the layout of trie nodes and the work partitioning are designed to avoid having multiple threads
writing to the same cache line.

The commutativity of SPEEDEX’s semantics opens up an efficient design space for our data
structures, which need only materialize state changes once per block. Tries need only recompute a
root hash once per block, for example, instead of after every modification. Threads locally build tries
recording insertions, which are merged together in one batch operation (which is also parallelizable by
redividing local tries into disjoint key ranges). Deletions (when offers are cancelled) are implemented
via atomic flags on trie nodes; to enable efficient cleanup of deleted nodes, each node stores the
number of deleted nodes beneath it. To facilitate efficient work distribution, each node also stores
the number of leaves below it.

SPEEDEX builds in every block an ephemeral trie that logs which accounts are modified; specif-
ically, it maps an account ID to a list of its transactions and to the IDs of transactions from other
accounts that modified it. This enables construction of short proofs of account state changes. This
trie also uses the same key space as the main account state trie, which lets SPEEDEX use the
ephemeral trie to efficiently divide work on the (much larger) account trie.

Memory allocation for an emphemeral trie is trivial because no ephemeral trie node is carried
over from one block to the next. Every thread has a local arena, allocation simply increments an
arena index, and garbage collection means just setting the index to 0 at the end of a block. We
find it to be not a problem if some of the memory in the arena is wasted; we allocate the potential
children of an ephemeral trie node contiguously, so a node need only store a 4-byte base pointer
(buffer index) and a bitmap denoting the active children. This lets each ephemeral trie node fit in
one 64-byte cache line.

3.10 Related Work

Blockchain Scaling. Our approach is inspired by Clements et al. [125], who improve performance
in the Linux kernel through commutative syscall semantics.

Chen et al. [120] speculatively execute Ethereum transactions to achieve a ∼6x overall execution
speedup. Other approaches to concurrent execution include optimistic concurrency control [179, 311],
invalidating conflicting transactions [64], broadcasting conflict resolution information [150, 71], or
partitioning transactions into nonconflicting sets [89, 317, 196]. This problem is related to that of
building deterministic databases and software transactional memory [264, 309, 294]. Li et al. [226]
build a distributed database where some transactions are tagged as commutative.

Empirical work [278, 174] finds that a small number of Ethereum contracts, often token con-
tracts, are historically responsible for the majority of conflicts that limit optimistic execution. A

CHAPTER 3. SPEEDEX 71

recent Solana [312] outage resulted in part when many transactions conflicted on one orderbook
contract [280].

Project Hamilton [234] develops a CBDC payments platform. The authors find that totally-
ordered semantics become a performance bottleneck. Unlike SPEEDEX, which stores asset balances
in accounts, this system requires the more restrictive unspent transaction output (UTXO) model.

Some systems move transaction execution off-chain, into so-called “Layer-2” networks, each with
different capabilities, perfomance, interoperability, and security tradeoffs [263, 203, 18, 10, 262, 11,
35]. Other blockchains [9, 321, 307, 64, 291] split state into concurrently-running shards, at the cost
of complicating cross-shard transactions.

(Distributed) Exchanges. Budish et al. [103, 102] argue that exchanges should process orders
in batches to combat automated arbitrage and improve liquidity.

Other defenses against front-running include cryptographic commit-reveal schemes [126, 320,
282, 184] or “fair” ordering schemes that assume a bounded fraction of malicious nodes [209, 322,
100, 267]. The front-running attacks that SPEEDEX prevents are not guaranteed to be blocked in
these schemes. For example, a replica might plausibly front-run a transaction in [209] by investing
in lower-latency network links between itself and other replicas than other replicas have with each
other, and commit-reveal schemes do not prevent statistical front-running (guessing the contents of
a transaction).

Some blockchains build limit-order DEX mechanisms natively [23, 3] or as smart contracts [19].
Smart contracts known as Automated Market-Makers (AMMs) [55, 194, 157, 241] facilitate passive
market-making on-chain [69].

Several exchanges, such as 0x, an upcoming version of DyDx [46], and a past version of Loopring [304,
30] allow settlement on-chain of orders matched off-chain, in pairs or in cycles. Off-chain match-
ing, with only settlement of matched trades on-chain, means users cannot reliably cancel offers (as
no cancellation message is ever committed on-chain). StarkEx [21, 91] gives cryptographic tools
to prove some correctness properties of an off-chain exchange, but similarly leaves matching logic
off-chain [22].

CoWSwap [12, 6] uses mixed-integer programming to clear offers in batches of at most 100 [34].
Solvers compete to produce the best solution. The former Binance DEX [4] computed per-asset-pair
prices in each block. The Penumbra DEX uses homomorphic encryption to privately make batch
swaps against an AMM, but cannot let users set limit prices [17].

Price Computation. Our algorithms solve instances of the special case of the Arrow-Debreu
exchange market [78] where every utility function is linear. Equilibria can be approximated in these
markets using combinatorial algorithms such as those of Jain et al. [200] and Devanur et al. [147]
and exactly via the ellipsoid method and simultaneous diophantine approximation [199]. Duan et
al. [154] construct an exact combinatorial algorithm, which Garg et al. [177] extend to an algorithm

CHAPTER 3. SPEEDEX 72

with strongly-polynomial running time. Ye [315] gives a path-following interior point method, and
Devanur et al. [146] construct a convex program. Codenotti et al. [128, 127] show that a version of
the Tâtonnement process [77] converges to an approximate equilibrium in polynomial time. Garg
et al. [176] give another algorithm based on demand queries.

3.11 Conclusion

SPEEDEX is a fully on-chain DEX that can scale to more than 200,000 transactions per second
with tens of millions of open trade offers. SPEEDEX requires no offchain rollups and no sharding
of the exchange’s logical state. To make SPEEDEX faster, one can simply give SPEEDEX more
CPU cores, without changing the semantics or user interface. Because SPEEDEX operates as a
logically-unified platform, instead of a sharded network, SPEEDEX does not fragment liquidity
between subsystems and creates no cross-rollup arbitrage.

In addition, SPEEDEX displays several independently useful economic properties. It eliminates
risk-free front running; any user who can get their offer to the exchange before a block cutoff time
can get the same exchange rate as every other trader. SPEEDEX also eliminates internal arbitrage,
which disincentivizes network spam. And finally, SPEEDEX eliminates the need to transact through
intermediate, reserve currencies, instead allowing a user to trade directly from one asset to any other
asset listed on the exchange, with the same or better market liquidity as the trader would have gotten
by trading through a series of intermediate currencies.

SPEEDEX is free software, available at https://github.com/scslab/speedex.

https://github.com/scslab/speedex

Chapter 4

Fair Ordering via Streaming Social
Choice Theory

4.1 Introduction

A core problem when building distributed systems is in ordering transactions on said system. Repli-
cated state machine architectures [257, 217, 316, 255] typically first comes to consensus on a totally
ordered log of transactions, and then apply each transaction in the log to modify a state machine.
We study a model where n replicas operate a copy of a state machine, and receive transactions from
a set of clients.

However, replicas may receive transactions in different orderings. Different local views on trans-
action order must be aggregated into a single, total order.

This problem is similar to the classic problem of social choice theory [188, 232, 132, 133, 76],
where an election organizer computes an ordering over a finite set of candidates given a ranking of
those candidates from each of n voters. The “preferred ranking” of a replica is the order in which it
receives transactions. There is a rich literature on the properties of different voting rules, but two
features make our setting novel and distinct.

First, the number of transactions in the system is unbounded; as time passes, clients send more
and more transactions. In the language of the classical literature, the voting rule must aggregate
rankings (where each ranking is a total-ordering, isomorphic to ω) over a countably infinite set
of candidates. Such a ranking must be well-defined. For example, the Copeland method [136] is
not well-defined, as each candidate pairwise defeats a countably-infinite set of candidates—but this
challenge can be addressed by instead ranking by to minimizing the number of pairwise losses. We
focus on the Ranked Pairs method, which is defined by an iterative process— but such a process
does not terminate on an infinite input.

73

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 74

And second, rankings are not fully known at any finite time, but arrive in a streaming fashion
(as replicas receive transactions). Nevertheless, the system must progress, which means adding
transactions to the output log with incomplete information. Replicas apply a transaction to local
copies of the state machine as soon as it is in the output log (and, in a real-world deployment,
downstream systems might make decisions based on transactions being committed to the log), so
transactions in the output log cannot be rearranged later. Similarly, transactions can only be
appended to the end of the log. Clients would also like to minimize the time between when they
send a transaction and when it is added to the log.

An additional complication is that some replicas might misrepresent the order in which they
received transactions over the network. One desirable property of an aggregation rule is that the
influence of a (colluding) subset of replicas is bounded and precisely quantified. While we think this
streaming problem with only the above two considerations is interesting in its own right, adversarial
manipulation of transaction ordering poses an additional challenge. Many public blockchains use
this architecture [249, 308, 242, 274], but allow widespread ordering manipulation [143] so as to e.g.
“front-run” trades on an exchange, extracting risk-free profit at another user’s expense.

4.1.1 Our Results

Prior work [209, 207, 208] study this problem of aggregating orderings “fairly,” but to the best of our
knowledge, this work is the first to directly pose the question as a streaming version of the classic
social choice problem. For a ranking system to be well-defined on a countably infinite set, we show
that it suffices for there to exist a “monotonic” and “asymptotically live” algorithm, which does not
undo a decision when its (finite) input is extended and eventually outputs every transaction. The
challenge in building such an algorithm is in determining when an algorithm has enough information
to make a decision that is consistent with its hypothetical output on any extension of its input
orderings.

We focus here on the ordering known as Ranked Pairs [295]. Analysis of the graph of ordering
dependencies gives an important structural lemma about what pieces of information Ranked Pairs
uses to determine its output. Using this lemma, we can carefully track how uncertainty about as-yet-
unseen votes on the ordering between transactions propagates throughout Ranked Pairs’s operation
and instantiate Ranked Pairs in our streaming setting (§4.6).

Ranked Pairs iterates over a directed graph in order of the weight of each edge. We find that
the tiebreaking rule that determines the ordering of edges of equal weight is a critical part of the
algorithm. Using a naive deterministic rule, our streaming algorithm might never output any trans-
actions. We then show in §4.7 that careful manipulation of the tiebreaking (in essence, dynamically
generating a tiebreaking rule) guarantees asymptotic liveness.

“Fair” in prior work means γ-batch-order-fairness. The output ordering is divided into batches,
and while transactions within a batch may be ordered arbitrarily, if γn replicas receive a transaction

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 75

tx before another transaction tx′, then tx cannot be in a later batch than tx′. We first strengthen in
§4.4 this definition to precisely captures the intuition that batches should be minimal. Minimality
is essential to a useful definition fairness, as otherwise, a protocol vacuously satisfies the definition
by placing all transactions in the same batch. Minimality must be defined carefully in the presence
of faulty replicas; we show that γ-batch-order-fairness cannot be satisfied simultaneously with exact
notions of “minimalily” of batch size and faulty replicas.

We call our definition (γ, δ)-minimal-batch-order-fairness. Simply put, if a γ fraction of replicas
vote for tx before tx′, then the output ordering should include tx before tx′ unless there is a suffi-
ciently strong reason to put tx′ before tx—that is, a sequence of transactions (tx1, tx2, . . . , txk−1, txk),
with tx1 = tx and txk = tx′, where at least a γ − 2δ fraction of replicas vote for txi before txi+1

for 1 ≤ i ≤ k − 1. As an example, given f faulty replicas out of n total replicas and a fixed γ, prior
work [209] satisfies (γ, fn)-minimal-batch-batch-order-fairness.

We then show in §4.5 that Ranked Pairs voting satisfies our fairness criterion. Importantly, unlike
all prior work, our algorithm does not require knowledge of or any bound on the number of faulty
replicas 1 or a fixed choice of γ. Instead, our protocol satisfies (γ, fn)-minimal-batch-order-fairness
for every γ and every f

n simultaneously. Fairness guarantees smoothly weaken as f increases.
Finally, a synchronous network assumption combined with our tiebreaking manipulation guar-

antees that our algorithm outputs each transaction after a finite amount of time. If at most ∆ time
elapses between when a transaction tx is sent and when every honest replica votes on it, for example,
our algorithm outputs tx after a delay of at most O(n∆). This can be reduced to O(∆), by round-
ing edge weights— although rounding each fraction of replicas who vote for one transaction before
another to the nearest 1

k reduces the fairness guarantee to (γ, fn + 1
2k)-minimal-batch-order-fairness

(again for every γ simultaneously, and any f).
An explicit instantiation of this protocol would require a reliable, fault-tolerant communication

layer to allow replicas to communicate their ordering votes with each other. We keep this separation
explicit. Any consensus protocol will satisfy our requirements, although precise results h each other.
about liveness (§4.7.2) naturally depend on the choice of protocol and network assumptions. §4.8
gives an example of an explicit instantiation.

4.2 Preliminaries and System Model

We consider a model in which there are n replicas cooperating to develop a total ordering of trans-
actions. We number replicas from 1 to n. Transactions are received over the network from clients.
The ordering in which a replica receives transactions is that replica’s observed ordering.

1An instantiation requires a fault-tolerant way for replicas to broadcast their ordering votes. Such protocols may
require a bound on the number of faulty participants, but these are different kinds of faults in a different part of the
system.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 76

Definition 4.2.1 (Ordering Preference). An Ordering Preference on a (finite or countably-infinite)
set of transactions is a total ordering 2 σ̂i = (txi1 ≼ txi2 ≼ txi3 ≼ . . .)

However, at any finite time, each replica can have received only a finite number of transactions.
Replicas periodically submit these finite “ordering votes” to a ranking algorithm.

Definition 4.2.2 (Ordering Vote). A replica i submits to a ranking algorithm an ordering vote on
a set of k transactions, σ = (txi1 , ...txik). (where txij1 ≼ txij2 for j1 < j2).

We say that σ′ extends σ if σ is an initial segment of σ′ (as a convention, σ extends itself).

Definition 4.2.3 (Ranking Algorithm). A deterministic ranking algorithm A(σ1, . . . , σn) takes as
input an ordering vote from each replica and outputs an ordering σ on a subset of the transactions
in its input.

The output need not include every transaction in the input.
We say that a replica is honest if its true, observed ordering always extends its ordering vote,

and if whenever it submits a vote, it contains all transactions that the replica has observed at that
time. Otherwise, the replica is faulty.

We assume that at most f of the n replicas are faulty, although our algorithms do not require
knowledge of f . Faulty replicas might fail to vote on a transaction, but §4.8 addresses this diffi-
culty. Therefore, in the rest of this work, we assume that every replica eventually votes on every
transaction.

4.3 Related Work

Aequitas [209] and Themis [208] propose the notion of γ-batch-order-fairness and instantiate ordering
protocols based on aggregating ordering votes. Cachin et al. [110] propose an equivalent definition
κ-differential-order-fairness (Theorem D.1, [208]). Our work strengthens this definition to (γ, δ)-
minimal-batch-order-fairness. §4.4 discusses our work in relation to this line of work, and specifically
discuss the shortcomings of γ-batch-order-fairness and the difference between it and (γ, δ)-minimal-
batch-order-fairness. Zhang et al. [322] sort by median reported timestamp, for a linearizability
guarantee incomparable with our definition.

Concurrently with this work, Vafadar and Khabbazian [298] observe that extra transactions that
create Condorcet cycles can bypass the constraints γ-batch-order-fairness puts on the output (using
an example akin to Example B.2.1 and Lemma 4.4.8). Arrow’s impossibility theorem shows no
non-dictatorial, unanimous method is immune to manipulation via sending extra transactions [76].

Vafadar and Khabbazian also propose using Ranked Pairs to sort transactions within the batches
output in Themis. However, no modification to the ordering of transactions within a batch output in

2Isomorphic to a subset of ω

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 77

Aequitas can give the Ranked Pairs ordering, because Ranked Pairs might need to interleave batches
that Aequitas considers incomparable (as demonstrated in §B.4). As discussed in §4.4.3, the batches
in Themis are defined slightly differently than in Definition 4.4.1 and in Aequitas, because Themis,
when computing a graph of ordering dependencies, often ignores its choice of γ. In so doing, it
merges together two batches unless, for any transaction tx in one and tx′ in the other, a majority
of replicas vote tx ≼ tx′ (bypassing the counterexample of §B.4).

However, Themis’s round-based protocol presents a different problem insurmountable by any such
process that sorts its batches separately. Themis may finalize the composition of a batch before it
has enough information to ensure that, according to the Ranked Pairs ordering, all transactions in
the batch come before all those not in the batch (and not already output). This means that Themis
may output two batches in sequence where running Ranked Pairs on each batch separately produces
a different output than running Ranked Pairs on the union of the two batches together. §B.3 gives
an explicit example.

Classical social choice studies the problem of ordering a finite set of candidates given a complete
set of preferences from each voter [76]. Prior work studies related models in a limited-information
setting. Lu and Boutillier [235], Ackerman et al. [54], and Cullinan et al. [141] study the setting
where a social choice rule has incomplete access (a partial ordering) to a voter’s preferences over
a finite set of candidates. Conitzer and Sandholm [134] study the communication complexity of a
variety of voting rules. Fain et al. [163] study a randomized rule that uses only a constant number
of queries to voter preferences.

Fishburn [168] shows that Arrow’s impossibility theorem does not hold when the set of voters is
infinite, although Kirman and Sondermann [211] find “dictatorial sets” of voters. Grafe and Grafe
[186] extend these results to the case of infinitely many alternatives, subject to a continuity condition
on the space of ranking preferences. Chichilnisky and Heal [123] and Efimov and Koshevoy [156]
study the rules admissible in the infinite voters setting, given a topology on ranking preferences.

Crisman et al. [140] study the ordering problem where the output must be a cyclic permutation.
Some systems commit to an ordering before revealing transaction contents, using threshold en-

cryption or commit-reveal schemes [238, 126, 320]. These ideas could be used in conjunction with a
streaming ordering algorithm.

Kavousi et al. [205] randomly shuffle blocks of encrypted transactions. Some systems [269, 6, 17]
process transactions in unordered batches, eliminating the need to totally order them. Kelkar et
al. [207] instantiate Aequitas when the number of replicas is unknown and not fixed. Ferreira and
Parkes [167] construct an application-specific ordering. Mamageishvili et al. [239] allow payments
to prioritize transactions, using the median-timestamp mechanism of [322]. Li et al. [228] verifiably
compute orderings in hardware enclaves [138].

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 78

4.4 Defining Fair Ordering

4.4.1 Batch Order Fairness

Our discussion here follows that of [209, 208, 110], but gives, unlike prior work, a definition that is
meaningful and achievable.

Honest replicas might receive transactions over the network in a different order. To resolve dis-
crepancies “fairly”, To resolve disagreements “fairly,” recent work [209] proposes a notion known as
“γ-Batch-Order-Fairness,” which we reproduce below from Definition III.1 of [208] (a more compli-
cated but functionally similar definition is used in [209]).

Definition 4.4.1 (γ-batch-order-fairness). Suppose that tx and tx′ are received by all nodes. If γn
nodes received tx before tx′, then a ranking algorithm outputs tx no later than tx′.

Aequitas [209] outputs transactions in batches, and “no later than” means “in the same batch.”
Transactions within a batch are ordered arbitrarily. Themis [208] outputs a total ordering, with the
assertion that this total ordering could be divided into contiguous (disjoint) batches satisfying this
property.

One challenge is the parameter γ. It is not obvious if a higher or lower γ gives stronger fair-
ness properties. Indeed, there are simple examples (with no faulty replicas) where Definition 4.4.1
(actually the stronger Definition 4.4.5) only implies ordering restrictions at high values of γ, others
at only low values, and still others at only intermediate values (§B.2). Prior work relies on a fixed
choice of γ, but our algorithms satisfy Definition 4.4.5 for all values of γ simultaneously.

4.4.2 Batch Minimality

Unfortunately, Definition 4.4.1 is insufficient to provide meaningful ordering guarantees. A protocol
that outputs all transactions in the same batch vacuously satisfies this definition, and if transactions
within a batch can be ordered arbitrarily, then every ordering satisfies Definition 4.4.1 for every γ.

Prior work [208] recognizes the need for “minimality”.However, the notion of minimality in prior
work is not achievable in the presence of faulty replicas (Theorem 4.4.4). Towards a feasible notion
of minimality, we first define a graph denoting ordering dependencies.

Definition 4.4.2 (Ordering Graph). Suppose that replicas report orderings (σ1, ..., σn) on a set of
transactions V . The Ordering Graph G(σ1, ...σn) is a complete, weighted directed graph with vertex
set V and, for each transaction pair (tx, tx′), an edge of weight w(tx, tx′) = α if αn replicas report
receiving tx before tx′.

Any notion of “minimal” should at least require that when there are no cycles in ordering
dependencies, the output is consistent with every ordering dependency (as in Theorem IV.1 part
1, Themis [208]). Exact γ-minimality generalizes this notion to the case where cycles in ordering
dependencies exist.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 79

Definition 4.4.3 (Exact γ-minimality). For any pair of transactions tx, tx′, if γn replicas receive
tx ≼ tx′ but tx′ is output before tx, then there exists a sequence of transactions tx′ = tx1, ..., txk = tx

where γn replicas receive txi ≼ txi+1 and txi is output before txi+1 for all i.

Unfortunately, this notion of minimality is impossible to achieve (for any γ) in the face of any
faulty replicas. The condition on f in Theorem 4.4.4 is a technical artifact of a construction in the
proof (related to the pigeonhole principle). For some parameter settings, such as n = 7 with γ = 2

3 ,
the condition admits f = 1.

Theorem 4.4.4. No protocol can achieve γ-batch-order-fairness with exactly γ-minimal output
batches for any n and f greater than n mod (n− ⌈γn⌉+ 1) (for γ > 1/2).

In fact, the construction in the proof contains no cycles in the ordering dependency graph of
weight γ, thereby applying even to a weaker version of Definition 4.4.3 that applies only to the case
where the ordering graph, restricted to edges of weight at least γ, has no cycles.

Proof. Define m=⌈γn⌉, and k = ⌊ n
n−m+1⌋. Consider the process of choosing an ordering between k

transactions tx1, tx2, ..., txk. Assume that every node submits a vote on transaction ordering (i.e.
the theorem holds even when faulty nodes are required to submit a vote).

An ordering dependency arises, therefore, if and only if there are at least m votes for some tx
before another tx′.

Divide the set of nodes into disjoint groups Gi for 1 ≤ i ≤ k of size n −m + 1. The remainder
are the faulty nodes.

Suppose that nodes in group i receive transactions in order txi ≼ ... ≼ txk ≼ tx1 ≼ ... ≼ txi−1,
and that the faulty nodes receive the same ordering of transactions as the nodes in group G1.

As such, the transaction pairs txi, txj that receive at least m votes are exactly those with i < j,
and there are no cycles in this ordering dependency graph. Thus, any protocol must output the
ordering tx1, ..., txk.

However, for any protocol that lacks knowledge of which nodes are faulty, this scenario is indis-
tinguishable from one where the faulty nodes had received transactions in the ordering received by
group G2, but reported the ordering observed in G1. As such, the protocol would necessarily output
the ordering observed by G1.

However, in this case, the only correct output would have been tx2, ..., txk, tx1, as only the
transaction pairs txi, txj with i < j for i ̸= 1 or j = 1 received m votes for txi ≼ txj .

The core difficulty is that faulty replicas can cause the weight on an edge observed by any
algorithm to be different from the true, ground truth weight. Intuitively, if a protocol has a reliable
communication layer (i.e. every honest replica is able to submit a vote on its ordering preference),
then the worst that a faulty replica can do is to misreport its ordering preferences. If there are f
faulty replicas, then the faulty nodes can artificially reduce or increase the fraction of replicas that

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 80

vote for tx ≼ tx′ by at most f
n . As a protocol cannot distinguish a faulty replica from an honest

one by its votes, we therefore must take some error in edge weights into account in our definition of
minimality.

Definition 4.4.5 ((γ, δ)-minimal-batch-order-fairness). An ordering is (γ, δ)-minimally-batch-order-
fair if, for any transaction pair (tx, tx′) that is received in that order by at least γn replicas but output
by the protocol in the reverse ordering, then there is a sequence of transactions tx′ = tx1, ..., txk = tx

where at least (γ − 2δ)n replicas receive txi ≼ txi+1 and txi is output before txi+1.

Definition 4.4.5 captures the notion that a protocol cannot distinguish between a δ-fraction of
replicas misreporting a transaction ordering. Given this indistinguishable δ fraction, the protocol
outputs minimally-sized batches. Definition 4.4.3 corresponds to the case of δ = 0.

This definition does not explicitly discuss “batches” or “minimality,” but approximately minimal
batches (the strongly connected components of Lemma 4.4.6) can be recovered from any ordering
satisfying it. The second condition of Lemma 4.4.6 limits the size of output batches.

Lemma 4.4.6. Suppose that an output ordering satisfies (γ, δ)-minimal-batch-order-fairness. Com-
pute the ordering graph Ĝ, drop all edges with weight below γ−δ, and compute the strongly connected
components of the remainder.

• If γn replicas received tx ≼ tx′, then either tx and tx′ are in the same strongly connected com-
ponent, or all transactions in the component containing tx are output before any transactions
in the component containing tx′.

• If γn replicas receive tx ≼ tx′ and there is no sequence of transactions tx′ = tx1, ..., txk = tx

where at least (γ − 2δ)n replicas receive txi ≼ txi+1, then all transactions in the component
containing tx are output before any transactions in the component containing tx′.

Proof. If at least γn replicas receive tx ≼ tx′, then the edge (tx, tx′) is included in the thresholded
ordering graph, and if less than (γ − 2δ) replicas receive tx ≼ tx′, then the edge is not included.

Thus, if at least γn replicas receive tx ≼ tx′, then either tx and tx′ are in the same strongly
connected component, or there is an edge from the component containing tx to that containing tx′.
And if, additionally, there is no sequence of transactions from tx′ to tx as in the lemma statement,
then tx and tx′ must be in different components.

If there is an edge from one strongly connected component to another, then all transactions in
the first component must be output before any in the second (or else a violation of Definition 4.4.5)
would occur.

There is one subtle difference between this definition and (an analogue of) the notion of “mini-
mality” in Theorem IV.1 of Themis, and the sequence of batches output in Aequitas. When there
are two disjoint strongly connected components with no dependencies (of strength at least γ) from

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 81

one to the other, Definition 4.4.5 allows the output to interleave these components. This may be
strictly required (§B.4).

4.4.3 Comparison to Prior Work

Before constructing our protocol, we first apply Definition 4.4.5 to related prior work.

Lemma 4.4.7. Aequitas with parameters (γ, f) achieves (γ, fn)-minimal-batch-order-fairness.

Note that Aequitas requires γ − 1
2 >

2f
n . Lemma 4.4.7 is a stronger version of Theorem 6.6 of

[209].

Proof. Aequitas considers a transaction pair (tx, tx′) as an ordering dependency if at least γn − f
report receiving tx before tx′ (part 3.b.ii of §6.2 of [209]). This ensures that the protocol considers
every ordering dependency that truly receives at least γn votes, and might include any edge that
receives at least γn− 2f votes.

Aequitas sequentially outputs minimal cycles in its computed graph of ordering dependencies
(not Definition 4.4.2), ordering within each cycle arbitrarily. This means that if some pair that
receives at least γn votes is output in reversed order, then it must be part of a cycle of dependencies,
and each of these dependencies must have received at least γn− 2f votes in order to be included in
Aequitas’s computed graph.

By contrast, Ranked Pairs (Theorem 4.5.1) achieves (γ, fn)-minimal-batch-fairness for every γ

simultaneously, and for any f (our work does not require knowledge of a bound on f). Aequitas also
is not asymptotically live (Definition 4.6.2).

Themis claims (Theorem IV.1, [208]) to output a sequence that can be partitioned into minimal
batches, which appears to contradict Theorem 4.4.4. However, Themis relaxes its notion of an
“ordering dependency”.

Where γ-batch-order-fairness would create a dependency for tx not after tx′ if at least γn replicas
receive tx before tx′, the relaxation implied by Definition III.1 of [208] creates such a dependency if
at least n(1−γ)+1 receive tx before tx′ (that is, it cannot be the case that more than γn receive tx′

before tx). Under this definition, the construction in Theorem 4.4.4 constitutes what the authors of
[208] call a “weak Concorcet Cycle”.

Extra ordering dependencies, however, can artificially merge batches together, giving counterin-
tuitive results.

Lemma 4.4.8. In Themis [208], even if all nodes report tx before tx′ and there are no faulty replicas
nor cycles in ordering dependencies (as defined in Definition 4.4.1) for any γ > 1/2, the output may
put tx′ before tx.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 82

Lemma 4.4.8 follows from the fact that when two transactions tx, tx′ receive n− f votes in one
round of Themis, it determines whether to consider as a dependency tx ≼ tx′ or tx′ ≼ tx by majority
vote (disregarding γ). The minimality statement of Theorem IV.1 of [208] is with regard to this
weaker notion of dependency.

Proof. Suppose that the number of nodes is even, and break the nodes into two groups. Group one
receives transactions tx1 ≼ tx2 ≼ tx3, while group two receives transactions tx3 ≼ tx1 ≼ tx2.

All nodes submit their local orderings to the protocol correctly. Themis proceeds in rounds; the
round under consideration consists only of these three transactions.

Themis builds a graph of what it considers ordering dependencies on the transactions in a round
(Figure 1, part 1, [208]). Let w(tx, tx′) be the number of replicas that vote for tx before tx′.

An ordering dependency between tx and tx′ is included if (1) w(tx, tx′) ≥ w(tx′, tx) and (2)
w(tx, tx′) ≥ n(1− γ)+ f +1. Themis assumes n > 4f/(2γ− 1), or equivalently, 2f < n(γ− 1/2), so
(1−γ)+(f +1)/n ≤ (1−γ)+(2f)/n ≤ (1−γ)+(γ−1/2) ≤ 1/2. Ties are broken in an unspecified
(deterministic) manner.

As such, (depending on the tiebreaking), Themis may consider as valid ordering dependencies the
pairs (tx1, tx2), (tx2, tx3), and (tx3, tx1). Within a strongly connected component of its dependency
graph, Themis computes a Hamiltonian cycle, then outputs transactions by walking arbitrarily along
that cycle. As such, a possible output of Themis is the ordering tx2 ≼ tx3 ≼ tx1.

Thus, all nodes received tx1 before tx2, and there were no cycles of ordering dependencies for
any γ > 1/2, but the protocol could output tx2 before tx1.

Note that Themis only waits for n− f votes from replicas before proceeding, not the full n. This
difference is immaterial if f = 0. However, the construction above works only if the numbers of votes
for tx3 ≼ tx1 and for tx2 ≼ tx3 are both at least n(1 − γ) + (f + 1). Tighter analysis shows that
n(1−γ)+(f+1) = n(1−γ)+(2f)−(f−1) ≤ n(1−γ)+n(γ−1/2)−(f−1) = n/2−(f−1) < (n−f)/2,
so the construction still works.

For γ larger than 1/2 + ε for some small ε and sufficiently large n, this construction could be
repeated with more transactions in the cycle. This eliminates the need to abuse a tiebreaking rule
when votes are evenly divided.

4.5 Ranked Pairs Voting

We turn now to the Ranked Pairs method [295]. Ties in edge weights are broken arbitrarily.

Theorem 4.5.1. Given a ordering vote (on every transaction in a finite set) from every replica,
Ranked Pairs Voting simultaneously satisfies (γ, fn)-minimal-batch-order-fairness for every γ, and
does not depend on any fixed bound on f .

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 83

ALGORITHM 1: Ranked Pairs Voting
Input: An ordering vote from each replica {σi}i∈[n]

G = (V,E,w)← G(σ1, ..., σn) ; /* Compute ordering graph */
H ← (V, ∅) ; /* Initialize empty graph on same vertex set */
Sort E by edge weight
foreach e ∈ E do

Add e to H if it would not create a directed cycle in H
end
Output: The topological sort of H
; /* The loop considered every edge, so the topological sort of H is unique
*/

Lemma 4.4.6 and Theorem 4.5.1 together imply an important property. The output of Ranked
Pairs can be divided into batches consistent with γ-batch-order-fairness for any γ, not just a single
γ (subject to the interleaving discussed in §4.4.2). Unlike prior work, there is no need to choose a γ
or order transactions within a batch.

Proof. Ranked Pairs Voting ensures that if some edge of weight γ is not included in the output
graph G — that is to say, if γn nodes vote for tx before tx′, but the output ordering has tx′ ≼ tx —
then there must be a directed path of edges in G already from tx′ to tx. As the algorithm looked at
these edges before the current edge, these edges must have weight (as observed by the algorithm) at
least γ.

Note that if there are f faulty nodes, these nodes can, at most, adjust the weight (observed by
the algorithm) on any particular transaction pair by at most f

n .
Thus, an edge with true weight γ is only reversed if there exists a path in the ordering graph

(that is included in G) in the opposite direction of minimum true weight at least γ − 2f
n .

Nowhere in the algorithm do its choices depend on γ or f (or n).

4.6 Streaming Ranked Pairs

We now turn to the streaming setting that is the focus of our work. There may be an infinite set of
transactions to consider overall, but at any finite time, an algorithm must compute an ordering on
a subset of the transactions that have been seen thus far. In a real-world system, such an algorithm
would be run with some periodic frequency, and replicas would periodically append to their ordering
votes.

Our algorithms must be monotonic (Definition 4.6.1)—if replicas extend their ordering votes,
the algorithm, when run again on the extensions, can only extend its prior output.

Definition 4.6.1 (Monotonicity). A sequencing algorithm A(·, . . . , ·) is monotonic if, given two sets
of ordering votes (σ1, . . . , σn) and (σ′

1, . . . , σ
′
n), such that σ′

i extends σi for all i ∈ [n], A(σ′
1, . . . , σ

′
n)

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 84

extends A(σ1, . . . , σn).

Observe that if a sequencing algorithm is monotonic, it implies a well-formed definition for
aggregating a set of orderings on countably infinite sets of transactions, not just on finite inputs.
Specifically, tx comes before tx′ in the overall (infinite) case if there exists a finite subset of the input
orderings such that the algorithm puts tx ≼ tx′ in its output.

A non-vacuous condition is also required—the algorithm that never outputs anything is mono-
tonic.

Definition 4.6.2 (Asymptotic Liveness). A sequencing algorithm A(·, . . . , ·) is asymptotically live
if, given any set of countably infinite ordering votes (σ̂1, . . . , σ̂n) and any transaction tx in those
votes, there exists an N such that when each σ̂i is trunctated to the first N elements of the ordering
to produce σi, tx is included in A(σ1, . . . , σn).

Corollary 4.6.9 shows that our version of Ranked Pairs, Algorithm 2, is monotonic. However,
Algorithm 2 is not asymptotically live (§B.5). Theorem 4.7.5 shows that a modification to the
tiebreaking rule between edges of equal weight, as in Algorithm 3, produces an asymptotically live
algorithm.

4.6.1 Decisions Are Local

Implementing Ranked Pairs voting in this streaming setting requires first understanding when the
algorithm chooses or rejects an edge in the ordering graph.

Lemma 4.6.3. If Ranked Pairs rejects an edge (tx, tx′) of weight α, then it must choose some
directed path of edges from tx′ to tx, where each edge has weight at least α.

Proof. If Ranked Pairs rejects an edge (tx, tx′) of weight α, then adding the edge would have created
a cycle among the edges the algorithm had already chosen. Ranked Pairs looks at edges in order
of weight, so all of the edges on the already chosen path from tx′ to tx must have weight at least
α.

Observation 4.6.4. Ranked Pairs chooses every edge of weight 1.

Proof. There cannot be any cycles of edges, all of weight 1. Such a situation would require every
replica to submit a cycle of preferences, which is impossible, given that each ordering vote σ is a
total, linear order.

Furthermore, the set of vertices that such a path can visit are bounded to a local neighborhood
of txA and txB .

Definition 4.6.5. Let tx be any transaction.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 85

1. Let Ptx be the set of all preceeding transactions; that is, all tx′ with w(tx′, tx) = 1.

2. Let Qtx be the set of all concurrent transactions; that is, all tx′ with 0 < w(tx′, tx) < 1.

3. Let Rtx be the set of all subsequent transactions; that is, all tx′ with w(tx′, tx) = 0.

Lemma 4.6.6. If ranked pairs chooses all edges in a path from txB to txA, no transactions on the
path are in RtxA or PtxB .

Proof. If the path visits a transaction tx in RtxA , then it creates a cycle with the edge from txA to
tx (which ranked pairs must choose, by Observation 4.6.4). If the path visits a transaction tx in
PtxB , then it creates a cycle with the edge from tx to txB .

Lemma 4.6.6 lets the streaming algorithm decide whether to choose an edge given only a finite
amount of information. Once the algorithm sees a vote for a transaction tx from every replica, it can
compute the weight in the ordering graph for every edge (tx, tx′) and (tx′, tx). Unseen transactions
must be in Rtx.

Even so, a streaming algorithm cannot always know whether or not Ranked Pairs would choose
an edge. As such, we allow our algorithms to leave an edge in an “indeterminate” state, and design
our algorithms to account for indeterminate edges when considering subsequent edges.

First, we construct an ordering graph that captures the information available to an algorithm at
a finite time.

Definition 4.6.7 (Streamed Ordering Graph).
Suppose that each replica submits an ordering vote (σ1, ..., σn). Let V be the set of all transactions

that appear in each vote, and let v̂ be the “future” vertex.
The Streamed Ordering Graph is a weighted, directed, complete graph Ĝ = (V ′, E) on vertex set

V ∪ {v̂}.
For each tx and tx′, set weights w(tx, tx′) and w(tx′, tx) as in Definition 4.4.2. Set w(tx, v̂) = 1

for all tx. If there exists tx′ that appears in the votes of some but not all replicas and which preceeds
tx in at least one replica’s vote, set w(v̂, tx) = 1, and otherwise w(v̂, tx) = 0.

Conceptually, the “future” vertex v̂ represents all transactions that have not received votes from
all replicas. Implicitly, all edge weights not computable from the available information are upper-
bounded by 1. An implementation might compute a tighter upper bound on the weights of edges
(v̂, tx). Subsequent arguments require only that the assigned weight is an upper bound of the true
weight.

4.6.2 A Streaming Algorithm

We can now construct an algorithm to compute Ranked Pairs in our streaming setting. Instead of
either including or rejecting every edge, Algorithm 2 has the option to declare an edge as indeter-
minate; that is, the algorithm is not able to determine whether to include or exclude the edge with

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 86

the information in its input.

ALGORITHM 2: Streaming Ranked Pairs
Input: An ordering vote from each replica {σi}i∈[n]

Ĝ = (V,E,w)← Ĝ(σ1, ..., σn) ; /* Compute streamed ordering graph */
H ← (V, ∅) ; /* Initialize empty graph on same vertex set */
foreach edge (tx, v̂) and (v̂, tx) with w(e) = 1 do

Add e to H, and mark it as indeterminate
end
Sort E by edge weight, with a fixed tiebreaking rule.
foreach e = (txi, txj) ∈ E do

Utxi,txj ← (V \ (Rtxi ∪ Ptxj)) ∪ {v̂}
; /* Recall that v̂ is the “future” vertex of the streamed ordering graph
*/

If there is a directed path in H restricted to Utxi,txj from txj to txi where every edge is
determinate, then do not include the edge in H.

If there is no directed path in H restricted to Utxi,txj from txj to txi where every edge is
either determinate or indeterminate, add (txi, txj) to H and mark it as determinate.

Otherwise, add (txi, txj) to H and mark it as indeterminate.
end
Output: The topological sort of H (with sorting comparisons restricted to determinate

edges), up to but not including the first transaction tx bordering an
indeterminate edge

To prove correctness of this algorithm, it suffices to show that the output of the algorithm is
monotonicand that the output is consistent with the non-streaming version of Ranked Pairs. By
consistency, we specifically mean that at any point, if clients were to stop sending new transactions
and all replicas eventually voted on every replica, Algorithms 1 and 2 would produce the same
output.

Lemma 4.6.8. Consider a counterfactual scenario where clients stop sending transactions, all repli-
cas eventually receive every transaction, and every replica includes every transaction in its output
vote.

Whenever Algorithm 2 includes a determinate edge in H (resp. excludes an edge), that edge is
included (resp. excluded) in the output of the non-streaming Ranked Pairs on the counterfactual
input.

Proof. Suppose that the lemma statement holds for all edges earlier in the Ranked Pairs ordering.
Specifically, assume that Ranked Pairs would choose every higher determinate edge, not choose any
higher rejected edge, and might or might not choose any higher indeterminate edge (and that all edges
of higher weight are all either already rejected, chosen as determinate, or chosen as indeterminate).

By Lemma 4.6.6, Ranked Pairs would choose (txi, txj) if and only if there does not exist a path
of already chosen edges higher in the ordering from txj to txi that does not enter Rtxi or in Ptxj .

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 87

If there exists a path of determinate edges in Utxi,txj , then Streaming Ranked Pairs rejects
(txi, txj), and if there does not exist a path of determinate or indeterminate edges, then Streaming
Ranked Pairs accepts (txi, txj). Otherwise, the edge is left indeterminate.

Note that Streaming Ranked Pairs considers edges in the same ordering that Ranked Pairs would
(relative to the restricted set considered). However, at any point, due to the initialization of H with
indeterminate edges, the set of edges in which the algorithm searches for a cycle might include
more edges than those that would be considered by Ranked Pairs. However, these extra edges
are indeterminate and can therefore only make Streaming Ranked Pairs choose indeterminate for a
considered edge, satisfying the induction hypothesis.

Importantly, the weights of these extra edges upper bound their true (unknown) weights. And
any cycle that would go through (an) as-yet-unseen transaction(s) maps to one (using indeterminate
edges) through the future vertex v. As such, the set of paths considered in Streaming Ranked Pairs
is always a superset of that considered by Ranked Pairs, and the difference between these sets is
always made up of indeterminate edges.

As such, when the streaming algorithm does not choose to leave an edge as indeterminate, the
streaming algorithm makes the same decisions as the non-streaming algorithm. Thus, the induction
hypothesis holds for (txi, txj).

The induction hypothesis clearly holds for the first edge considered, so the lemma holds.

The same argument shows that Algorithm 2 is monotonic.

Corollary 4.6.9. Algorithm 2 is monotonic.

Proof. The proof of Lemma 4.6.8 actually shows that an edge is marked determinate or rejected only
if Ranked Pairs would make that decision on the edge on any counterfactual scenario that extends
the input to the algorithm.

Lemma 4.6.8 directly implies that the output of Algorithm 2 matches that of Ranked Pairs.

Theorem 4.6.10. The output of Algorithm 2 matches an initial segment of the ordering output by
the non-streaming Ranked Pairs (on the counterfactual of Lemma 4.6.8).

Proof. Note that every transaction bordering on an indeterminate edge must come strictly after (in
the topological ordering) every transaction in the output of the algorithm.

By Lemma 4.6.8, then regardless of whether or not the indeterminate edges are chosen in Ranked
Pairs, every transaction bordering an indeterminate edge must come after (in the true output of
Ranked Pairs) all of the transactions output by the algorithm.

Within the set of output transactions, again because of Lemma 4.6.8, transactions must be
ordered according to the true output of Ranked Pairs.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 88

Ranked Pairs has the property that, for any set of inputs (σ1, . . . , σn), if it is run on a restriction
of the inputs to the transactions that appear as an initial segment of its output on (σ1, . . . , σn),
its output is unmodified on the restricted inputs (for completeness, we give a proof in §B.1). As
Algorithm 2 is monotonic, its output exactly matches the Ranked Pairs ordering when the input
votes are restricted in this way.

4.7 Liveness and Efficiency

ALGORITHM 3: Streaming Ranked Pairs, Version 2
Input: An ordering vote from each replica {σi}i∈[n]

Input: Ĥ, the graph computed in the preceeding invocation of Algorithm 3
Ĝ = (V,E,w)← Ĝ(σ1, ..., σn) ; /* Compute streamed ordering graph */
H ← (V, ∅) ; /* Initialize empty graph on same vertex set */
foreach edge (tx, v̂) and (v̂, tx) with w(e) = 1 do

Add e to H, and mark it as indeterminate
end
Add all determinate edges of Ĥ to H, marked determinate
foreach γ in (1, n−1

n , n−2
n , . . . , 0) do

Eγ ← {e ∈ E |w(e) = γ}, ordered arbitrarily
repeat

e = (txi, txj)← first element of Eγ
Utxi,txj ← (V \ (Rtxi ∪ Ptxj)) ∪ {v̂}
If there is a directed path in H restricted to Utxi,txj from txj to txi where every edge
is determinate, then do not include the edge in H. Remove the edge from Eγ .

Else if there is no directed path in H restricted to Utxi,txj from txj to txi where
every edge is either determinate or indeterminate, add (txi, txj) to H and mark it
as determinate. Remove the edge from Eγ .

Otherwise, defer (txi, txj) to the end of the ordering on Eγ .
until Eγ is empty or no progress is made in one full loop over Eγ ;
Mark all remaining edges in Eγ as indeterminate

end
Output: The topological sort of H (with sorting comparisons restricted to determinate

edges), up to but not including the first transaction tx bordering an
indeterminate edge

4.7.1 Efficient Marginal Runtime

In a real system, a ranking algorithm would be run repeatedly. Rather than recompute the streamed
ordering graph and the status of every edge in each invocation, Algorithm 2 could use the output
of a past invocation, restricted to the decisions that were determinate, as an oracle. Corollary 4.6.9
implies that determinate choices are consistent with any extension of the input, so this oracle does

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 89

not change the output. However, the runtime now depends only on the number of new edges in the
streamed ordering graph (§B.6).

4.7.2 Protocol Liveness

Algorithm 2 is not asymptotically live. §B.5 gives an instance on which the algorithm would never
output any transaction.

That construction uses an adversarial tiebreaking rule, but Ranked Pairs requires only some
tiebreaking rule. Our algorithm can therefore generate a tiebreaking rule dynamically. Specifically,
when the algorithm visits edges of weight γ = k

n , it defers edges that would become indeterminate
to the end of the ordering among edges of that weight.

Algorithm 3 constructs a (partial) ordering between edges that breaks ties between edges of
the same weight. The output of this algorithm is, by the same arguments as in §4.6.2, consistent
with the output of non-streaming Ranked Pairs, when using an tiebreaking rule consistent with this
edge ordering. The oracle mechanism of §4.7.1 passes this tiebreaking information from one run of
Algorithm 3 to the next.

Lemma 4.7.1. Whenever Algorithm 3 includes a determinate edge in H (resp. excludes an edge
from H), the non-streaming Ranked Pairs, when using the implied ordering, would make the same
decision.

Proof. The argument proceeds as in Lemma 4.6.8. If Algorithm 2 were given the tiebreaking rule
implied by the ordering induced by Algorithm 3, it would visit edges in the same ordering as this
version of the streaming algorithm. As such, its output would be consistent with the non-streaming
Ranked Pairs using this implied ordering (by Theorem 4.6.10).

Crucially, this small change to the ordering enables the following structural lemma. We start
with a useful definition.

Definition 4.7.2. An edge (tx, tx′) is contemporary to an edge (tx, tx′) if and only if tx and tx′

are contained in Utx,tx′ .

Lemma 4.7.3. If Algorithm 3 marks an edge (txi, txj) with weight k
n as indeterminate, there must

be a path from txj to txi contained in Utxi,txj that contains an indeterminate edge of weight at least
k+1
n .

By contrast, the best bound in Algorithm 2 is that there exists a contemporary indeterminate
edge of weight k

n .

Proof. By construction of the algorithm, if an edge (txi, txj) is marked as indeterminate, then there
must be a path in Utxi,txj already chosen (when this edge is visited) of determinate and indeterminate
edges of weight at least k

n . Furthermore, any indeterminate edge must be of weight strictly more

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 90

than k
n . When the algorithm looks for such a path, it has not yet marked any edges of weight k

n as
indeterminate, and if no such path exists, then the edge would not be marked as indeterminate.

Lemma 4.7.3 implies that for any indeterminate edge, there is sequence of contemporary inde-
terminate edges of strictly increasing weights that causes the edge to be indeterminate.

Lemma 4.7.4. Suppose Algorithm 3 marks an edge e1 of weight γ as indeterminate. Then there
exists a sequence of indeterminate edges e1, . . . ek of strictly increasing weight such that for each pair
of edges ei = (txi, txj) and ei+1 = (tx′i, tx

′
j) with ei+1 contemporary to ei, tx′i and tx′j are present

in Utxi,txj , and the source of ek is v̂.

Proof. Follows from repeated application of Lemma 4.7.3.
The algorithm starts with only edges leaving the “future” vertex v̂ marked as indeterminate.

These initial edges are the only indeterminate edges with weight 1, and thus are the only ones that
can form the root of any chain.

None of these chains can be longer than n edges, as each step increases the weight by at least 1
n .

This bound implies that Algorithm 3 eventually outputs every transaction.

Theorem 4.7.5. Algorithm 3 is asymptotically live.

Proof. Let (σ̂1, . . . , σ̂n) be any set of (countably infinite) ordering preferences, and let tx be any
transaction in those orderings.

Consider the set of all chains of edges (e1, . . . , ek) where ei+1 is contemporary to ei (and of higher
weight) and e1 is adjacent to tx, and k ≤ n. Because each Utx,tx′ is finite, the number of such chains
must be finite, and the number of transactions that appear in any of these chains must be finite.

On any input to Algorithm 3 that is a finite truncation of (σ̂1, . . . , σ̂n), if an edge adjacent to tx
is left indeterminate, then Lemma 4.7.4 implies that there must be a chain of indeterminate edges
on this input with the first adjacent to tx, the last adjacent to v̂, and each edge contemporary to
the previous. This chain, with the last edge dropped, must be one of the chains considered above.
As such, there are only a finite number of transactions that could be in the last edge adjacent to
v̂. For each such transaction tx′, there can only be an edge from v̂ to tx′ in the streamed ordering
graph if there is some other transaction in the input that is ahead of tx′ in at least one replica’s
vote. There can only be a finite number of these transactions.

Taking a union over a finite number of finite sets gives a finite set of transactions. There must
therefore be some bound Mtx such that all of these transactions appear in every replica’s vote if
(σ̂1, . . . , σ̂n) is truncated to (at least) the first Mtx elements.

A transaction tx is not output by Algorithm 3 if the topological sort in the last step puts a
transaction tx′ adjacent to an indeterminate edge ahead of tx. But there are only a finite number
of transactions that might ever be ahead of tx (specifically, Ptx and Qtx).

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 91

Let Ntx = maxtx′∈Ptx∪QtxMtx′ . Then if (σ̂1, . . . , σ̂n) is truncated to (at least) the first Ntx, then
tx must appear in the output of Algorithm 3.

Additionally, under network synchrony, Lemma 4.7.4 bounds the temporal delay between when
a transaction is sent by a client and when Algorithm 3 adds it to its output.

Assumption 4.7.6 (Synchronous Network). If a client sends a transaction tx at time t, all replicas
include tx in their ordering votes before time t+∆.

As such, replicas can disagree on the ordering between tx and tx′ only if they were sent at roughly
the same time.

Observation 4.7.7. Consider any two transactions txi and txj sent at times ti and tj, respectively.
If ti +∆ < tj, then the weight of the edge (txi, txj) is 1.

Proof. If ti +∆ < tj , then every replica receives and commits to a vote on txi before txj is sent, so
txj must come after txi in every replica’s vote.

Lemma 4.7.8. Consider any three transactions tx, txi, and txj received by all replicas, that were
sent by clients at times t, ti, and tj, respectively. Suppose tx ∈ Utxi,txj , and that the weight of
(txi, txj) is not 0.

Then tj −∆ ≤ t ≤ tj + 2∆.

Proof. By construction, tx /∈ Rtxi , so t ≤ ti+∆. Furthermore, tx /∈ Ptxj , so t+∆ ≥ tj . Furthermore,
by Observation 4.7.7, tj +∆ ≥ ti.

Thus, tj −∆ ≤ t ≤ ti +∆ ≤ tj + 2∆.

This lemma and Lemma 4.7.4 give an overall time bound.

Theorem 4.7.9. A transaction tx is contained in the output of the algorithm of Algorithm 3 after
at most (n+ 1)∆ time.

Proof. Let the current time be T , and let tx be sent at time t. Without loss of generality, assume
tx has been voted on by every replica.

If an indeterminate edge exists to tx, then there exists some transaction tx′ (sent at t′) that
has not been voted on by every replica, but which preceeds tx in some replicas’ votes. As such,
T − ∆ ≤ t′. Then, as tx does not fully preceed tx′, it must be the case that t′ − ∆ ≤ t (so
T − 2∆ ≤ t).

Lemma 4.7.4 implies a sequence of indeterminate edges of strictly increasing weight from this
edge to one adjacent to v̂.

Consider two adjacent edges (txi, txj), (tx
′
i, tx

′
j) in this chain, send at times ti, tj , t′i, t′j , respec-

tively. By Lemma 4.7.8, it must be the case that tj −∆ ≤ t′j . Adding this bound over each link in

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 92

the chain shows that T − 2∆− (k − 1)∆−∆ ≤ t (where the last ∆ comes from bounding the delay
of the transaction in the last edge adjacent to v̂).

A sequence can be of length at most n− 1.
As such, after time (n+1)∆, every edge adjacent to tx is either rejected or included and marked

determinate.
To ensure that tx is included in the output of Algorithm 3, it suffices to ensure that every

transaction adjacent to an indeterminate edge must come after tx. This is guaranteed by waiting
for an additional ∆ time.

4.7.3 Trading Accuracy for Liveness

The O(n∆) bound in Theorem 4.7.9 comes from the fact that a chain of indeterminate edges can have
O(n) length, which, in turn, follows from the fact that weights have a granularity of 1

n . Reducing
this granularity by rounding weights reduces the maximum length of a chain of indeterminate edges.

Lemma 4.7.10. If edge weights are rounded to the nearest 1
k in the streamed ordering graph (before

Algorithm 3 is applied) then a transaction tx is contained in the output after at most (k+2)∆ time.

Proof. The argument proceeds exactly as in that of Theorem 4.7.9, except that the length of the
chain of indeterminate edges is at most k.

However, rounding weakens fairness guarantees.

Lemma 4.7.11. Rounding edge weights to the nearest 1
k before applying Algorithm 3 achieves (γ, fn+

1
2k)-minimal-batch-order-fairness for all γ and f faulty replicas.

Proof. The argument proceeds as in Theorem 4.5.1. However, due to the rounding and the faulty
replicas, the weight on an edge observed by the algorithm might be up to f

n + 1
2k different from the

true observed weight (as opposed to f
n , as in Theorem 4.5.1).

4.8 Protocol Instantiation

The algorithms thus far have assumed that every replica will eventually vote on every transaction.
Any faulty replica, however, could exclude a transaction from its output, leaving the transaction
(and the protocol) permanently stuck.

The main idea to resolve this difficulty is that if a replica refuses to vote on a transaction, then
that replica must be faulty. If a replica is faulty, then it suffices for the rest of the replicas to make
up a vote on its behalf.

We give here an example method for instantiating our sequencing protocol on top of existing
protocol components, although this is far from the only method.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 93

As a base layer, we require some consensus protocol, such as [316, 233, 114, 245], that proceeds
in rounds. At any time, every replica can submit a continuation of its previous ordering; that is,
an ordered list of transactions that extends its ordering vote. The consensus protocol then comes
to consensus on a set of received ordering votes. The Streaming Ranked Vote algorithm is run (by
every replica) on the set of received votes after every new set of votes is finalized by the consensus
protocol. Assuming correctness of the consensus protocol, every replica will run the algorithm on
the same input, and thereby produce the same output ordering.

We assume that every replica has a registered public key. Every vote continuation must be
cryptographically signed by the associated secret key. Furthermore, every continuation must be
accompanied by the hash of the previously submitted continuation, so that if one continuation vote
from a replica is lost (perhaps by malicious activity of consensus participants) the replica’s ordering
cannot be manipulated.

We make a network synchrony assumption, akin to Assumption 4.7.6. If a transaction appears
first in some replica’s vote in round T of the consensus protocol, then we assume that there is some
known bound k such that every other honest replica will have time to receive and submit a vote on
the transaction before the end of round T + k. As such, after every round r, the protocol computes
the set of all transactions that have not received votes from every replica but were initially added
at or before round r − k. For each of these transactions tx, the protocol appends a vote for tx at
the end of a replica’s current vote sequence if tx is not already present When appending multiple
transactions to a replica’s vote, transactions can be sorted deterministically (i.e. by hash).

This protocol therefore guarantees that every transaction will receive a vote from all replicas
within at most k rounds after it is first submitted to the protocol. In this setting, k must be
configured in advance by the protocol. k must be set so that every honest replica can be guaranteed
to be able to submit a vote on a particular transaction within k rounds. Naturally, the choice of
k depends on a (known) bound on network delay and the censorship-resistance (or “chain-quality”
[175]) of the consensus protocol.

As an example alternative, one could also use the consensus protocol, based on atomic broadcast
and a “Set Byzantine Agreement” primitive used in Aequitas [209]. This protocol waits until all
replicas, if behaving honestly, are able to add a transaction tx to their ordering votes, and then
invokes an agreement protocol to come to consensus on the set of replicas Utx which have the
transaction in their ordering votes. This set may not be the set of all replicas. To use our ordering
protocol on this consensus protocol, it suffices to make up a vote for the (presumed faulty) replicas
not in Utx ∩ Utx′ . Choosing arbitrarily, replicas in Utx \ Utx′ can be presumed to vote tx ≼ tx′ and
vice versa, and replicas not in Utx∪Utx′ can be presumed to vote by comparing deterministic hashes
of tx and tx′.

CHAPTER 4. FAIR ORDERING VIA STREAMING SOCIAL CHOICE THEORY 94

4.9 Conclusion

We study the problem of ordering transactions in a distributed system, which we argue forms a
streaming analogue of the classic social choice problem. Careful analysis of how incomplete informa-
tion propagates through the Ranked Pairs algorithm allows us to instantiate Ranked Pairs in this
streaming setting. Deliberate manipulation of the algorithm’s tiebreaking rule guarantees that the
algorithm always outputs every transaction. Under network synchrony, the algorithm outputs every
transaction after a bounded amount of time.

We then extend the notion of γ-batch-order-fairness of prior work to require that output batches
are minimal in size (so the definition is not vacuous). This must be done carefully in the presence
of faulty replicas, and leads to our definition of (γ, δ)-minimal-batch-order-fairness.

Finally, we show that Ranked Pairs voting satisfies (γ, fn)-minimal-batch-order-fairness for every
γ simultaneously and for any number of faulty replicas f . For comparison, prior work must fix a
choice of γ and a bound on the number of faulty replicas in advance, and can only satisfy γ-batch-
order-fairness for that γ. Fairness guarantees smoothly weaken as the number of faulty replicas
increases.

Chapter 5

Finding the Right Curve:
Optimal Design of Constant
Function Market Makers

5.1 Introduction

Agents in any economic system need to be able to exchange one asset for another efficiently. Some
assets are frequently traded by many market participants, and for these assets, a seller offering a
reasonable price can likely find a buyer quickly and vice versa. However, not every pair of assets
is traded frequently, and sellers in these markets might have to wait a long time to find a buyer or
accept a highly unfavorable price. The role of a market-maker is to fill this gap — to facilitate easy
and rapid trading between pairs of assets for which otherwise there is very little trading activity.
Market-makers trade in both directions on the market, buying and selling assets when traders arrive
at the market [62]. In this sense, market-makers facilitate asynchronous trading between buyers and
sellers, thereby increasing the market liquidity between two assets.

Our topic of study is a subclass of automated market-making strategies known as Constant
Function Market Makers (CFMMs). A CFMM maintains reserves of two assets X and Y, provided
by a so-called liquidity provider (LP), and makes trades according to a predefined trading function
f(x, y) of its asset reserves (the eponymous "constant function"); specifically, a CFMM accepts a
trade (∆x,∆y) from reserves (x, y) to (x−∆x, y +∆y) if and only if f(x−∆x, y +∆y) = f(x, y).
CFMMs earn revenue by charging a small commission on each trade (i.e. creating a bid-ask spread)
but are subject to several associated expenses [63], such as the costs of maintaining the asset inventory
and adverse selection by arbitrageurs (i.e., stale quote sniping). The loss of the LP relative to the
counterfactual strategy of “buy-and-hold” is referred to as the “divergence loss” [244].

95

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 96

Automated market-making has long been an important topic of study [72, 180, 258], but CFMMs
have recently become some of the most widely used exchanges [55, 56, 241, 157] within the modern
Decentralized Finance (DeFi) ecosystem [305].

Their rise in current blockchain systems is in large part due to their computational simplicity. In
existing systems that execute transaction sequentially, the amount of computation allowed for any
one transaction is inherently limited. The first of these systems that attained widespread usage [55],
for example, used a trading curve of f(x, y) = xy. Executing a transaction on this CFMM requires
no more computation than just evaluating f(·, ·) twice (two multiplications), adding ∆X and ∆Y ,
and checking that the value of f is the same before and after the addition. 1

CFMMs have also been widely deployed in prediction markets for aggregating opinions [191, 122].
For completeness, §C.1 gives the precise relationship between prediction markets and CFMMs.

Example 5.1.1 (Real-World CFMMs).

1. The decentralized exchange Uniswap [55] uses the product function f(x, y) = xy.

2. The Logarithmic Market Scoring Rule (LMSR) [191], used extensively to design prediction
markets, corresponds to a CFMM with trading function f(x, y) = (1− e−x) + (1− e−y) [273].

3. The trading function f(x, y) = xey has powered automated storefronts [28] within Minecraft
[248].

These systems have facilitated billions of USD worth of trade volume [45] per day. In spite of
this, a complete, formal understanding of the tradeoffs inherent in CFMM design is missing in the
literature.

Our goal, therefore, is to explain what guides a CFMM designer to choose one trading function
over another. We provide an optimization framework which compiles a market-maker’s beliefs on
future prices into an optimal CFMM trading function, making substantial progress on an important
open problem [276].

5.1.1 Our Contributions

We develop a convex optimization framework that translates an LP’s beliefs about future asset
valuations into an optimal choice of CFMM trading function. We show that a unique trading
function always maximizes an LP’s expectation of the fraction of trades that a CFMM can settle

1The actual implementation [32] checks that the value of f(·, ·) does not decrease, to handle approximation due to
rounding. Rational traders leave f(·, ·) increased as little as possible.

The contracts also charge transaction fees, and do some additional recordkeeping, which we ignore here. These
additional features are likewise designed to use as little computational work as possible.

A more recent implementation [56] simulates more complicated curves (as in §5.5.2), by using the constant product
curve defined piecewise on a finite ranges of prices. The granularity of this discretization can affect the computational
cost of operating the CFMM, as discussed in [165]. While our model can be naturally modified to optimize over the
subclass of curves implementable with a given discretization, we do not explicitly consider the cost of the complexity
of evaluating f(·, ·) in our model.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 97

(§5.3.2). Furthermore, our framework is versatile such that it can model a wide variety of real-world
concerns, including fee revenue (§5.6), divergence loss (§5.6.2), so-called “Loss-Versus-Rebalancing”
[244] (§5.6.2), and models of price dynamics (§5.3.4). To the best of our knowledge, this is the
first unified framework for analysing and optimizing CFMMs for various objectives for a given belief
function and therefore provides a guide to prospective LPs interested in using a CFMM.

We model an LP’s beliefs as a joint distribution on the future prices of the two assets with regard
to a numeraire (§5.5). This belief could, for example, be generated from a price dynamics model. As
one might expect, the optimization problem concerned only with maximizing the fraction of trades
settled depends only on the distribution of the ratio of prices. However, expressing beliefs on future
prices as a joint distribution enables optimizing for profit and loss through the same framework.

We measure the liquidity of the CFMM trading function as the amount of capital implicitly
allocated for market-making at a given spot exchange rate. Specifically, the liquidity of a CFMM is
the ratio between the size of a trade and the percentage change in the spot exchange rate (§5.3.1).

We analyze the steady-state dynamics of trade requests on a CFMM and arrive at a notion of
“CFMM inefficiency” that approximates the probability that a CFMM cannot satisfy a trade request.
CFMM inefficiency is a function of the inverse of the CFMM’s liquidity. Ultimately, we find that
many complex objective functions considering an LP’s profit and loss are linear combinations of
CFMM liquidity and CFMM inefficiency.

Careful analysis of the KKT conditions of our convex program allows us to invert the problem;
given an arbitrary CFMM trading function, we can construct an explicit equivalence class of beliefs
for which the given function is optimal. The main technique involves analysis of the KKT conditions
of an optimization problem over an infinite-dimensional Banach space. We obtain closed-form solu-
tions to the optimal CFMM designs for several important belief functions and objective functions.
When not closed-form, the solution is still computationally tractable.

Our framework helps explain the choice of CFMM trading functions deployed in practice. In
many cases, the optimal CFMM revealed by our framework matches the informal intuitions of
practitioners. For example, the Uniswap V2 [55] protocol in DeFi was designed using the constant
product f(xy) = xy CFMM with the motivation that the available liquidity must be spread evenly
across all exchange rates. In our framework, f(xy) = xy is the optimal CFMM trading function for
the uniform belief function with the objective of minimising the expected CFMM inefficiency.

Figure 5.1 shows the trading functions and Figures 5.6 represent the belief functions for which
the constant product, LMSR, constant weighted-product, and Black-Scholes-based CFMMs, respec-
tively, are optimal for minimizing the CFMM inefficiency.2

§5.2 formally defines a CFMM and gives some basic properties. §5.3 studies the steady-state
dynamics of a CFMM and defines CFMM liquidity and inefficiency. §5.4 gives our convex optimiza-
tion framework and analyzes its KKT conditions. §5.5 studies the beliefs implicit behind real-world

2We provide, at the GitHub repositiry https://github.com/gramseyer/cfmm-liquidity-optimization, a Python
script to generate the optimal CFMM trading functions for any user-defined belief function.

https://github.com/gramseyer/cfmm-liquidity-optimization

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 98

CFMM Trading Function Liquidity L(p) Belief ψ(pX , pY)
Constant product xy 1

2

√
p 1

Constant weighted product xαy α
α+1p

α
α+1

(
pX
pY

)α−1
α+1

LMSR based 1− e−x + 1− e−y p
1+p

pXpY
(pX+pY)2

Lognormal prior based As in Figure 5.1
√
e

−(ln p)2

2σ2
pX
pY
∼ lognormal(0, σ2)

Black-Scholes based As in Figure 5.1 Not closed form As in equation 5.1.

0.5 1 1.5 2 2.5 3 3.5

1

2

3
e−x + e−y = 2/e: LMSR
xy = 1: Constant Product

x2y = 1: Weighted Product

Lognormal(0, 1
16)

Black-Scholes based

Figure 5.1: Some natural or widely used CFMM trading functions. The lognormal belief function
arises when we consider a snapshot of the Black-Scholes process at a future time. The entire Black-
Scholes process can be considered (in expectation) for the purpose of our optimization framework via
time-discounting (in the plot, the discounting parameter is 1). It can then be compiled into a single
belief function as described in §5.3.4. Our Python script in the Github repository https://github.
com/gramseyer/cfmm-liquidity-optimization computes the belief function for the Black Scholes
model. For any user-submitted belief function, our script also finds the optimal CFMM trading
functions for minimizing CFMM inefficiency.

https://github.com/gramseyer/cfmm-liquidity-optimization
https://github.com/gramseyer/cfmm-liquidity-optimization

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 99

Figure 5.2: Constant belief function – leads
to the constant product market maker.

Figure 5.3: Belief function ψ(pX , pY) =
pXpY

(pX+pY)2 – leads to the LMSR based mar-
ket maker

Figure 5.4: Belief function ψ(pX , pY) =(
pX
pY

)1/5

– leads to the weighted product
market maker.

Figure 5.5: Lognormal belief function – leads
to the Black-Scholes based CFMM after time-
discounted aggregation of the belief function.

Figure 5.6: Belief functions on future prices of the underlying assets relative to a numeraire. The
plots are on beliefs defined on the range (0, 1] – this is without loss of generality per Corollary 5.4.6.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 100

CFMM deployments. Finally, §5.6 shows how to add consideration for profit and loss to our frame-
work, and qualitatively studies how these considerations change the optimal trading function.

5.1.2 Related Work

The closest line of work [165, 166, 112, 193, 86] to our results is that which considers profit-
maximizing market-making strategies which can be implemented via the Uniswap v3 [56] protocol.
Additionally, [166, 112, 86] design “rebalancing” strategies for the LPs, wherein they effectively
modify the CFMM trading function periodically. By contrast, we consider designing CFMM trading
functions from first principles and do not rely on the Uniswap v3 framework. We also do not consider
rebalancing the CFMM trading function in this work. A non-exhaustive list of papers in this line is:

• Fan et al. [165], study the question of maximizing risk-adjusted profit for LPs while accounting for
the gas fee for traders. Their model assumes that all trading on a CFMM occurs only in response
to price movements on an external market (i.e. arbitrageurs realigning the CFMM spot price to
the external market). Their model suggests that risk-neutral LPs must allocate all of their capital
at a single price point (§4.2, [165]), while ours better explains the choices of practitioners.

• Zhou et al. [166] study dynamic liquidity allocation strategies for risk-adjusted fee revenue maxi-
mization, but do not consider the “divergence loss” incurred in the process.

• Cartea et al. [112] decompose the CFMM divergence loss into two components – the convexity
cost (loss due to arbitrage) and the opportunity cost (the cost of locking up capital). They give a
stochastic optimal control-based closed-form strategy for a profit-maximizing LP.

• Heimbach et al. [193] model liquidity positions on Uniswap V3 and perform a data-based analysis
of the risks and returns of LPs as a function of the volatility of the underlying assets.

Similar to [112], Milionis et al. [244] show that a part of the divergence loss corresponds to
the market risk and can be hedged by a rebalancing strategy; the remainder of the divergence loss
corresponds to the profit made by arbitragers trading against the CFMM – they call this loss the
LVR (loss-vs-rebalancing). When the variance of the price of X relative to Y is σ2, they show
that the rate of accrual of LVR (what they call the instantaneous-LVR) is σ2p2|x′(p)|, where x′(p)
denotes the rate of change of x in the CFMM with respect to the price p under perfect arbitrage.
Since the LVR is a linear function of our notion of liquidity, our convex optimization framework can
accommodate the LVR as a cost for the LP in the objective function.

Automated market-making has also been studied extensively in the context of prediction markets
[191, 122, 121]. The theory of CFMMs and the dynamics around trading with CFMMs have been
studied in DeFi [65, 69, 67, 111, 88, 95], and many different DeFi applications have been deployed
or proposed using different CFMM trading functions [55, 56, 241, 66].

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 101

5.2 Preliminaries

Definition 5.2.1 (CFMM). A CFMM trades between two assets X and Y , and has a set of asset
reserves — x units of X and y units of Y . Its trading rule is defined by its trading function
f(·, ·) such that it accepts a trade of ∆X units of X in exchange for ∆Y units of Y if and only if
f(x, y) ≤ f(x−∆X , y +∆Y).

Rational traders interacting with the CFMM choose ∆X and ∆Y such that the inequality of
Definition 5.2.1 is tight. 3

All of the CFMM trading functions discussed in this thesis have the following properties.

Assumption 5.2.2. A trading function f(·, ·) : R2
+ → R is continuous, non-negative, increasing in

both coordinates, and strictly quasi-concave. Further, it is defined only on the non-negative orthant.

The assumption that f is increasing, quasi-concave, and never holds a short position in any asset
(and is therefore only defined on the non-negative orthant) is standard in the literature, and required
for a CFMM to not be obviously exploitable [65, 281].

We assume strict quasi-concavity for clarity of exposition. The CFMM’s trading function im-
plicitly defines a marginal exchange rate (the “spot exchange rate”) for a trade of infinitesimal
size.

Definition 5.2.3 (Spot Exchange Rate). At asset reserves (x0, y0), the spot exchange rate of a
CFMM with trading function f is − ∂f

∂X /
∂f
∂Y at (x0, y0).

When f is not differentiable, the spot exchange rate is any subgradient of f . When x0 = 0, the
spot exchange rate is [− ∂f

∂X /
∂f
∂Y ,∞), and when y0 = 0, the spot exchange rate is [0,− ∂f

∂X /
∂f
∂Y].

These definitions directly lead to some useful observations. We give the proofs in Appendix
C.3.1.

Observation 5.2.4. If f is strictly quasi-concave, then for any constant K > 0 and spot exchange
rate p, there is a unique point (x, y) where f(x, y) = K and p is a spot exchange rate at (x, y).

Observation 5.2.5. Under Assumption 5.2.2, for a given constant function value K, the amount
of Y in the CFMM reserves uniquely specifies the amount of X in the reserves, and vice versa.

Observations 5.2.4 and 5.2.5 imply that the amounts of X and Y in the CFMM reserves can be
written as functions X (p) and Y(p) of its spot exchange rate for the trading function equals constant
K.

In the rest of the discussion, we describe CFMM reserve states by the amount of Y in the reserves.

Observation 5.2.6. Y(p) is monotone nondecreasing.
3Anything else is giving up free money. But this is the precise condition checked by existing CFMM implementations

[33]. Slight increases in the value of the trading function are inevitable, due to rounding errors when asset amounts
are represented as integers (as is done in nearly all public blockchains [135]).

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 102

5.3 Model

As used in Definition 5.2.3, we adopt the notation wherein exchange rates are given as the rate of
a unit of X in terms of Y (i.e., a trade of x units of X for y units of Y implies an exchange rate
of p′ = y

x). Unless specified otherwise, p refers to the CFMM spot exchange rate, p̂ denotes the
exchange rate in an external market, and p′ denotes the exchange rate of a particular trade.

We now turn to our trading model and our formulation of market liquidity.

Definition 5.3.1 (System Model).

1. There are two assets X and Y , and a relatively liquid “primary” external market that provides
a (public) reference exchange rate p̂ between X and Y .

2. An LP creates a CFMM that trades between X and Y by providing an initial set of reserves
and choosing a CFMM trading function.

3. Whenever the reference exchange rate p̂ on the external market changes, arbitrageurs immedi-
ately realign the CFMM’s spot exchange rate p with the reference exchange rate. 4

4. At each time step, a trade request arrives with probability q : 0 < q < 1 (Definitions 5.3.3 and
5.3.5).

We assume, however, that for small fluctuations in the CFMM spot exchange rate resulting
from small trades, arbitrageurs do not realign the CFMM spot exchange rate. This assumption is
reasonable since the trading fee and other associated costs (e.g., gas fee in DeFi) make such an
action unprofitable.

Since the reference exchange rate is public knowledge, traders using the CFMM can compare the
exchange rate that a CFMM offers with the reference rate. This difference is the slippage of a trade.

Definition 5.3.2 (Slippage). The exchange rate of a trade of y units of Y for x units of X is
p′ = y/x. Relative to a reference exchange rate of p̂ units of Y per X, the slippage of this trade is
(p′ − p̂)/p̂.

Traders in our model are willing to tolerate a fixed amount of maximum slippage ε.

Definition 5.3.3 (Trade Request). A Trade Request with a CFMM is a request to SELL or BUY k

units of X or Y , on the condition that the slippage of the trade is at most ε relative to the reference
exchange rate p̂ — in other words, a trade request is a tuple (SELL or BUY, X or Y, k, p̂, ε).

Definition 5.3.4 (Trade Success). A trade request buying X for Y with maximum slippage ε succeeds
if and only if the CFMM can satisfy the entire trade with an exchange rate p′ and, for the reference

4There is always a strictly profitable arbitrage trade to be made when the CFMM’s spot exchange rate differs from
the reference exchange rate [68]; this phenomena is akin to “stale quote sniping” in traditional exchanges [82].

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 103

exchange rate p̂, p′/p̂ ≤ 1 + ε. Similarly, a trade request selling X for Y succeeds if and only if the
CFMM can satisfy the entire trade with an exchange rate p′ such that p′/p̂ ≥ 1/(1 + ε).

Trade requests are not partially fulfilled. Failed requests are not retried and are deleted. If
a request succeeds, the CFMM transfers assets accordingly. Otherwise, the CFMM’s reserves are
unchanged. This notion of trade success mirrors the operation of CFMMs in practice; users supply
a trade size, exchange rate, and slippage parameter when submitting a trade request (e.g. [25, 1]).

Putting these definitions together gives the trading model of our study.

Definition 5.3.5 (Trade Model). There exists a static (in the short term) reference exchange rate p̂.
The size of the trade request is drawn from distribution size(·). The choice of X or Y is arbitrary, but
the trade is for BUY or SELL with equal probability. Each request has the same maximum slippage
ε.

Every successful trade changes the reserves of the CFMM – this model induces a Markov chain on
the state of the CFMM’s reserves. We assume that the Markov chain, at a given reference exchange
rate, has sufficient time to mix before the reference exchange rate changes. Natural restrictions on
the distribution of the trades (made explicit below) make this Markov chain ergodic. We study,
therefore, the expected fraction of trade requests that a CFMM can satisfy when its state is drawn
from the stationary distribution of this Markov chain (we formalize this notion in Definition 5.3.15).

5.3.1 Liquidity

Informally, a CFMM with high liquidity at a given exchange rate can sell many units of X before its
spot exchange rate changes substantially. Definition 5.3.6 captures precisely the set of asset reserve
states of a CFMM in which the CFMM’s spot exchange rate p is at most a 1+ε factor away from the
reference exchange rate p̂. Recall from Observation 5.2.4 that the amount of asset Y in a CFMM’s
reserves can be expressed as a function Y (p) of the CFMM spot exchange rate p.

Definition 5.3.6 (Lε(p̂)). Lε(p̂) is the interval
[
Y(p̂

(1+ε)),Y(p̂(1 + ε))
]
.

By Observation 5.2.6, Y(p̂
(1+ε)) ≤ Y(p̂(1 + ε)), so Lε(p̂) is always well-defined.

Recall that p̂ is the exchange rate of a unit of X in terms of Y . As motivation for the choice of
this definition, consider the case where X is a volatile asset and Y is the base numeraire currency.
Here, Definition 5.3.6 precisely captures the amount of capital allocated to market-making in a range
where the spot exchange rate of the volatile asset X is within a 1+ ε factor of its reference exchange
rate. In the general case where neither X nor Y is the base numeraire currency, the actual amount
of capital (in terms of base numeraire) allocated to market-making at a certain price point p̂ depends
on the exchange rates of both X and Y in the base numeraire. However, a similar intuition holds.

Since ε is expected to be small in practice, and to facilitate easier analysis in the rest of the
paper, it is useful to extend Definition 5.3.6 to study the liquidity at a single exchange rate.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 104

Definition 5.3.7 (Liquidity). The liquidity at an exchange rate p̂, L(p̂), is limθ→0
|Lθ(p̂)|

2 ln(1+θ) .

Observe that L(p̂) naturally captures an allocation of capital to market-making on the full range
of exchange rates. Recall from the System Model 5.3.1 (point 3) that the arbitrageurs always
realign the CFMM’s spot exchange rate to the reference exchange rate. Therefore, here on, we
denote the liquidity of a CFMM as a function of its spot exchange rate. Lemma 5.3.8 enables a
natural restatement of L(p) in terms of Y(p) in Lemma 5.3.9. We include the proof of Lemma 5.3.8
in Appendix §C.3.1. Lemma 5.3.9 follows from Definitions 5.3.6 and 5.3.7.

Lemma 5.3.8. The function Y(·) is differentiable when the trading function f is twice-differentiable
on the nonnegative orthant, f is 0 when x = 0 or y = 0, and Assumption 5.2.2 holds.

Lemma 5.3.9. If the function Y(·) is differentiable, then L(p) = dY(p)
d ln(p) .

The definition of liquidity implied by Lemma 5.3.9 is closely related to other definitions of liquidity
in the literature. The Uniswap V3 whitepaper [56] uses dY(p)

d
√
p , which is equivalent to L(p)/√p. Some

work that builds strategies for LPs on the Uniswap V3 protocol also adopt the same definition of
liquidity [166, 193, 165] as [56]. Milionis et al. [244] use −dX (p)

dp for liquidity, which is equivalent to
L(p)/p2; they also introduce a notion of “instantaneous Loss-Versus-Rebalancing” for the CFMM
expected cost of operation. This quantity is proportional to −p

2dX (p)
dp (Theorem 1, [244]), which is

equivalent to L(p) up to constant multipliers. We conclude this subsection with some convenient
facts about L(p).

Observation 5.3.10.

1. L(p) = dY(p)
d ln(p) = p dX (p)

d ln(1/p) (when Y(p) is differentiable).

2. |Lε(p̂)|=
∫ p̂(1+ε)
p̂/(1+ε)

L(p)
p dp.

3. The amount of Y that enters the CFMM’s reserves as the spot exchange rate moves from p1

to p2 (for p1 < p2) is
∫ p2
p1

L(p)
p dp.

4. The amount of Y in a CFMM’s reserves, with current spot exchange rate p0, is Y(p0) =∫ p0
0

L(p)
p dp.

5. The amount of X in a CFMM’s reserves, with current spot exchange rate p0, is X (p0) =∫∞
p0

L(p)
p2 dp.

Point 1 follows from the fact that dX (p) = pdY(p) and points 2-5 follow from Lemma 5.3.9.

5.3.2 CFMM Inefficiency

We need an expression approximating the fraction of trade requests a CFMM fails to satisfy. As
discussed above, the trading model given in Definition 5.3.5 induces a Markov chain on the state of a

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 105

CFMM’s reserves. We wish to quantify the expected fraction of trades that fail during the evolution
of this chain. We assume that the reference exchange rate changes relatively infrequently (so that
this Markov chain has time to mix) and study the chain’s stationary distribution.

The precise details of the induced Markov chain (we give an example below and another in
Appendix §C.2) depends on the trade size distribution (and instantiation-specific assumptions).
However, common to many natural distributions is the phenomenon that (when the reference ex-
change rate is p̂) the chance that a trade request of size k units of Y fails is approximately k

Lε(p̂)
.

This approximation is closest when the sizes of the trades are much smaller than Lε(p̂).

Example: Constant Trade Sizes

Definition 5.3.11 (Size-k Trade Distribution). At each time step, a trade request arrives with
probability q : 0 < q < 1 and buys or sells k units of Y , where buying or selling is chosen with equal
probability (and each request tolerates a constant slippage ε).

For the rest of this section, assume that the reference exchange rate is some unchanging p̂. The
requirement that q < 1 ensures that the Markov chain is ergodic.

Lemma 5.3.12. When trades are drawn from the size-k trade distribution (Definition 5.3.11), if
the CFMM starts with y0 units of Y , then the stationary distribution of the induced Markov chain
is uniform over the points {y0 + kn | n ∈ Z, nmin ≤ n ≤ nmax} for some integers nmin, nmax.

Furthermore, nmax − nmin + 2 ≥ |Lε(p̂)|
k ≥ nmax − nmin − 2, where p̂ is the reference exchange

rate.

Proof. The only states reachable from y0 under the size-k trade distribution are a subset of the
points {y0+kn | n ∈ Z}. A trade of size k and maximum slippage ε fails if the spot exchange rate of
the CFMM is already above p̂(1 + ε). Thus, there must be some nmax such that y0 + knmax upper
bounds the reachable state space. A similar argument shows that nmin must exist. Note that nmin
and nmax always exist, even when k ≫ |Lε(p)| (in which case nmin = nmax = 0).

By the quasi-concavity of the CFMM trading function, the overall exchange rate of a trade
must be between the spot exchange rates before and after the trade. Therefore, for any n ∈ Z,
a trade to sell k units of Y must succeed if y0 + kn + k ∈ Lε(p). Thus, nmax must be such that
y0 + (nmax + 1)k /∈ Lε(p̂) and y0 + (nmax − 1)k ∈ Lε(p). A similar argument holds for nmin.

In other words, the set of reachable states is a sequence of discrete points, all but the endpoints of
which must be in Lε(p̂). Thus, (nmax+1)−(nmin−1) ≥ |Lε(p̂)|

k , and (nmax−1)−(nmin+1) ≤ |Lε(p̂)|
k .

The Markov chain, therefore, is a random walk on a finite sequence of points with an equal
probability of moving in either direction (remaining in place at the endpoints instead of walking
beyond the end). Standard results on Markov chains (e.g. Example 1.12, [224]) show that the
Markov chain is ergodic and the stationary distribution is uniform over these points.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 106

Once this Markov chain mixes, therefore, the chance at any timestep that a trade fails is the
chance that the trade fails if the CFMM is in a randomly sampled state on this Markov chain.

Lemma 5.3.13. When trades are drawn from the discrete distribution of size k (Definition 5.3.11),
the probability that a trade fails is between min

(
1,
∣∣∣ k
|Lε(p̂)|−k

∣∣∣) and k
|Lε(p̂)|+k .

Proof. Let n = nmax − nmin, as defined in Lemma 5.3.12. The trade request failure chance is 1
n+1

(trade requests only fail at the endpoints of the sequence of reachable states).
Since n+ 2 ≥ |Lε(p̂)|

k and n− 2 ≤ |Lε(p̂)|
k (from Lemma 5.3.12), we have that k

|Lε(p̂)|+k ≤
1

n+1 ≤
k

|Lε(p̂)|−k .

When k ≪ |Lε(p̂)|, the trade failure probability is closely approximated by k
|Lε(p̂)| where the

approximation error is O
(

k2

|Lε(p̂)|2

)
. The rest of this work makes the following assumption.

Assumption 5.3.14 (Small Trade Size). Trade sizes are upper bounded by a constant.

Assumption 5.3.14 is not required for the model in general – traders can submit trades of size com-
parable to |Lε(p̂)| units of Y , which may succeed with non-zero probability. However, the assumption
enables an approximation of the trade failure probability.See also that |Lε(p̂)|=

∫ p̂(1+ε)
p̂/(1+ε)

L(p) d ln(p)

(Observation 5.3.10). If L(·) is relatively constant in a neighborhood of exchange rate p̂, then
|Lε(p̂)|∼ L(p̂) · 2 ln(1 + ε), and so, under Assumption 5.3.14, for any ε, the chance that a trade fails
is proportional to k/L(p̂).

With this in mind, we define the following “CFMM inefficiency” metric.

Definition 5.3.15 (CFMM Inefficiency). The CFMM’s inefficiency at an exchange rate p̂, with
regard to a trade of size k units of Y , is k

L(p̂) . The inefficiency of a trade denominated in X is
equivalent to the inefficiency of a trade of size kp̂ units of Y .

This metric has important implications for the performance of a CFMM. Consider, for example,
a trader submitting a trade request of size k units of Y repeatedly until it succeeds. The expected
number of times they have to submit the trade is 1/(1 − k

L(p̂)). Apart from being an important
metric in itself, the CFMM inefficiency is also a crucial factor when considering the LP’s profits, as
we will see in §5.6. Since the CFMM inefficiency is a convex function of each L(p̂), it can directly
be incorporated in the objective function of our optimization framework in §5.4.

5.3.3 A Liquidity Provider’s Beliefs

We represent an LP’s beliefs on future asset prices as a function of a base “numeraire” currency
(such as USD), instead of one of X or Y . This is because traders and LPs usually denominate their
profits, losses, and trade amounts in their native currency. Note, however, that this does not restrict
one from studying the case where one of X and Y is the numeraire itself.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 107

Definition 5.3.16 (LP’s Belief). The belief of an LP is a function ψ(·, ·) : R2
+ → R+ such that it

believes that at a future time, asset X will have price pX (relative to the numeraire) and Y will have
price pY with probability proportional to ψ(pX , pY).

A belief function ψ(·, ·) has the following properties:

1. ψ is integrable on any set of the form {pX , pY | p1 ≤ pX/pY ≤ p2} for p1, p2 ̸= 0.

2. There exists p1, p2 so that the integral of ψ on the set {pX , pY | p1 ≤ pX/pY ≤ p2} is nonzero.

3. The set {pX , pY | ψ(pX , pY) > 0} is open, and ψ is continuously differentiable on this set.

4. The integral of ψ(pX , pY) over its entire domain, Nψ =
∫∫
pX , pY

ψ(pX , pY)dpX dpY , is a
finite positive value.

We do not normalize the belief function to integrate to 1 for ease of analysis later in the paper.
This definition is strictly more flexible than a one-dimensional notion of a belief (i.e. a belief on
the exchange rate between X and Y). A one-dimensional belief could be defined, for example, as
nonzero only on the horizontal line where pY = 1 (with an appropriate adjustment to the notion
of integrating over the belief). This flexibility will be important when we turn to the incentives of
profit-seeking LPs (§5.6.2).

5.3.4 Belief Functions From Price Dynamics

An LP might not have just a belief about the distribution of future asset prices, but also some
belief about how an asset’s price will evolve over time. Applying time-discounting to beliefs about
dynamics results in a belief distribution as in Definition 5.3.16.

Let g(pX , pY) be any continuous, integrable function of asset prices, and ptX and ptY be stochastic
processes that are believed to represent future asset price dynamics. Let ρt(pX , pY) be the joint
probability density function at time t of pX and pY induced by the stochastic processes. Denote the
value of g at time t by gt. The expected value of gt is

E(gt) =
∫∫

pX ,pY

g(pX , pY)ρt(pX , pY) dpX dpY .

Denote the time-discounted value of g at the initial time, with discounting parameter γ by g(γ). By
linearity of expectation, the expected value of g(γ) is

E(g(γ)) =
∫ ∞

t=0

e−γt
(∫∫

pX ,pY

g(pX , pY)ρt(pX , pY) dpX dpY

)
dt

=

∫∫
pX ,pY

∫ ∞

t=0

e−γt g(pX , pY) ρt(pX , pY) dt dpX dpY

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 108

Observe that E(g(γ)), where the expectation is over the price dynamics, is therefore equivalent to the
expected value of g with respect to the static belief function ψ(pX , pY) =

∫∞
t=0

e−γt ρt(pX , pY) dt.
This holds for any integrable function g, which includes CFMM inefficiency (as in Proposition

5.4.1) but also expected profit and loss (as in §5.6).
This framework captures the geometric Brownian motion [297] model of price dynamics via:

ρt(pX , pY) =
1
2π

1
pXpY σXσY t

exp

(
− (ln pX−lnPX−(µX− 1

2σ
2
X)t)

2

2σ2
Xt

− (ln pY −lnPY −(µY − 1
2σ

2
Y)t)

2

2σ2
Y t

)
.

Here, PX and PY are the initial exchange rates of X and Y relative to the numeraire. µX and
µY are the drift parameters in the underlying Brownian motion of the log of pX and pY . σ2

X and σ2
Y

are the corresponding variances. With time discounting, this induces the following belief function.

ψ(pX , pY) =
∞∫
t=0

e−γt 1
2π

1
pXpY σXσY t

exp
(
− (ln pX−lnPX−(µX− 1

2σ
2
X)t)

2

2σ2
Xt

− (ln pY −lnPY −(µY − 1
2σ

2
Y)t)

2

2σ2
Y t

)
dt. (5.1)

5.4 Optimizing for Liquidity Provision

How should LPs allocate capital to market-making at different exchange rates? This question is the
core topic of our work. At any point in time, only the capital deployed near the reference exchange
rate is useable for market-making. Thus, the “optimal” CFMM design necessarily depends on an
LP’s belief on the distribution of future exchange rates.

We show here that an LP’s beliefs on future asset valuations can be compiled into an optimal
CFMM design, which is the solution to a convex optimization problem (Theorem 5.4.4). Specifically,
the optimization framework outputs a capital allocation L(·) (as in Definition 5.3.7) that minimizes
the expected CFMM inefficiency (Proposition 5.4.1). Ultimately, we show that this relationship goes
both ways; a liquidity allocation uniquely specifies an equivalence class of beliefs (Corollary 5.4.15).
Per Observation 5.3.10, a liquidity allocation L(·) fully specifies a CFMM trading function.

This section discusses “optimality” from a viewpoint of minimizing CFMM inefficiency; however,
we show in §5.6.1 that this optimization framework, with a different objective function, computes a
CFMM that maximizes expected CFMM fee revenue. Furthermore, we show in §5.6.2 how to modify
the objective of this program to account for losses incurred during CFMM operation.

5.4.1 A Convex Program for Optimal Liquidity Allocation

Objective: Minimize Expected CFMM Inefficiency

Proposition 5.4.1. Suppose every trade order on a CFMM is for one unit numeraire’s worth of
either X or Y , and buys or sells the asset in question with equal probability. The expected CFMM
inefficiency is 1

Nψ

∫∫
pX ,pY

ψ(pX ,pY)
pY L(pX/pY)dpX dpY . We define the integral only where ψ(pX , pY) > 0.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 109

Further, we define ψ(pX , pY)/L(pX/pY) to be ∞ when L(pX/pY) = 0. Nψ is as in Definition
5.3.16.

Proof. Suppose that a trader order is for 1 unit of numeraire’s worth of X with probability α, and
for 1 unit of numeraire’s worth of Y with probability 1− α. The size of a trade denominated in X

is therefore 1/pX , and the size of a trade denominated in Y is 1/pY .
Recall from Definition 5.3.15 that at a given set of reference prices pX , pY , the CFMM inefficiency

for a trade buying or selling 1 numeraire’s worth of X is p̂
pX

1
L(pX/pY) =

pX
pY pX

1
L(pX/pY) =

1
pY L(pX/pY) .

Similarly, also from Definition 5.3.15, the CFMM inefficiency corresponding to a trade of 1 nu-
meraire’s worth of Y is 1

pY
1

L(pX/pY) . Hence, the overall expected CFMM inefficiency is

1

Nψ

∫∫
pX ,pY

ψ(pX , pY)

(
α

pY L(pX/pY)
+

1− α
pY L(pX/pY)

)
dpX dpY ,

=
1

Nψ

∫∫
pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY . (5.2)

For clarity of exposition, we focus on the scenario where each order trades 1 unit of the numeraire’s
worth of value. Our model can study, however, scenarios where for general trade sizes and also when
the trade size is a function of pX and pY . The CFMM inefficiency is a linear function of trade size.
A distribution of trade sizes can be multiplied with the belief function.

Proposition 5.4.1 also implies that the trade failure chance is the same for a trader buying X or
Y . The pY in the denominator of the integrand in equation (5.2) appears because the liquidity L(·)
is defined with respect to the reserves of asset Y, i.e., Y(·) (recall Lemma 5.3.9). Overall, there is
no distinction between X and Y for the purpose of the CFMM inefficiency.

Constraints: A Finite Budget for Market-Making

The asset reserves of a CFMM are finite. Clearly, the best CFMM to minimize expected ineffi-
ciency has liquidity L(p) = ∞ at every exchange rate p, but this would require an infinite amount
of each asset (Observation 5.3.10). We model an LP with a fixed budget B who creates a CFMM
when the reference exchange rates of X and Y in the numeraire are PX and PY , respectively. With
this budget, the LP can purchase (or borrow) any amount of X and Y , say, X0 and Y0, subject to
the constraint that PXX0+PY Y0 ≤ B. With this intuition, we have the following technical lemmas:

Lemma 5.4.2. Given a purchasing choice of X0 and Y0, the LP can choose L(·) and set the initial
spot exchange rate of the CFMM to be p0, subject to the following asset conservation constraints.

1.
∫ p0
0

L(p)
p dp ≤ Y0

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 110

2.
∫∞
p0

L(p)
p2 dp ≤ X0

Proof. Follows from Observation 5.3.10.

Lemma 5.4.3. For any two budgets B,B′ with B′ > B and any capital allocation L1(·) satisfying
the constraints of Lemma 5.4.2 with budget B, there exists a capital allocation L2(·) satisfying the
constraints of Lemma 5.4.2 using the larger budget B′ that gives a strictly lower expected CFMM
inefficiency.

Proof. Duplicate L1(·) and allocate the capital B′−B to any p with ψ(p, 1) > 0 to build L2(·).

A rational LP sets the initial spot exchange rate of the CFMM to be equal to the current reference
exchange rate (i.e. p0 = PX

PY
). If not, a trader could arbitrage the CFMM against an external market.

The arbitrage profit of this trader is the LP’s loss, which effectively reduces the LP’s initial budget.
Our convex program combines the above objective and constraints to compute an optimal liq-

uidity allocation L(p). The core of the rest of this work is in using this program to understand the
relationship between LP beliefs and optimal liquidity allocations.

Theorem 5.4.4. Suppose that the initial reference prices of assets X and Y are PX and PY , and
that an LP has initial budget B > 0 and belief function ψ(·, ·).

The optimal liquidity provision strategy, L(·), is the solution to the following convex optimization
problem (COP). The decision variables are X0, Y0, and L(p) for each exchange rate p > 0. 5

minimize

∫∫
pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY (COP)

subject to

∫ p0

0

L(p)

p
dp ≤ Y0 (COP1)∫ ∞

p0

L(p)

p2
dp ≤ X0 (COP2)

X0PX + Y0PY ≤ B (COP3)

L(p) ≥ 0 ∀ p > 0 (COP4)

Proof. The L(·) that solves COP minimizes the expected transaction failure chance (the expression
in Proposition 5.4.1),6 while satisfying the LP’s budget constraint. The objective and the constraints
are integrals of convex functions and thus are convex.

This optimization problem is over a Banach space (there are uncountably many L(p)). Well-
established results from the theory of optimization over Banach spaces show that optimal solutions

5The optimization is over a Banach space with one dimension for each p > 0; we elide this technicality when
possible for clarity of exposition.

6The normalization term in the denominator is dropped for clarity since it doesn’t change the solution of the
problem.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 111

exist (Theorem 47.C, [318]) and the KKT conditions are well defined (§4.14, Proposition 1, [319]).

A CFMM offers only a spot exchange rate (X relative to Y), not a spot valuation for each
asset (relative to the numeraire). In this light, we find that the objective function of COP can be
rearranged to one that depends only on ratios of valuations.

Lemma 5.4.5. Define r, θ to be the standard polar coordinates, with pX = r cos(θ) and pY = r sin(θ).∫∫
pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY =

∫
θ

(
1

L(cot(θ)) sin(θ)

∫
r

ψ(r cos(θ), r sin(θ))dr

)
dθ

Proof. Follows by standard algebraic manipulations (dpX dpY = r dr dθ).

This rearrangement reveals a useful equivalence class among LP beliefs.

Corollary 5.4.6. Any two beliefs ψ1, ψ2 give the same optimal liquidity allocations if there exists a
constant α > 0 such that for every θ,∫

r

ψ1(r cos(θ), r sin(θ))dr = α

∫
r

ψ2(r cos(θ), r sin(θ))dr

This corollary has important implications for the closed-form results we obtain in §5.5 for com-
monly deployed CFMMs. The analysis of a belief defined on the square pX , pY ∈ (0, PX] × (0, PY]

gives the results for all beliefs defined analogously on pX , pY ∈ (0, αPX]× (0, αPY] for any α > 0.

Corollary 5.4.7. Define φψ(θ) =
∫
r
ψ(r cos(θ), r sin(θ))dr. Then∫∫

pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY =

∫
p

φψ(cot
−1(p)) sin(cot−1(p))

L(p)
dp

Corollary 5.4.7 enables a straightforward construction of a feasible solution to COP.

Lemma 5.4.8. COP always has a solution with finite objective value.

Corollary 5.4.9. On any set of nonzero measure, we cannot have ψ(pX , pY) > 0 and L(pX/pY) = 0.

Proofs of Corollarys 5.4.6 and 5.4.7 and Lemma 5.4.8 are in the Appendix C.3.2, C.3.3, and C.3.4
respectively.

5.4.2 Optimality Conditions

We first give some lemmas about the structure of optimal solutions to COP.

Lemma 5.4.10. The following hold at any optimal solution.

1.
∫ p0
0

L(p)
p dp = Y0

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 112

2.
∫∞
p0

L(p)
p2 dp = X0

3. X0PX + Y0PY = B

Lemma 5.4.10 says that at optimum, the constraints of COP are tight. A full proof is in Ap-
pendix C.3.5. Using the result of Lemma 5.4.10, the KKT conditions (§5.5.3, [99]) of COP are the
following:

Lemma 5.4.11 (KKT Conditions). Let λY , λX , and λB be the Lagrange multipliers for COP1, COP2,
and COP3 respectively. Let {λL(p)} be the Lagrange multipliers for each L(p) ≥ 0 constraint.

When φψ(cot
−1(p)) > 0 :

1. For all p with p ≥ p0, λX
p2 = 1

L(p)2φψ(cot
−1(p)) sin(cot−1(p)) + λL(p).

2. For all p with p ≤ p0, λY
p = 1

L(p)2φψ(cot
−1(p)) sin(cot−1(p)) + λL(p).

3. λX = PXλB and λY = PY λB.

When φψ(cot
−1(p)) = 0 :

1. For all p with p ≥ p0, λX
p2 = λL(p).

2. For all p with p ≤ p0, λY
p = λL(p).

3. λX = PXλB and λY = PY λB.

Proof. These are the KKT conditions of COP. {L(p)} is a functional over a Banach space. This
functional exists for every optimal solution by Proposition 1 of §4.14 of [319]. Note that that
proposition requires the objective to be continuously differentiable in a neighborhood of the optimal
solution; this does not hold when the optimization problem is as written and there is some p so that
φψ(cot

−1(p)) goes continuously to 0 at p (but is nonzero near p). In this case, one could replace
L(p) by L(p) + ε in the denominator of the objective, for some arbitrarily small ε. This would
cause a small distortion in L(p). We elide this technicality for clarity of exposition. Continuous
differentiability of the objective on a neighborhood where L(p) > 0 for all p with φψ(cot

−1(p)) > 0

follows from the assumption that ψ is continuously differentiable on the set where ψ(pX , pY) > 0,
and that this set is open (in Definition 5.3.16).

Corollary 5.4.12. The integral Y(p̃) =
∫ p̃
0
L(p)dp
p is well defined for every p̃ and Y(·) is monotone

nondecreasing and continuous.

A proof is given in Appendix C.3.6. Lemma 5.4.11 and Corollary 5.4.12 together imply that the
behavior of a CFMM that results from an optimal solution of COP is well-defined.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 113

Consequences of KKT Conditions

The KKT conditions immediately imply the following facts about any optimal solution of COP.

Lemma 5.4.13.

1. λY Y0 =
∫ p0
0

φψ(cot
−1(p)) sin(cot−1(p))

L(p) dp and λXX0 =
∫∞
p0

φψ(cot
−1(p)) sin(cot−1(p))

L(p) dp.

2. Y0 > 0 implies λY > 0. Similarly, X0 > 0 implies λX > 0.

3. L(p) ̸= 0 if and only if λL(p) = 0 (unless, for p ≤ p0, λY = 0 or for p ≥ p0, λX = 0).

4. The objective value is λY Y0 + λXX0.

5. λX
PX

= λY
PY

.

Proof.

1. Multiply each side of the first KKT condition in Lemma 5.4.11 by L(p) (for p with nonzero
φψ(cot

−1(p)) to get λXL(p)
p2 = 1

L(p)φψ(cot
−1(p)) sin(cot−1(p))), integrate from p0 to ∞, and

apply the second item of Lemma 5.4.10.

A similar argument (integrating from 0 to p0) gives the expression on λY Y0.

2. If Y0 > 0, then the right side of the equation in the previous part is nonzero, so λY must be
nonzero. The case of λX is identical.

3. Follows from points 1 and 2 of Lemma 5.4.11.

4. The right sides of the equations in the first statement add up to the objective.

5. Follows from point 3 of Lemma 5.4.11

Lemma 5.4.13 shows that the fraction of liquidity allocated to an exchange rate p is a function
only of the LP’s (relative) belief that the future exchange rate will be p. Specifically, except through
an overall scalar, there is no interaction between the values of L(·) at different relative exchange
rates.

Proposition 5.4.14. At an optimum, L(p) is a function of λX , λY , φψ(cot−1(p)) sin(cot−1(p)), and
p.

Proof. Follows from Lemma 5.4.11.

Proposition 5.4.14 gives several important consequences. First, it shows that an optimal liquidity
allocation can be inverted to give a set of belief functions that lead to that liquidity allocation.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 114

Corollary 5.4.15. A liquidity allocation L(·) and an initial spot exchange rate p0 are sufficient
to uniquely specify an equivalence class of beliefs (as defined in Corollary 5.4.6) for which L(·) is
optimal.

Second, Proposition 5.4.14 actually enables an explicit construction of a belief that leads to L(·).

Corollary 5.4.16. Let PX and PY be initial reference valuations, and let L(·) denote a liquidity
allocation. Define the belief ψ(pX , pY) to be (L(pX/pY))2

pX/pY
when pX ∈ (0, PX] and pY ∈ (0, PY], and

to be 0 otherwise. Then L(·) is the optimal allocation for ψ(·, ·).

Finally, the KKT conditions (Lemma 5.4.11) imply that linear combinations of beliefs result in
predictable combinations of liquidity allocations. Towards this, we have the following result, which
will be useful in further proofs. We prove these corollaries in Appendices §C.3.7, C.3.8, and C.3.9.

Corollary 5.4.17. Let ψ1, ψ2 be any two belief functions (that give φψ1 and φψ2) with optimal
allocations L1(·) and L2(·), and let L(·) be the optimal allocation for ψ1+ψ2. Then L2(·) is a linear
combination of L2

1(·) and L2
2(·).

Further, when φψ1
and φψ2

have disjoint support, L(·) is a linear combination of L1(·) and L2(·).

5.5 Common CFMMs and Beliefs

We turn now to the CFMMs deployed in practice. What do the choices of trading functions in large
CFMMs reveal about practitioners’ beliefs about future asset prices? In fact, the optimal beliefs for
several widely-used trading functions closely match the widespread but informal intuition about these
systems. Recall that PX and PY are the initial reference exchange rates. Also, recall the assumption
that all trades are for the worth of 1 unit of the base numeraire currency (Proposition 5.4.1).

5.5.1 The Uniform, Independent Belief: Constant Product Market Mak-
ers

Proposition 5.5.1. Let ψ(pX , pY) = 1 on (0, PX]×(0, PY] and 0 otherwise. The liquidity allocation
L(·) that minimizes the CFMM inefficiency is the allocation implied by the trading function f(x, y) =
xy.

Of course, by Corollary 5.4.6, the belief that gives the constant product market maker is not
unique. Importantly, rescaling the belief to one defined analogously on the rectangle (0, αPX] ×
(0, αPY] for any constant α > 0 does not change the optimal liquidity allocation. This invariance
of the optimal liquidity allocation to such transformations of the belief applies to all results in this
section.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 115

Proof. For the CFMM f(x, y) = xy, we have X (p)Y(p) = X0Y0 and p = Y(p)/X (p). This implies
Y(p)2 = pX0Y0 and Y(p) =

√
pX0Y0. Recall that L(p) = dY(p)

d ln(p) . This gives L(p) =
√
pX0Y0

2 .
Corollary 5.4.16 shows that a belief that leads to this liquidity allocation is X0Y0

4 on the rectangle
(0, PX]× (0, PY] and 0 elsewhere. The result follows by rescaling the belief (Corollary 5.4.6).

Proposition 5.5.1 captures the folklore intuition within Decentralized Finance regarding the cir-
cumstances in which constant product market makers are optimal. If an LP has no information
regarding correlations in the reference valuations of assets (in terms of the numeraire), then the LP
should choose one of these CFMMs because it allocates liquidity evenly across the entire range of
exchange rates. To be specific, the liquidity available at a given exchange rate for purchasing Y

from the CFMM is always proportional to the amount of Y in the reserves at that exchange rate.

5.5.2 Uniform Beliefs on Exchange Rate Ranges: Concentrated Liquidity
Positions

Some CFMMs (e.g. [56]) allow LPs to create piecewise-defined trading strategies, often called
“concentrated liquidity CFMMs.”

Definition 5.5.2 (Concentrated Liquidity CFMM). A trading function f ′(x, y) = f(x + x̂, y + ŷ)

for some constants x̂ > 0, ŷ > 0, has nonzero liquidity on a smaller range of exchange rates than f .

While a “concentrated liquidity CFMM” f ′ can be designed with any f, we focus on those which
use f(x, y) = xy since these have been widely adopted in practice after being introduced by [56].

Observe that this trading function differs from the constant product trading rule when x or y
reaches 0. There exists a range of exchange rates (pmin, pmax) on which this CFMM makes the same
trades as one based on the constant product rule. Outside of this range, the CFMM makes no trades.
There is a direct mapping from (x̂, ŷ) to (pmin, pmax), we omit it here for clarity of exposition.

This trading function corresponds to a belief pattern that is restricted in a similar way; on the
specified range of exchange rates, the belief is the same as that of Proposition 5.5.1, and 0 otherwise.

Proposition 5.5.3. Let pmin < pmax be two arbitrary exchange rates, and let ψ(pX , pY) = 1 if and
only if 0 ≤ pX ≤ PX , 0 ≤ pY ≤ PY , and pmin ≤ pX/pY ≤ pmax, and 0 otherwise. The allocation
L(·) that maximizes the fraction of successful trades is the allocation implied by a concentrated
liquidity position with price range defined by pmin and pmax.

A proof is given in Appendix §C.3.10. LPs who make markets using concentrated liquidity
CFMMs implicitly expect that while the valuations of the two assets may move up and down, their
movements are correlated; that is, the exchange rate always stays within some range. This belief
exactly matches that intuition.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 116

Corollary 5.5.4. The belief corresponding to multiple concentrated liquidity positions, which are
defined on disjoint ranges of exchange rates, is a linear combination of the beliefs that correspond to
the individual concentrated liquidity positions (as specified in Proposition 5.5.3).

Proof. Application of Corollary 5.4.17.

5.5.3 Skew in Belief Function: Weighted Product Market Makers

Weighted Constant Product Market Makers add weights to a constant product curve to get trading
functions of the form f(x, y) = xαy, for some constant α > 0.

Proposition 5.5.5. The belief function ψ(pX , pY) =
(
pX
pY

)α−1
α+1 when (pX , pY) ∈ (0, PX] × (0, PY]

and 0 otherwise corresponds to the weighted product market maker f(x, y) = xαy.

A proof is given in Appendix C.3.13. This proposition shows that LPs who use weighted product
market makers expect that the value of one asset will typically be much higher than that of the
other. Informally, more liquidity is allocated towards the higher ranges of exchange rates than the
lower ranges when α > 1 (and vice versa for α < 1). This CFMM, therefore, can satisfy a higher
fraction of trades when the exchange rate is high (resp. low). On the other hand, a skewed allocation
means that some price ranges suffer from much higher slippage for a fixed-size trade. This intuition
mirrors the description of how LPs should choose the weight α [81] in a public deployment [241] of
weighted product market makers. This theorem reduces to Proposition 5.5.1 when α = 1.

5.5.4 Logarithmic Market Scoring Rule

The logarithmic market scoring rule (LMSR) [191], which has been used extensively in the context
of prediction markets, corresponds to a CFMM with trading function f(x, y) = 2− e−x− e−y [273].

Proposition 5.5.6. The optimal trading function to minimize the expected CFMM inefficiency for
the belief ψ(pX , pY) = pXpY

(pX+pY)2 when (pX , pY) ∈ (0, PX] × (0, PY] and 0 otherwise, is f(x, y) =

2− e−x − e−y.

A proof is given in Appendix C.3.12. Observe that ψ is symmetric about the line pY = pX — that
is to say, ψ(pX , pY) = ψ(pY , pX). We analyse this belief function in polar coordinates to get a better
intuition. Note the term r cos(θ)r sin(θ)

(r cos(θ)+r sin(θ))2 = sin(2θ)
2(1+sin(2θ)) , which is maximized at θ = π/4. For initial

exchange rates with PX = PY , the LMSR expects the relative exchange rate to concentrate about
pX
pY

= 1. At extreme exchange rates (pXpY → 0 or pX
pY
→ ∞), the belief goes to 0. The LMSR-based

CFMM correspondingly allocates very little liquidity at extreme exchange rates.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 117

5.6 Market-Maker Profit and Loss

Deploying assets within a CFMM has a cost, and LPs naturally want to understand the financial
tradeoffs involved (instead of just minimising CFMM inefficiency). Specifically, LPs in CFMMs
trade off revenue from transaction fees against losses due to adverse selection.

5.6.1 Fee Revenue

Many CFMM deployments charge a fixed-rate fee on every transaction. While some early instantia-
tions automatically reinvested fee revenue within the CFMM reserves [55], more recent deployments
choose not to [56]. We consider the case where fees are not automatically reinvested and, for sim-
plicity, the case where fees are immediately converted into the numeraire currency.

Observe that a percentage-based fee on a trade is, from the trader’s point of view, equivalent
to a multiplicative factor in the exchange rate. Slippage also measures the deviation of a trader’s
received exchange rate from the reference exchange rate. A transaction fee, therefore, has the same
effect in our model on a CFMM’s ability to settle trades as a reduction in a user’s tolerated slippage.

The fee revenue depends on the rate of trade requests and the fraction of trades the CFMM can
settle. Recall the probability q of a trade request arriving at a time step from the system model
in Definition 5.3.1 and the trade size distribution size(·) from the trade model in Definition 5.3.5.
These can be compiled into a belief on the “rate” of trade requests that the LP expects the CFMM
will see.

Definition 5.6.1 (Transaction Rate Model). Denote as rateδ(pX , pY) denote an LP’s prediction
on the expected volume of trades (in terms of the numeraire) attempted on the CFMM when the
reference prices are pX and pY and the trading fee is set to δ.

Proposition 5.6.2. The expected revenue of a CFMM in one unit of time, using transaction fee δ,
when the mean trade-size is worth s units of the numeraire, is

µ(rate, ψ, δ, s) =
δ

Nψ

∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

(
1− s

pY L(pX/pY)

)
dpX dpY .

Proof. The expected revenue of the CFMM is exactly the transaction fee times the volume of trading
that goes through the CFMM, which is equal to the predicted input trade volume, less the number
of trades that the CFMM cannot settle.

In any real-world setting, the fee δ influences the predilection of traders to use the CFMM.
However, the transaction fee is a predetermined constant in many of the most widely used CFMM
deployments. Uniswap V2, for example, sets a fixed 0.3% fee [55], and Uniswap V3 lets LPs choose
between three choices of fee rates [56]. In this model, LPs would consider each fee rate they are

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 118

allowed to set (or perform a grid search over many fee schedules), and then predict (through some
external knowledge, outside the scope of this work) the transaction rate at that fee schedule.

Corollary 5.6.3. The allocation L(·) that maximizes fee revenue is same as the L(·) that minimizes∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

pY L(pX/pY)
dPX dPY

which is in turn equal to the liquidity allocation L(·) which is optimal for an LP with belief rateδ(pX , pY)∗
ψ(pX , pY) and is concerned only with minimizing CFMM inefficiency.

In simpler terms, an expected distribution on future transaction rates is equivalent, in the eyes
of the optimization framework, to a belief on future prices. A revenue-maximizing LP can therefore
use the same optimization problem (with an adjusted input) as in Theorem 5.4.4.

Definition 5.6.1 assumes traders are attempting trades for exogenous reasons. However, in the
real world, trade volume might depend on how effectively a market-maker provides liquidity. Note
that when the trade input rate is independent of pX and pY , then the objective of minimizing CFMM
inefficiency produces the same liquidity allocation as an objective of maximizing the fee collected.

5.6.2 Liquidity Provider Loss

LPs may also suffer losses when asset prices change. As discussed in Milionis et al. [244] and
Cartea [112], these losses come from two sources: first, from the asset price movements directly
(exposure to market-risk), and second, from shifts in the relative exchange rate between the assets.
As the relative exchange rate on the external market shifts, arbitrageurs can trade with the CFMM
to realign the CFMM’s spot exchange rate with the external market’s exchange rate, making a profit
in the process at the CFMM’s expense. Milionis et al. [244] show that the expected lose due to
arbitrage is higher for CFMMs trading more volatile assets.

The CFMM’s loss can only be defined relative to a counterfactual choice; instead of engaging
in market-making, an LP could deploy their capital in some other manner. For example, a simple
counterfactual would be to hold a fixed amount of the numeraire or a fixed quantity of each asset
and, at a future time, compare the value of this strategy with the value of the CFMM’s asset reserves.

Proposition 5.6.4. The expected future value of the CFMM’s reserves, as per belief ψ(pX , pY), is

ν(ψ) =
1

Nψ

∫∫
pX ,pY

ψ(pX , pY) (pXX (pX/pY) + pY Y(pX/pY)) dpX dpY

=
1

Nψ

∞∫
0

L(p)

p2

∫∫
pX ,pY

pXψ(pX , pY)1{ pXpY ≤p}dpXdpY +
L(p)

p

∫∫
pX ,pY

pY ψ(pX , pY)1{ pXpY ≥p}dpXdpY

 dp

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 119

where X (p) and Y(p) denote the amounts of X and Y held in the reserves at spot exchange rate
p, and 1E is the characteristic function of the event E.

This expression for ν(ψ) is a linear function of each L(p).

Proposition 5.6.4 follows from representing X (pX/pY) and Y(pX/pY) in terms of integration
of L(p) per Observation 5.3.10 and then changing the order of integration. A full proof is in Ap-
pendix C.3.13.

Divergence Loss

Observe that the expected value of a “buy-and-hold" counterfactual strategy does not depend
on a chosen allocation L(·). In this case, the expected loss of the market maker (relative to a
counterfactual strategy with expected payoff C) is C − ν(ψ) and is linear in each L(p). This
measurement of loss is typically called “divergence loss”.

Loss-Vs-Rebalancing

Alternatively, Milionis et al. [244] propose the “LVR” metric that compares a CFMM’s perfor-
mance against that of a counterfactual strategy that makes the same trades in asset X as a CFMM
but at the reference exchange rate, not at the CFMM’s spot rate. This LVR is an expectation over
a model of price dynamics but depends only on that model and the so-called “instantaneous LVR”,
which is proportional to −p2X (p)

dp = L(p) (Theorem 1 and Lemma 1, [244]). Milionis et al. [244]
show that the “instantaneous LVR” is equivalent to the loss to the CFMM due to arbitrage.

The overall LVR can be given by integrating the “instantaneous LVR” over the time period for
which the LP operates the CFMM. Since the overall LVR is, therefore, a linear function of L(·), it
can be incorporated directly into our optimization framework.

5.6.3 Net Profit

Adding capital to a CFMM is profitable in expectation if and only if the expected fee revenue
outweighs the expected loss. In the following, we analyze the net expected profit of an LP.

Lemma 5.6.5. Let µ(·) be as defined in Proposition 5.6.2 and Γ(·) be loss function which is linear
in L(p) for each p. An LP’s net expected profit, µ(rate, ψ, δ, s) − Γ(L(·)), is a concave function in
L(p) for each p.

Proof. µ(·) is clearly concave, and for any loss function which is linear in each variable L(p), the
whole function is concave in each L(p).

Crucially, Lemma 5.6.5 is applicable to both the divergence loss and the Loss-vs-Rebalancing.

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 120

Observation 5.6.6. A profit-maximizing liquidity allocation by maximizing µ(rate, ψ, δ, s)−Γ(L(·)),
and is computable via a convex optimization problem.

The objective is the expression of Lemma 5.6.5, and the constraints are the same as in Theorem
5.4.4.

Not only, therefore, does our optimization framework allow an LP to design a CFMM that
maximizes successful trading activity, but it can also guide a profit-maximizing LP to a profit-
maximizing CFMM. Observe that the objective value of this convex program is positive precisely
when the CFMM generates a profit.

5.6.4 Divergence Loss Shifts Liquidity Away From the Current Exchange
Rate

The threat of divergence loss is in inherent tension with the potential of a CFMM to earn fee revenue
by settling trades. A CFMM can, of course, vacuously eliminate divergence loss by refusing to make
any trades (by allocating no liquidity to any price), and in general, higher liquidity at a given range
of exchange rates leads to better CFMM performance at that range and higher divergence loss if the
reference exchange rate moves away from that range.

When divergence loss is accounted for in the objective, our optimization framework computes a
liquidity allocation that trades off fee revenue with divergence loss by shifting liquidity away from
the current exchange rate i.e., towards more extreme exchange rates (closer to p = 0 and p =∞).

This qualitative behavior is, however, not true of every possible loss function that an LP might
add to the objective. Each function will have its own effect; nevertheless, the optimization problem
can always be solved to compute an optimal allocation.

Theorem 5.6.7. Let L1(p) be the optimal liquidity allocation that maximizes fee revenue — the
solution to the optimization problem for the objective of minimizing the following:

− δ

Nψ

∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

(
1− s

pY L(pX/pY)

)
dpX dpY

Let L2(p) be the optimal liquidity allocation that maximizes fee revenue while accounting for
divergence loss — the solution to the optimization problem for the objective of minimizing the fol-
lowing:

−ν(ψ)− δ

Nψ

∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

(
1− s

pY L(pX/pY)

)
dpX dpY

Let X1 =
∫∞
p0

L1(p)
p2 dp and X2 =

∫∞
p0

L2(p)
p2 dp be the optimal initial quantities of X for the above

two problems respectively.
Then there exists some p1 > p0 such that for p0 ≤ p ≤ p1, L1(p)

X1
≥ L2(p)

X2
and for p ≥ p1,

L1(p)
X1
≤ L2(p)

X2
. An analogous statement holds for the allocations of Y .

CHAPTER 5. OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS 121

The proof is technical and is given in Appendix C.3.13. In simple terms, the divergence loss
might change the optimal initial choice of reserves, but given that choice, divergence loss causes
liquidity to shift away from the current exchange rate. Qualitatively, the higher the magnitude
of the expected divergence loss relative to the expected fee revenue, the larger the magnitude of
this effect. This reflects the well-known intuition that when the reference exchange rate changes
substantially, highly concentrated liquidity positions (like in §5.5.2) suffer higher losses than more
evenly distributed liquidity allocations (like those of §5.5.1).

5.7 Conclusion

We develop in this work a convex program that, for any set of beliefs about future asset valuations,
outputs a trading function that maximizes the expected fraction of trade requests the CFMM can
settle. Careful analysis of this program allows for study of the inverse relationship as well; for
any trading function, our program can construct a class of beliefs for which the trading function is
optimal. Constructing this program requires a new notion of the liquidity of a CFMM, and the core
technical challenge involves careful analysis of the KKT conditions of this program.

Unlike prior work, this program is able to explain the diversity of CFMM trading curves observed
in practice. We analyze several CFMMs that are widely deployed in the modern DeFi ecosystem,
and show that the beliefs revealed by our model match the informal intuition of practitioners.

Furthermore, our program is versatile enough to cover the case of a profit-seeking LP that must
trade off expected revenue from trading fees against loss due to arbitrage. This program therefore
can serve as a guide for practitioners when choosing a liquidity allocation in a real-world CFMM.

Chapter 6

Augmenting Batch Exchanges with
Constant Function Market Makers

6.1 Introduction

A crucial component of an economic system is a structure to facilitate the exchange of assets.
Recall that this thesis, thus far, has discussed two separate mechanisms for implementing an

exchange, but each operates in a different computational model and with different economic tradeoffs.
Chapter 3 introduced a linearly-scalable instance of a batch exchange, trading between many assets
simultaneously, in the computational model—using unordered blocks of commutative transactions—
of chapter 2. By contrast, chapter 5 studies the tradeoffs inherent in an automated exchange
mechanism known as the Constant Function Market Maker (CFMM), which sequentially executes
one trade after another.

These mechanisms have not only different computational tradeoffs but also distict economic
characteristics. Some models of batch auctions suggest that they can lead to improved price discovery
or reduce intermediation costs [236, 129, 155, 284], at the cost of additional trade latency. Budish
et. al [103, 73] argue that batch auctions address the problem of “stale quote sniping” in traditional,
centralized exchanges 1, reduce the cost of providing liquidity, and move competition from speed to
price. Others argue the opposite; in some contexts, batch auctions could reduce market liquidity
[246, 219, 153].

Observe that the replicated state machine paradigm (as in §1.2.1) already incurs latency in each
transaction, so SPEEDEX incurs no additional latency. Furthermore, because public blockchains

1A stale quote is an offer to buy or sell an asset whose limit price is outdated (perhaps because the rest of the
market has responded to new information). A market-maker may attempt to cancel the offer, but a trader with a
lower-latency connection to the exchange may trade with (“snipe”) the outdated offer first.

122

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 123

batch transactions for consensus, and then order transactions within each batch, the order of trans-
actions can be explicitly manipulated for market activity, such as direct front-running [143] that far
exceeds stale quote sniping and is usually heavily curtailed by regulation in traditional exchanges
(i.e. [240, 42]). Batch auctions eliminate this class of front-running, because every trade in a batch
happens at the same price. Additionally, exchanges like SPEEDEX that trade many assets in a
single batch sidestep the problem of liquidity fragmentation between different trading pairs, which
is especially problematic in modern blockchains [220], at the cost of substantially complicating the
process of computing batch clearing prices.

By contrast, chapter 5 studies the Constant Function Market Maker, a class of automated market-
maker widely used to provide liquidity in existing decentralized exchanges [55, 56, 157]. These sys-
tems operate in a fundamentally different computational model; they execute transactions sequen-
tially, with minimal computational costs. In some respects they mirror the traditional exchange
design with a central limit order book 2, but with a smooth distribution of limit orders, instead of a
discrete set. If they were not implemented on replicated state machine infrastructure with inherent
latency, they would execute transactions immediately. CFMMs execute trades at predictable prices,
defined precisely by their trading curves.

Our topic at hand is the question of how these two market innovations can be combined. Batch
auctions do not explicitly contain market-makers, and CFMMs have become a widely used strategy
for market-making in decentralized exchanges. In the context of batch auctions, CFMMs can form a
simple way to parametrize and express a market-making strategy in the batch auction. Yet these two
different mechanisms do not obviously fit together immediately, given their different economic mech-
anisms and computational paradigms. We find that there are several design choices to make when
integrating CFMMs with batch auctions, each of which can incur its own tradeoffs and economic
effects.

6.1.1 Preliminaries

Constant Function Market Makers

Recall from Definition 5.2.1 that a Constant Function Market Maker (CFMM) is an automated
market-making strategy parametrized by a trading function f . As in chapter 5, trading functions
f satisfy Assumption 5.2.2. Additionally, for clarity of exposition in this chapter, we make the
additional assumption that f is differentiable (except in §6.5). Recall that the gradient of f defines
the spot exchange rate (Definition 5.2.3) for a trade of infinitesimal size. 3

2Where the exchange maintains lists of offers to buy and sell an asset, and matches a new buy offer against the
lowest price sell (if the limit prices can be matched) and vice versa.

3Strict quasi-concavity could be relaxed to quasi-concavity, and differentiability to continuity. This means replacing
gradients with subgradients, as in Definition 5.2.3. When multiple points have the same spot price, and our theorem
statements must pick one, any can be chosen in an arbitrary but deterministic fashion.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 124

Arrow Debreu Exchange Markets

An Arrow Debreu market [78] is used to model a pure exchange market4, i.e., a market where a set
of assets A are traded without a designated numeraire or “money”. A ssets are fungible, divisible
and freely disposable. Agents have quasi-concave and non-satiating utilities for the bundle of assets
they consume and have an initial endowment of assets. All trades happen at the same prices implied
by a valuation vector {pA > 0}A∈A, and asset amounts remain conserved.

Batch Exchanges

In a batch exchange, traders submit trade orders to an exchange operator, which gathers these orders
into batches (typically with some temporal frequency, e.g. one batch per second) and then clears
batches of orders subject to the constraints of the orders. Chapter 3 (as well as the batch exchange
of [302]) models itself internally as an instance of an Arrow-Debreu exchange market (details in
§A.1.1).

The following are examples of order types that a batch exchange may support.

Definition 6.1.1 (Limit Sell Offer). A Sell Offer (A, B, k, r) is request to sell k ≥ 0 units of good
A, for as many units of asset B as possible, subject to receiving a minimum “limit” price of at least
r units of B per A.

Limit sell offers correspond to agents in an Arrow-Debreu exchange market with linear utility 5

u(xA, xB) = rxA + B (Observation A.1.3).

Definition 6.1.2 (Market Sell Order). Limit sell orders with limit price of 0 are market sell orders.

Definition 6.1.3 (Limit Buy Order). A limit buy order is an order to purchase up to k units of
asset A by selling as few units of asset B as possible, subject to a maximum price of r B per unit A.

This corresponds to a utility function u(x) = rxA +min(k, xB).

6.1.2 System Model

We model the interaction between a batch exchange, CFMMs, and users as follows.

1. Limit sell orders6 can be submitted or removed any time before a cutoff for each next batch.

2. A CFMM participating in the batch exchange must submit its trading function and current
reserves to the exchange before a cutoff time for each next batch.

4In its original form [78], the Arrow Debreu markets have two types of agents – consumers and producers – we are
interested in a market with only consumers.

5The underlying utility of the trader placing the order may generally be different from the utility of the limit order.
We abstract out from this detail and all strategic considerations – the mechanism is only interested in the limit order’s
utility.

6Limit buy orders lead to PPAD-hardness of equilibrium computation [118] (details in §A.8), and as such, we do
not support limit buy offers.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 125

3. Between consecutive batches, the CFMMs may also be available for their standalone operation,
but must be unchanged after submitting their reserve levels and trading function to the batch
exchange until the batch is executed.

We do not model any fees that the batch exchange operator and the CFMM may charge. We
believe that the axioms and properties of market solutions we study in this work are important also
in the presence of trading fees.

6.1.3 Our Results

To our knowledge, this is the first paper to do an axiomatic and computational study of the important
problem of augmenting batch exchanges with CFMMs. We design a batch exchange which supports
limit sell orders (Definition 6.1.1) as traders and CFMMs as market makers.

Axioms

We give here (details are in §6.2) a minimal set of axioms for batch exchanges incorporating
CFMMs. We require that a batch exchange neither burn nor mint any asset – asset amounts must
be conserved (Axiom 6.2.1). We also impose the core fairness property of batch auctions that there
exist asset valuations in equilibrium, and no market participant receives a better price than that
implied by these valuations (Axiom 6.2.2). Together, Axioms 6.2.1 and 6.2.2 imply that all trades
in a batch happen at the same batch prices (Observation 6.2.3). Further, as is standard in trading
systems, we want that all limit orders receive a trade which is a “best response” to the batch prices
(Axiom 6.2.4). This axiom ensures that a limit sell order fully executes when the batch price exceeds
the limit price and is not executed at all when the batch price is less than the limit price. The axiom
pertaining to CFMMs is their basic design principle that their trading function should not decrease
due to a trade (Axiom 6.2.5).

Axioms 6.2.1, 6.2.2, and 6.2.4 are simply an articulation of the core properties of batch exchanges
which we believe are well-accepted rules for designing exchange markets. Axiom 6.2.5 is a basic
guarantee required by all CFMM deployments. These axioms are minimal and do not impose a
particular solution. They allow a rich set of solution concepts with different economically useful
properties, which is this paper’s core subject of study. We briefly discuss some solution concepts
which carefully relax some axioms to expand the design space in §6.4.

We can now define a market equilibrium for batches with limit sell orders and CFMMs.

Definition 6.1.4 (Market Equilibrium). For a batch trading in a set of assets A, and market par-
ticipants i ∈ I with initial endowments {xi,A ≥ 0}i∈I,A∈A, a market equilibrium consists of a set of
valuations {pA > 0}A∈A and allocations {zi,A ≥ 0}i∈I,A∈A which satisfy Axioms 6.2.1, 6.2.2, 6.2.4,

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 126

and 6.2.5 (asset conservation, uniform batch valuations, limit orders get a best-response trade, and
the CFMM trading functions are non-decreasing).

We leverage existing results from the literature to obtain sufficient conditions for the existence of
market equilibria. Multiple market equilibria may exist for any batch instance per Definition 6.1.4.

Desirable Properties of Batch Exchanges and Market Equilibria

We now define some desirable properties of market equilibria. These properties then guide us in
designing algorithms for finding market equilibria which are economically more useful than some
other market equilibria.

1. The first desirable property is Pareto optimality for the limit sell orders (Definition 6.3.1). An
outcome of a mechanism is Pareto optimal if no agent can be made strictly better-off without
making someone else strictly worse-off [172].

2. Another desirable property is price coherence (PC) of a group of CFMMs post-batch (Defini-
tion 6.3.4). PC is a necessary and sufficient condition for the participating CFMMs to be in a
cyclic arbitrage-free state (Definition 6.3.3).

A weaker condition than PC is preservation of price coherence (PPC), under which a group of
participating CFMMs must be price-coherent post-batch if they were price-coherent pre-batch.

3. We also consider the property joint price discovery (JPD) (Definition 6.3.10) – a property strictly
stronger than PC. JPD eradicates a form of arbitrage called parallel running (Definition 6.3.9).

Observation 6.1.5. PPC is strictly weaker than PC, which is strictly weaker than JPD.

4. Another desirable property is locally computable response (LCR) (Definition 6.3.12) for the
CFMMs. That is, the trade made by a CFMM in equilibrium is a deterministic function of only
its trading function, its pre-batch state, and the batch asset valuations. If the exchange imple-
ments LCR for CFMMs, it provides predictability to the liquidity providers and can help them
in doing a better risk-profit analysis and making a more informed decision about committing to
a market-making strategy.

We also discuss a property called path independence (Definition 6.3.15) in § 6.3.5 motivated from
the standalone operation of CFMMs for batches with a single limit order.

Achievability of Desirable Properties of Batch Exchanges

All results here are under the setup that Axioms 1-4 are required to be satisfied, that is the batch
exchange computes a market equilibrium as a solution. We relax this only in § 6.4 where post-
processing is allowed for the CFMMs after the market equilibrium. We start with two impossibility
results regarding the achievability of certain desirable properties simultaneously.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 127

Figure 6.1: Examples of LCR CFMM trading rules.
The axes are the CFMM’s reserves. The blue curve
is a level curve of the CFMM trading function on
which the initial state lies. The slope of the tangent
to the level curve denotes the CFMM’s spot price.
The slope of the dotted orange line is the negative of
the batch price for this example. Here, the green and
the orange lines have the same slopes.
Trading Rules S and U are per Definitions 6.1.10
and 6.1.8. Trading Rules E and F are inspired by
the rebalancing strategy of Milionis et. al [244] and
are defined later in §6.4. The line segment between
points E and F corresponds to the class of Strict-
Surplus Trading Rules (Definition 6.4.5).

Theorem 6.1.6. A batch exchange cannot simultaneously guarantee Pareto optimality and preser-
vation of price coherence (PPC).

Theorem 6.1.7. A batch exchange cannot simultaneously guarantee a locally computable response
(LCR) for CFMMs and Pareto optimality.

Recall that Pareto optimality is defined for the utilities of the limit orders, and PPC and LCR
protect the interests of the CFMMs. These results shed light on an inherent tension between the
interests of the CFMM and those of the limit orders. They also illustrate that the problem we study
in this paper is non-trivial and nuanced.

We now turn to designing algorithms that find market equilibria with some of the desirable
properties given above. For this, we adopt a viewpoint from the perspective of the CFMMs. Any
deterministic algorithm for equilibrium computation can be described as a trading rule for a CFMM,
a function which specifies the CFMM’s allocation, given all information of the batch instance.

Consider the following natural CFMM trading rule.

Definition 6.1.8 (Trading Rule U). With its trading function as a pseudo-utility function, give the
CFMM a pseudo-utility-maximizing bundle of assets subject to the asset valuations.

Under Assumption 5.2.2 on CFMM trading functions, the allocation under Trading Rule U is
unique.

FU (x, f, p) = sup
z∈{ẑ | p·(ẑ−x)=0}

f(z).

An illustration of Trading Rule U is in Figure 6.1. Notice that Trading Rule U satisfies LCR.
That is, the CFMM’s allocation in equilibrium interacts with the rest of the batch only via the

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 128

asset valuations p. When the CFMM demand under Trading Rule U satisfies an additional con-
dition – Weak Gross Substitutability (WGS) 7 8 – Trading Rule U in the batch exchange can be
implemented by well-known algorithms for computing equilibria in Arrow Debreu markets, such as
the Tâtonnement-based algorithm described in Codenotti et. al [127], or our convex program of
§6.5. Apart from computational tractability, the simple Trading Rule U also has other desirable
properties.

Theorem 6.1.9. A batch exchange has JPD if and only if it implements Trading Rule U for all
CFMMs.

By Observation 6.1.5, batch exchanges implementing Trading Rule U for all CFMMs also achieve
PC. This implies that adopting Trading Rule U protects CFMMs from both cyclic arbitrage and
parallel-running-based arbitrage. Trading Rule U has a natural interpretation that it treats CFMMs
as utility-maximizing agents which may be normatively significant in many scenarios.

We also study Trading Rule S, which is applicable only for batches with 2-asset CFMMs9.

Definition 6.1.10 (Trading Rule S). Maximize the CFMM’s valuation-weighted trade size subject
to the non-decreasing trading function constraint. Under Assumption 5.2.2, the allocation is unique.

FS(x, f, p) = sup
z∈{ẑ | p·(ẑ−x)=0; f(ẑ)≥f(x)}

∥p · (z − x)∥1.

An illustration of Trading Rule S is in Figure 6.1. Informally, it corresponds to trading “all
the way” up to the point where the trading function non-decreasing constraint is tight. It always
ends up on the same level curve of the trading function as the initial state. For the extreme sparse
case of a single CFMM and a single limit order, Trading Rule S mimics a standalone CFMM, and
therefore, in this case, a limit order based-trader does not strictly prefer trading “outside the batch”
with the CFMM. Notice that Trading Rule S also satisfies LCR, i.e., it gives a CFMM’s “demand”
as a response to asset valuations. All CFMM trading functions lead to a WGS demand under
Trading Rule S, and as such, the equilibrium computation problem is computationally tractable (for
example, once again, using Tâtonnement [127] or the convex program of §6.5). This simple and
intuitive solution concept has some more desirable properties in special cases of batch instances as
we show here.

Although per Theorem 6.1.7, when guaranteeing LCR for all CFMMs, the batch exchange cannot
7A demand function satisfies WGS if for all asset valuations {pa}a∈A, on decreasing the valuation pA∗ of an

asset A∗ while keeping all other valuations {pa}a∈A\A∗ constant, the demand of all assets other than A∗ does not
decrease. WGS of all agents is a sufficient condition for the existence of market equilibria [215] in Arrow-Debreu
exchange markets.

8Although not all CFMM trading functions correspond to WGS demand functions under Trading Rule U, we show
that many natural classes of trading functions do. On the flip side, some seemingly-natural trading functions, for
example, that of Curve [157] do not.

9For clarification, here we consider the cases where a CFMM trades in only two assets, but each CFMM may be
trading in an arbitrary pair of assets, and the entire batch trades in an arbitrary number of assets.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 129

guarantee Pareto optimal equilibria, it can nonetheless do so by using Trading Rule S for the special
case of batches trading in only two assets when the CFMMs are price coherent pre-batch.

Theorem 6.1.11. If the batch exchange trades in only two assets, and if the CFMMs in a batch are
in a state of price coherence pre-batch, the equilibria obtained by algorithms implementing Trading
Rule S for all CFMMs are Pareto optimal.

Trading Rule S is the only LCR CFMM trading rule with this property.

Theorem 6.1.11, in conjunction with the impossibility result of Theorem 6.1.7, shows how multi-
asset batch exchanges pose much more analytical challenges than two-asset batch exchanges.

Trading Rule S, in general, does not satisfy PPC. However, this negative result is bypassed in
batches with only “Concentrated Liquidity Constant Product” (CLCP) CFMMs (Definition 6.3.8),
which is a class including the constant-sum and constant-product CFMMs.

Theorem 6.1.12. CLCP is the unique class of CFMMs such that if all CFMMs in a batch belong
to this class, then the market equilibria attained by batch exchanges implementing Trading Rule S
for all CFMMs satisfy the preservation of price coherence.

This result uncovers a very interesting and useful fact about the class of CFMMs that are used
extensively in practice and theory. While CLCP trading functions are hailed for their computational
simplicity and universality [56], we establish the surprising fact here that they are also well-suited
for integration with batch exchanges while using a very natural trading rule.

Results on Equilibrium Computation

Although tâtonnement-based algorithms can find market equilibria whenever agent demand func-
tions are WGS, convex programs for computing market equilibria have led to an improved structural
understanding of markets (such as the much-celebrated result of Eisenberg and Gale [158]). There-
fore, we develop a convex program (in §6.5) for computing market equilibria for markets with limit
sell orders and 2-asset CFMMs that have a WGS demand under any given LCR CFMM trading rule.
This program may be of independent interest – it makes progress on the open question of designing
convex programs for nonlinear utility functions in Arrow Debreu exchange markets. Our program
handles the case where agent utility functions are arbitrary quasi-concave functions of two assets,
subject to the constraint that each agent’s demand function is WGS.

Theorem 6.1.13 (Informal). The program with objective function COP and constraints C1, C2,
and C3 is convex, and its solutions correspond to market equilibria (if one exists) when each agent
trades in only two assets and their demand functions are WGS.

Our convex program is inspired by that of Devanur et. al [146] for the case of linear utility
functions. The proof is quite technical, but the intuition is easy to state – we develop a viewpoint

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 130

from which CFMMs appear as an uncountable collection of infinitesimal limit sell offers. Unlike the
analyses in [146] based on Lagrange multipliers, we have to go back to earlier techniques and directly
apply Kakutani’s fixed point theorem.

When the density of this infinite collection of limit offers is a rational linear function, we prove
that our convex program has rational solutions. This includes many classes of commonly used
CFMMs, including the constant product CFMM when using Trading Rule U. On the flip side, we
show that some CFMMs, for example those based on the Logarithmic Market Scoring Rule (LMSR)
[191], can force batches only to admit irrational equilibria when using Trading Rule U.

Solution Concepts Beyond Market Equilibria

A natural question is whether we can attain more of the desirable properties of §6.1.3 if we allow the
CFMMs to do a post-processing step after their trade in the batch. The answer is yes but with a
caveat. If the CFMMs have the option to alter their state post-batch, then they can always attain a
state of price coherence, but this will have to violate the axiom of uniform valuations (Axiom 6.2.2).
Further, we give a class of LCR trading rules – Strict-Surplus Trading Rules (Definition 6.4.5) – on
2-asset CFMMs with the following property:

In any market equilibrium where all CFMMs’ trades are per a Strict-Surplus Trading Rule, each
CFMM has a surplus-capturing post-processing step, upon which they attain a state of JPD (Theo-
rem 6.4.6).

This result opens up a new dimension to the solution space for our problem. Such multiple-step
solutions concepts may provide a viable design in practice, but their economic implications must be
further scrutinised in future research. More details on these results are in §6.4.

6.1.4 Related Work

In his seminal work, Kyle [216] studies a model of a two-asset (a good and a money) batch auction,
where traders submit market orders to buy or sell the good. The market maker a priori declares a
pricing rule that maps the excess demand for the good to a price. In contrast, we study a model
where traders submit limit orders, and the market makers use a CFMM-based approach. A CFMM
trading function, under LCR, can be considered a map from its trade size to a price for a given
initial state. However, a CFMM is ‘automated’ in the sense that its pricing rule accounts for the
liquidity provider’s ‘position’ in the good, which is captured in the initial state. Moreover, unlike
[216], we consider multi-asset batches and the case of potentially many market makers with their
own CFMM trading functions.

Most closely related to our work in the blockchain space is the work of the company CoWSwap
(Coincidence of Wants– Swap) (formerly known as Gnosis); their implementation details are provided
in [302]. Same as us, they study batches that incorporate CFMMs and trade in multiple assets.
They take an optimization approach with various objectives, such as maximizing trade volume or

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 131

maximizing trader utility. Their solutions are based on mixed integer programs and do not have
runtime guarantees. In contrast, we take an axiomatic approach and propose polynomial time
solutions for finding market equilibria with certain desirable properties.

The decentralized exchange Penumbra [17] considers batches of two assets only. It aggregates
market orders in a batch and executes the excess demand with a CFMM per its constant function
trading rule, subject to a maximum slippage tolerance.

Automated market-making strategies have been studied both in a cryptocurrency context [65] and
in traditional exchanges [182, 180, 216, 258]. CFMMs form a subclass of automated market-making.
There has been extensive study of how the design of a CFMM trading function interacts with the
economic incentives of those who invest in it [162, 111, 166, 165, 112], research on axiomatizing
meaningful CFMM trading functions [281, 171, 260], and “optimality” amongst trading functions
(as in chapter 5, as well as Milionis et. al [243]). However, this direction of work is orthogonal to
the subject of study of this chapter. We focus only on the contract the CFMM-based trader enters
into with the batch exchange operator. Axiom 6.2.5 captures a basic guarantee of this contract.

Budish et. al [103, 102] and Aquilina et. al [73] study the economic performance of batch
auctions between pairs of assets. The well-studied model of [78] forms the basis for multi-asset,
pure exchange batch trading implementations [201, 302]. There are many classes of algorithms
for (approximately or exactly) computing equilibria in Arrow-Debreu exchange markets, including
iterative methods (or Tâtonnement) [131, 127, 128, 90, 176], convex programs for the case of linear
utilities [146, 199, 250, 137], convex program for Cobb-Douglas utilities [142], and combinatorial
algorithms [200, 147, 154, 177].

Most closely related to our work in this line is the convex program of Devanur et. al [146],
which also gives concise proof of the existence and rationality of equilibria. We generalize their
program beyond linear utilities and include 2-asset WGS utility functions. The convex program of
[250] (re-discovered in [199]—the original was in Russian) also goes beyond linear utilities but in
an incomparable manner from ours. Their program can handle constant elasticity of substitution
(CES)10 utilities for ρ > 0 and Cobb-Douglas utilities on any number of assets but not the entire
class of WGS utility functions. A precise characterization of the class of utility functions that their
program can handle is unknown. This question was posed as an open problem alongside several
positive and negative examples in [199]. On the other hand, when each agent has utility for only
two assets, our program handles all WGS utility functions in the class.

10A CES utility has the form u(x) = (
∑

A∈A(wAxA)ρ)1/ρ for nonnegative constants {wA}A∈A. In the limit
ρ → 0+, we get the Cobb-Douglas utilities of the form u(x) =

∏
A∈A x

wA
A for

∑
A∈A wA = 1. The Cobb-Douglas

function is widely used as the trading function of many common CFMMs [241, 55].

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 132

6.2 Axioms of Batch Exchanges with CFMMs

In this section, we give a set of axioms that specify minimal guarantees that a market solution must
provide to the participants in a batch exchange.

6.2.1 Asset Conservation

Trading systems must not create or destroy any asset. This is equivalent to the “market-clearing”
property of Arrow Debreu exchange market equilibria. Formally:

Axiom 6.2.1 (Asset Conservation). Let exchange participants i ∈ I have endowments {xi,A}i∈I;A∈A

and receive bundles {zi,A}i∈I;A∈A. For each asset A, we must have
∑
i∈I xi,A =

∑
i∈I zi,A.

6.2.2 Uniform Valuations

The core fairness property of a batch trading scheme is that all orders in a batch trade at the
same prices, and no trader gets an unfair advantage. For this, the batch exchange must compute
valuations for all assets in a batch and ensure that no trader can get an allocation of a greater value
than the value of their endowment per these valuations. Formally:

Axiom 6.2.2 (Uniform Valuations). An equilibrium of a batch trading scheme has a shared market
valuation {pA > 0} for each asset A ∈ A. Let batch exchange participants i ∈ I have endowments
{xi,A}i∈I;A∈A and get allocated bundles {zi,A}i∈I;A∈A. For each participant i ∈ I, it must be the
case that p · zi ≤ p · xi.

Note that we do not require strict equality between p·zi and p·xi in the axiom; instead, we require
that no market participant should get a price strictly better than the equilibrium asset valuations.
However, in conjunction with asset conservation (Axiom 6.2.1), uniform valuation (Axiom 6.2.2)
implies that this inequality needs to be strict in equilibrium.

Observation 6.2.3. Axioms 6.2.1 and 6.2.2 imply that all trades in equilibrium in any asset pair
(A,B) ∈ A2 happen at the same price, given by quotients of the asset valuations.

Proof. Summing the inequalities of Axiom 6.2.2 over all participants,
∑
i∈I p · zi ≤ p · xi. By asset

conservation,
∑
i∈I zi =

∑
i∈I xi. Since all pA > 0, all inequalities p · zi ≤ p · xi must be tight.

One may envision a trading system allowing giving CFMMs a worse price than the limit orders to
be able to execute some more limit orders. However, such a system will violate the asset conservation
axiom and leave a surplus. This observation ensures that the

(|A|
2

)
exchange rates for each pair of

assets are obtained from a vector of |A| asset valuations.
The existence of the valuation vector, which facilitates marker clearing, is not guaranteed for

arbitrarily batch instances. However, we show in §6.5 that we can leverage the literature on Arrow

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 133

Debreu markets to obtain the necessary conditions for the existence of market clearing valuations
and corresponding allocations in our context.

6.2.3 Limit Sell Orders Make a Best Response

A basic guarantee of batch trading systems in the literature is that a limit sell order is executed in
full when the batch price exceeds the limit price and is not executed when the batch price is less
than the limit price. When the batch price equals the limit price, the limit order trades any amount
between zero and its maximum amount.

Axiom 6.2.4 (Best response trade for limit orders). The allocation received by a limit sell order
maximizes its linear utility function subject to the market asset valuations.

6.2.4 CFMM Design Specification

The “constant function market maker” name may suggest that a CFMM shall trade from reserves
x to reserves z only if f(z) = f(x). One might consider encoding this strict equality condition as an
axiom; however, real-world CFMM deployments only check the weaker condition that f(z) ≥ f(x)

[32]. Keeping this flexibility allows us to have a much richer design space and is crucial to satisfy
certain desirable properties of batch trading systems, as we shall see in the next section.

Axiom 6.2.5 (Non-decreasing CFMM trading function). A CFMMs trading function does not
decrease due to a trade in the batch, i.e., for a trade from state x to z, we must have f(z) ≥ f(x).

Recall Definition 6.1.4 that any market equilibrium satisfies all Axioms 6.2.1, 6.2.2, 6.2.4, and 6.2.5.

6.3 Desirable Properties of Market Equilibria

Market equilibria may not be unique, so we turn now to study desirable properties of market equi-
libria, which will then guide our design of market equilibrium computation algorithms.

6.3.1 Pareto Optimality

Given the asset valuations in market equilibrium, the utility that a limit sell order receives is
fixed under Axiom 6.2.4. However, some market equilibria may have asset valuations that provide a
worse utility to the limit orders than other admissible market equilibria. The Pareto optimality of
market equilibria is defined as follows.

Definition 6.3.1 (Pareto Optimal Market Equilibria). For a batch instance, a market equilibrium
E is Pareto optimal if there does not exist another market equilibrium E′ which Pareto dominates
E for the utility of the limit sell orders.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 134

Note that in a market with only limit sell orders, all market equilibria are Pareto optimal – this
property is lost if CFMMs also participate. There is no natural notion of the utility of a CFMM in
our model, and since CFMMs are expected to charge trading fees (we do not model the fees in this
paper), we define the Pareto optimality of market equilibrium for the utility of the limit orders only.

We illustrate with an example that multiple market equilibria may exist even for simple batch
instances, and many of those may not be Pareto optimal.

Example 6.3.2. Consider an instance of a batch exchange trading in assets A and B, with a CFMM
f(x) = xAxB , in the state xA = 1, xB = 4, and a limit order l = (A,B, 1, 1) i.e., for selling up to 1

unit of A for B with a minimum price of 1.
The set of market equilibria is given by the asset valuations (pA = r, pB = 1) for r ∈ [1, 2]. The

corresponding bundle that the limit order receives is (zlA = 0, zlB = r), and that the CFMM receives
is (zcA = 2, zcB = 4− r). The unique Pareto optimal market equilibrium corresponds to r = 2.

We discussed Pareto optimality to safeguard the interests of the limit order traders. We now
give desirable properties aimed at safeguarding the interests of the CFMM liquidity providers.

6.3.2 Price Coherence and Mitigating Cyclic Arbitrage

For a CFMM trading standalone (not in a batch exchange), its state changes only in response to
trade requests and not directly in response to the prices of assets in the external market. When the
external market prices change, the CFMM’s spot price is now “stale.” An arbitrageur can make a
risk-free profit by buying from the CFMM some units of the asset whose relative price has increased
on the external market and selling it there at the new (higher) price. The size of the trade to
maximize the arbitrager’s profit can be computed by solving a convex program [69]. This optimal
arbitrage trade leaves the CFMM’s spot price aligned with the external market’s price [65].

An arbitrage opportunity also arises when a group of CFMMs are mispriced with respect to each
other. Towards this, we define “cyclic arbitrage”, which motivates important design considerations
and properties we desire from market equilibria in batch exchanges.

Definition 6.3.3 (Cyclic Arbitrage of a Group of CFMMs). A group of CFMMs C is in a state of
cyclic arbitrage if it is possible to obtain a non-zero amount of any asset for free by trading with the
group C simultaneously.

A state of cyclic arbitrage can arise, for example, when CFMMs operate in a batch exchange,
and the system’s design does not eradicate this possibility. We define a related property on the spot
prices of CFMMs, which provides a handle on the analysis of cyclic arbitrage.

Definition 6.3.4 (Price Coherence of a Group of CFMMs). A group of CFMMs C has price coher-
ence if there exists a set of asset valuations {qa > 0}a∈A such that for each asset pair (A,B) ∈ A2,

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 135

every CFMM c ∈ C that trades in asset pair (A,B) has a spot price qA
qB

units of B per unit of A.11

For a group of CFMMs, construct a graph with the CFMMs as nodes and an undirected edge
between two nodes if they trade at least one common asset. If a set of CFMMs in a cycle of this
graph (if one exists) does not have price coherence, then they are in a state with cyclic arbitrage –
a trader can make a risk-free profit by carefully trading with this cycle of CFMMs. More precisely:

Proposition 6.3.5. A group of CFMM are in a state of cyclic arbitrage if and only if they are not
in a state of price coherence.

Proof. Follows from the “no-arbitrage condition” of Angeris et. al [68].

The price coherence of a group of CFMMs motivates a related property for market equilibria.

Definition 6.3.6 (Price Coherence of Market Equilibria (PC)). A batch exchange market equilibrium
satisfies PC if the group of participating CFMMs have price coherence post-batch.

It is important for the liquidity providers of the CFMMs that cyclic arbitrage opportunities are
not created by trading in the batch. We also define a weaker condition than price coherence for
equilibrium computation algorithms, which may be more relevant in some circumstances.

Definition 6.3.7 (Preservation of Price Coherence (PPC)). A batch exchange satisfies PPC if, for
any batch instance with a group of CFMMs in a state of price coherence pre-batch, the equilibria
computed by the exchange satisfy PC.

We now restate and prove Theorem 6.1.6.

Theorem (6.1.6 restatement). A batch exchange cannot simultaneously guarantee Pareto optimality
and preservation of price coherence (PPC).

Proof. Consider a batch instance trading in assets A = {A,B}. There are two CFMMs:
C1 with trading function f1(x) = xAxB and pre-batch state (xA = 1, xB = 2) with spot price 2,

and
C2 with trading function f2(x) = x2AxB and pre-batch state (xA = 1, xB = 1) with spot price 2.
There is a limit sell order (A,B, 1, 1), i.e., to sell up to 1 unit of A for B for a price of at least 1.
The set of market equilibria is given by asset valuations (pA = r, pB = 1) for r ∈ [1, (8+

√
10)/9]

and corresponding allocations.
The unique Pareto optimal market equilibrium corresponds to r = (8 +

√
10)/9 ≈ 1.24. In this

equilibrium, the post-batch spot price on CFMM C1 is ≈ 0.769 and that on CFMM C2 is ≈ 0.748.
11When the CFMM trading function is not differentiable, we require that qA

qB
be in the set of subgradients of the

level curve of the trading function, and all results regarding PC will continue to hold.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 136

Although not possible to be guaranteed with Pareto optimality, PC can nonetheless be guaran-
teed by natural CFMM trading rules in batch exchanges. An example is Trading Rule U (recall
Definition 6.1.8) – the result follows as a corollary of Theorem 6.1.9.

Recall that PPC is a weaker condition than PC. Although Trading Rule S (recall Definition 6.1.10)
does not satisfy PPC in general, it does so when all CFMMs in the batch belong to a particular
class of CFMMs, defined below.

Definition 6.3.8 (Concentrated Liquidity Constant Product (CLCP) Trading Functions). A trading
function in the CLCP class is f(x) = (xA + x̂A)(xB + x̂B) for constants x̂A > 0, x̂B > 0.

This class of CFMMs allocates liquidity in a single interval of prices and implements the constant-
product trading function in that interval. This price interval is (

x̂2
B

K , K
x̂2
A
) for constant K denoting

the initial value of the CFMM trading function. This class includes, as special cases, the constant-
product CFMM [55] (where the liquidity is spread to all prices, 0 to∞, by setting x̂A = x̂B = 0) and
the constant-sum CFMM (where the liquidity is concentrated at a single price point). Combinations
of CLCP trading functions form the basis of the widely successful decentralized exchange protocol
Uniswap V3 [56]. CLCP trading functions have the following interesting property.

Theorem (6.1.12 restatement). CLCP is the unique class of CFMMs such that if all CFMMs in
a batch belong to this class, then the market equilibria attained by batch exchanges implementing
Trading Rule S for all CFMMs satisfy the preservation of price coherence.

Proof. Denote the asset valuations which give the initial spot prices of the CFMMs by {qa}a∈A.

These exist by pre-batch price coherence. Denote the batch equilibrium asset valuations by {pa}a∈A

and the asset valuations which give the post-batch spot prices of the CFMMs by {q̂a}a∈A. These
exist by PPC. Since each CFMM here trades in only two assets (Trading Rule S is defined only for
2-asset CFMMs), its initial spot price is qAB = qA/qB for assets A and B that it trades. Similarly,
denote the batch price in A and B by pAB .

For a given CFMM trading function, recall that Trading Rule S gives a map FS (Definition 6.1.10)
from the initial state and the batch asset valuations to the final state. Observe that this map depends
on {pa}a∈A only via the batch price pAB . Under the strict quasi-concavity of the CFMM trading
function, if the CFMM trading function value is invariant, there is an injective map from the CFMM
state to its spot price. Since the CFMM trading function value is invariant under Trading Rule S,
we can represent Trading Rule S as a map from the initial spot price and batch price to the final
spot price. Denote this map for trading function f by gf (qAB , pAB)→ q̂AB .

Here, we give properties that the map gf (·, ·) must satisfy.

1. Reflexive. That is, gf (ρ, ρ) = ρ for all ρ ∈ [0,∞). This is required since the CFMM makes no
trade when the batch price equals the spot price, and hence the post-batch spot price should
equal the initial spot price.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 137

2. Involution on the Spot Price. That is, gf (q, p) = q̂ =⇒ gf (q̂, p) = q for all q, p, q̂ ∈ [0,∞). This
is because, under Trading Rule S, the CFMM returns to the initial state after two consecutive
batches if the batch price is the same in both batches.

3. PPC. For a group of CFMMs, construct a graph with the CFMMs as nodes and an undirected
edge between two nodes if they trade at least one common asset. For any cycle C of CFMMs
in this graph, see that

∏
i∈C pAiBi = 1 by arbitrage-freeness of batch valuations (here CFMM

i trades in asset Ai and Bi, Ai+1 = Bi, and B|C| = A1). Also
∏
i∈C qAiBi = 1 by pre-batch

PC. PPC requires that
∏
i∈C gfi(qAiBi , pAiBi) = 1.

From basic functional analysis, we obtain that the only differentiable functions that satisfy these
conditions are gf (q, p) = q and gf (q, p) =

p2

q .

The case of gf (q, p) = q corresponds to the constant sum CFMM whose spot price is invariant to
the CFMM state. Observe that this CFMM is in the CLCP class (Definition 6.3.8) and corresponds
the case where the liquidity is concentrated at one price.

We now solve for the trading function corresponding to gf (q, p) = p2

q .

Let a CFMM trade in assets A and B, and its reserves in each asset be xA and xB . When CFMM
trading function value f(x) is invariant, it gives an injective map from A in the reserves to B in the
reserves. Denote this map by Bf (xA) for a fixed level curve of the CFMM trading function f . In
this notation, the spot price of the CFMM is dBf

dxA
.

For two points on a level curve, (xA0, xB0) and (xA1, xB1), the condition gf (q, p) = p2

q translates
to

dBf
dxA

∣∣∣∣
xA0

· dBf
dxA

∣∣∣∣
xA1

=

(
xB1 − xB0

xA1 − xA0

)2

(6.1)

Taking the point (xA0, xB0) as fixed, denoting dBf
dxA

∣∣∣
xA0

by constant c, and solving the differential
equation yields the following indefinite integrals.

c

∫
dBf

(xB1 − xB0)2
=

∫
dxA

(xA1 − xA0)2
(6.2)

Further solving gives
c

(xB − xB0)
=

1

(xA − xA0)
+ c1 (6.3)

where c1 is the constant of integration. For xB ̸= xB0 and xA ̸= xA0 :

c(xA − xA0) = (xB − xB0) + c1(xA − xA0)(xB − xB0) (6.4)

Upon rearrangement of the terms, this yields the CLCP trading function form. In case the CFMM
runs out of an asset, the spot price for selling that asset is ∞ for a CLCP trading function – using
this value in the PC equation ensures that the result continues to hold.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 138

6.3.3 Joint Price Discovery and Mitigating Parallel Running

We motivated PC and PPC, intending to ensure that the group of CFMMs participating in the
batch exchange do not end up in a state of cyclic arbitrage. However, the problem of arbitrage in
financial systems is not limited to the trades that can be made with a group of CFMMs.

Here we study another form of an arbitrage strategy.

Definition 6.3.9 (Parallel Running). For a batch instance, a parallel running arbitrage opportunity
exists if for any real numbers a, b > 0 and any assets A,B ∈ A, a trader can sell a units of asset A
in exchange for b units of asset B in the batch and, can then obtain a units of asset A in exchange
for b̂ < b units of asset b by trading with the participating CFMMs post-batch.

Parallel running is a similar concept to front running, which corresponds to making a trade
based on advanced knowledge of future orders. By definition, precisely identifying parallel running
opportunities requires knowledge of all the other batch participants and the equilibrium computation
algorithm. However, estimating the chances and magnitudes of such opportunities with only partial
information may be possible – we leave this investigation for future work. We show here that we can
design equilibrium computation algorithms that eradicate all parallel running opportunities, even if
the arbitrager has perfect information of the batch.

First, we describe a property of market equilibria.

Definition 6.3.10 (Joint Price Discovery (JPD)). Let group C of CFMMs participate in a batch. A
market equilibrium with asset valuations {pa > 0}a∈A satisfies JPD if for each asset pair (A,B) ∈
A2, every CFMM c ∈ C that trades in pair (A,B) has a post-batch spot price pA

pB
units of B per unit

of A.

Observe that JPD is a special case of PC. The following result establishes its importance as a
defence against parallel running.

Lemma 6.3.11. Joint price discovery (JPD) makes parallel running impossible.

Proof. See that in equilibrium, each order in the batch executes at the batch prices given by the
ratios of asset valuations {pa > 0}a∈A. By quasi-concavity of CFMM trading function f , for any
trade, the price obtained is no better than the spot price. By JPD, the spot price is equal to the
batch price, so parallel running is impossible.

We show in Appendix D.2 that for a reasonable regularity condition “split invariance” on equi-
librium computation algorithms (in Definition D.2.2) and for “large” batch instances (as in Defini-
tion D.2.1), JPD is a necessary condition to eradicate parallel running in batch exchanges.

Beyond its desirable properties, JPD implies a natural CFMM trading rule. Towards this, we
here restate and prove Theorem 6.1.9.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 139

Theorem (6.1.9 restatement). A batch exchange has JPD if and only if it implements Trading Rule
U for all CFMMs.

Proof. The CFMM trading function f is strictly quasi-concave. Thus, to maximize f on a hyperplane
(as in Trading Rule U) is to find the point where the gradient of f is normal to the hyperplane.
This point is unique under Assumption 5.2.2. Since the gradient of f at a point is equal to the spot
price at said point (up to rescaling), setting the spot prices equal to the batch prices corresponds to
Trading Rule U.

JPD has another advantage beyond mitigating parallel running. Previous work [155, 284] suggests
that batch exchanges may emerge as major trading venues for the price discovery of assets. If this
prediction is realized, then it will be vital for the CFMMs to have a spot price in lockstep with
the price offered on the batch exchange. In a way, CFMMs shall achieve price discovery for “free”
by trading in a batch exchange which implements JPD-ensuring market equilibria, which otherwise
(in their standalone operation) comes at the cost of arbitrage (also termed “Loss-Vs-Rebalancing”
[244]). A thorough analysis of the economic incentives of CFMM liquidity providers to participate
in batch exchanges is the subject of future research.

We now study another property aimed at safeguarding the CFMMs.

6.3.4 Locally Computable Response for CFMMs

It is often important for agents to have some predictability in their trade in a batch, subject to the
batch prices. While this is guaranteed for limit orders axiomatically (Axiom 6.2.4), it would also be
good for liquidity providers who invest their capital in CFMMs for market making.

Definition 6.3.12 (Locally Computable Response (LCR) CFMM Trading Rule). A CFMM’s trad-
ing rule in a batch exchange satisfies LCR if it is a map F (x, f, p) → z, where {xa}a∈A is the
pre-batch CFMM state, f is its trading function, and {pa}a∈A is a set of equilibrium asset valua-
tions. The output {za}a∈A is the post-batch CFMM state.

Further, F (x, f, p) must be invariant under rescaling of p.

LCR provides predictability to liquidity providers and makes participation more lucrative (apart
from the fees they charge, which are not considered in our model). However, as with other desirable
properties, we lose some design space if we impose LCR for CFMMs. For example, we have the
impossibility result of Theorem 6.3.14, which uses Definition 6.3.13.

Definition 6.3.13. The price-weighted trade volume of a limit sell order selling A for B is pA(xA−
zA) + pB(zB − xB) where x and z are their endowment and equilibrium allocation, respectively, and
p are the equilibrium asset valuations.

Theorem 6.3.14. No batch exchange satisfying LCR for CFMMs can guarantee to find a market
equilibrium that maximizes the sum of the price-weighted trade volumes of all limit sell orders.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 140

Proof. Consider a batch exchange with a single CFMM with trading function f(x) = xAxB and
pre-batch state xA = 1, xB = 4. We study two batch instances with this CFMM:

1. There is one limit sell order (A,B, 3, 1) i.e., for selling up to 3 units of A for a minimum price
of 1 B per A. All equilibria have the same (up to rescaling) asset valuations: pA = pB = 1.

The “price-weighted trade volume of limit orders” is maximized by the equilibrium at which the
CFMM buys 3 units of A from the limit order.

2. There is one limit sell order (A,B, 3, 1) and another limit sell order (B,A, 3, 1). All equilibria
have the same (up to rescaling) asset valuations: pA = pB = 1.

The “price-weighted trade volume of limit orders” is maximized by the equilibrium at which the
CFMM makes no trades.

Since the equilibrium asset valuations are the same in the two instances, any LCR trading rule for
the CFMM cannot distinguish between the two instances and cannot optimize for the price-weighted
trade volume of limit orders.

Walther [302] gives a mixed-integer program for the problem of finding a market equilibrium
that maximizes the price-weighted trade volume of limit orders. Their algorithm has no runtime
guarantees. Finding polynomial-time algorithms for this objective or showing that none exist is an
interesting open problem. Also, recall the impossibility result of Theorem 6.1.7. We prove it here.

Theorem (6.1.7 Restatement). A batch exchange cannot simultaneously guarantee a locally com-
putable response (LCR) for CFMMs and Pareto optimality.

Proof. First consider the case of LCR CFMM trading rules which, for some starting state x, trading
function f, and batch valuations p, demand an allocation z strictly “above the curve”, i.e., f(z) >
f(x). Such a CFMM trading rule will clearly not lead to a Pareto optimal equilibrium. Consider a
batch with one market sell order selling A for B, and a CFMM trading in a set of assets A which
includes A and B. If, in equilibrium, the CFMM’s allocation z satisfies f(z) > f(x), then, by the
strict quasiconcavity of f, there exists an alternate equilibrium under which the CFMM’s allocation
is z′ where z′B < zB , f(z

′) = f(x) (hence satisfying Axiom 6.2.5), and {z′a}a∈A\B = {za}a∈A\B .

In this equilibrium, the limit order gets strictly more units of assets B and is, therefore, a Pareto
improvement.

Now, consider the case of LCR CFMM trading rules which, for all starting states x, trading
functions f, and batch valuations p, demand an allocation z “on the curve”, i.e., f(z) = f(x). For
two-asset CFMMs, this leaves only two possibilities (by strict quasi-concavity of trading function
f), either the CFMM makes no trade (i.e., z = x) or the CFMM demands an allocation z such that
z = sup

z ∈ {ẑ|p·(ẑ−x) = 0; f(ẑ) ≥ f(x)}
∥p · (z−x) ∥1. Recall that this corresponds to Trading Rule S. We

consider both these cases.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 141

1. There exists a CFMM C in the batch with an LCR trading rule which, for some starting state
x, trading function f, and batch valuations p (not equal to the CFMM spot price), demands an
allocation z, where z = x (that is, makes no trade).

Say CFMM C trades in assets A and B. Consider a batch where no other group of CFMMs
together trade in both A and B. There exists a batch instance with a market sell order for a > 0

units of asset A for B. The equilibrium under the above-stated LCR is sub-optimal for the limit
order since it would have a higher utility on receiving any non-zero amount of B.

2. Consider a case where all CFMMs in the batch are two-asset CFMMs, and they follow the LCR
Trading Rule S. For this case, we have the following example with two CFMMs and two limit
sell orders.

CFMM C1 trades in assets A and B, uses the trading function f(x) = xAxB and has a starting
state (xA = 1, xB = 4).

CFMM C2 trades in assets B and D, uses the trading function f(x) = xBxD and has a starting
state (xB = 1, xD = 4).

Limit order L1 = (A,D, 3, 1) i.e., to sell up to 3 units of A for D at a minimum price of 1 D per
A.

Limit order L2 = (A,B, 1, 1.5).

On using Trading Rule S for both CFMMs, a market equilibrium E has asset valuations pA =

pB = pD = 1. CFMM C1 buys 3 units of A, sells 3 units of B, and ends up in a state of xA = 4

and xB = 1. CFMM C2 buys 3 units of B, sells 3 units of D, and ends up in a state of xB = 4

and xD = 1. Limit order L1 trades in full and limit order L2 does not trade.

Another market equilibrium, Ê, has asset valuations pA = 2; pB = 1; pD = 2.

CFMM C1 buys 1 unit of A and sells 2 units of B. CFMM C2 makes no trades. Limit order L1

makes no trade and limit order L2 trades in full (sells 1 unit of A for 2 units of B). The utility
of L1 is the same in E and Ê, whereas that of L2 is strictly better in Ê. Therefore market
equilibrium Ê is a Pareto improvement over E.

These negative results illuminate the fundamental trade-offs that a batch exchnage must operate
under. However we are able to obtain positive results in an important special case. We restate and
prove Theorem 6.1.11.

Theorem (6.1.11 Restatement). If the batch exchange trades in only two assets, and if the CFMMs
in a batch are in a state of price coherence pre-batch, the equilibria obtained by algorithms imple-
menting Trading Rule S for all CFMMs are Pareto optimal.

Trading Rule S is the only LCR CFMM trading rule with this property.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 142

Proof. Let assets A and B be traded on the exchange. Denote a market equilibrium obtained by
implementing Trading Rule S for all CFMMs by E. By pre-batch price coherence, CFMMs either
all sell B or all sell A in equilibrium. The CFMMs sell B in E without the loss of generality.

An improvement in the utility of the limit orders selling A can be made only by making B

cheaper relative to A. For higher utility, the limit orders selling A consume strictly more B than
in equilibrium E. On the other hand, the limit orders selling B sell strictly fewer B. However,
the CFMMs, all of whom are selling B in E, cannot sell any more of B at a lower price by the
quasi-concavity of the trading function f and the fact that the CFMM is “on the curve” in Trading
Rule S. Therefore such a utility improving market equilibrium is not possible.

An improvement in the utility of the limit orders selling B can be made only by making B costlier
relative to A. However, in equilibrium E, some limit orders are buying B (since the CFMMs all sell
B), and making B costlier will strictly decrease their utility.

We now show that Trading Rule S is the only LCR CFMM trading rule with this property, with
a simple example. Consider a batch instance with a market sell order for selling asset A for B. If for
some initial state x and trading function f , the batch exchange does not implement Trading Rule
S, then it provides strictly fewer units of B to the limit order than under Trading Rule S and is
therefore not Pareto optimal.

6.3.5 Path Independence

We here discuss a property of the batch exchange (and not of market equilibria like the previous
properties), defined when there is a single limit order-based trader. Blockchain systems often have
restricted throughput capabilities, and it is important to design mechanisms which do not incentivize
traders to submit multiple small orders instead of a single big order12. Towards this, we define the
path-independence property, which is inspired by the standalone operation of CFMMs.

Definition 6.3.15 (Path Independence). An arbitrary group of CFMMs C participates in two con-
secutive batches and does not modify between the batches. Suppose a single trader exists and wants
to sell some units of an asset A ∈ A in exchange for asset B ∈ A via market sell orders (that is,
limit sell orders with limit price zero).

In a path-independent batch exchange, the amount of asset B they receive on splitting the units
of A they sell into the two batches is independent of the split.

This definition trivially extends to multiple batches and not just two. Standalone CFMMs satisfy
path independence [65]. However, it is surprisingly difficult to satisfy in batch exchanges, except for
a narrow case of Theorem 6.3.16. We restate and prove Theorem 6.3.16 here.

12It is a standard practice in finance that investors and traders with large orders submit their orders in smaller
parts to receive a better average price since market liquidity at a time is limited [60, 113]. Another possible reason to
do so is that the traders do not want to disclose their private information, which is reflected in their order size [178].
We do not aim to restrict this practice. We wish to restrict the incentives for breaking down orders even when the
available liquidity in the market does not change.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 143

Theorem 6.3.16. Batch exchanges with Trading Rule S for CFMMs satisfy path independence when
there is only one CFMM in the batch.

Proof. The CFMM, under Trading Rule S, trades “on the curve.” That is, f(z) = f(x) where x and
z are its pre-batch and post-batch states, respectively. For any amount of A that the market order
trader sells, the amount of B in the CFMM is specified by the trading function preservation and
therefore the amount of B that the trader receives is also only a function of the net amount of A
sold by the trader.

The path independence property, although defined in a restricted setup, provides a distinction
between Trading Rules U and S. Even in the simple setup of a single CFMM and a single limit-order-
based trader, batch exchanges implementing Trading Rule U do not satisfy path independence, as
shown in the following example.

Example 6.3.17 (Trading Rule U does not satisfy path independence with one CFMM). Consider
a batch instance with a single CFMM with trading function f(x) = xAxB and pre-batch state xA =

1, xB = 4.

If a trader submits a market sell order for 2 units of A, they receive 1.6 units of B. (See that the
new CFMM state: xA = 3, xB = 2.4, has a spot price of 0.8 B per A, which matches the batch price
offered).

If the same trader first submits a market sell order for 1 unit of A, they receive 4/3 units of B
for it. The new CFMM state is xA = 2, xB = 8/3. Now if they make another market sell order for
1 unit of A, they receive 2/3 units of B for it, with the final CFMM state of xA = 3, xB = 2. The
overall trade is 2 A for 2 B, which is strictly better than what they received on trading in full in one
go.

Although simple and intuitive in the case of 2-asset batches, the path independence property is
surprisingly difficult to satisfy. Even Trading Rule S does not satisfy it when more than one CFMMs
are present, even if the CFMMs are price-coherent pre-batch, as in the following example.

Example 6.3.18. CFMM C1 trades in assets A and B, uses the trading function f(x) = xAxB and
has a starting state (xA = 10, xB = 1).

CFMM C2 also trades in assets A and B, uses the trading function f(x) = xA + 10xB and has
a starting state (xA = 10, xB = 0).

If a trader sells 1 B, they receive 10 A; CFMM C1 makes no trade, and CFMM C2 trades to state
(xA = 0, xB = 1). Then, if they sell another B, CFMM C1 trades to final state (xA = 5, xB = 2)

and CFMM C2 makes no trade. Overall the trader receives 15 A for 2 B.
But if they sell 2B together, the price is (3/20) A per B; CFMM C1 trades to final state (xA =

1.5, xB = 0) and CFMM C2 trades to final state (xA = 20/3, xB = 3/2). The trader receives 40/3
A for 2 B.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 144

This example shows that path independence is at a conflict with the interests of the CFMM, and
it can be satisfied only in special cases.

We now move on to solution concepts that allow the CFMMs for an extra step after the batch.
We show that doing so carefully can expand our design space in interesting and useful ways.

6.4 Beyond Market Equilibria Solutions

Here we study the case where the CFMMs are capable of post-processing their state after the
batch trade and before being open to standalone operation. For example, CFMMs can restore price
coherence through a careful post-processing step. This can, for example, be facilitated by the batch
operator. A simple method is to run a “phantom batch” with no limit orders and an equilibrium
computation algorithm implementing Trading Rule U for all CFMMs. By doing so, the batch
exchange may retain some desirable properties of solutions that do not guarantee PC in the main
batch (for example Trading Rule S), and then also attain PC before subsequent operations by running
the phantom batch. This 2-step solution seems to violate our impossibility result of Theorem 6.1.6,
but it does not! This solution violates the axiom of uniform valuations (Axiom 6.2.2) since the asset
valuations in the phantom batch may deviate from those in the main batch.

We showed here how participating CFMMs in a state of cyclic arbitrage can jointly post-process
from an arbitrary initial state to reach a price coherent state. Importantly, this operation can be
performed after adopting any equilibrium computation algorithm in the main batch. Our second
result in this section is even more interesting. We now study a class of locally computable CFMM
trading rules with the following property. Batches where the equilibrium computation algorithm
implements a trading rule from this class for all CFMMs, assure that the CFMMs can locally post-
process and attain a state of JPD. Importantly, this local post-processing strategy does not entail
making a trade or changing the CFMM trading function, it simply entails capturing a part of the
CFMM reserves as ‘profit’ and removing it from the market-making pool. In the process, the CFMM
reaches a state where the value of the trading function is equal to its pre-batch value. The caveat
is that this 2-step process violates asset conservation since assets are effectively removed from the
system at the end of it. For this, we first define Trading Rules E and F.

For a standalone CFMM trading in two assets A and B, under Assumption 5.2.2, there is an
injective map from the spot price to the CFMM state. Motivated by the ‘rebalancing’ strategy of
Miilionis et. al [244], a CFMM trading rule can be designed to buy as much of asset A as it would
hold ‘on the curve’ when the spot price equals the batch price.

Definition 6.4.1. For the initial CFMM state x and its trading function f , denote the map from
the spot price p to the amount of asset A in the CFMM state by A(x, f, p), i.e.,

A(x, f, p) = {zA|f(z) = f(x);
∂f

∂xA
(z)/

∂f

∂xB
(z) = p}.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 145

Definition 6.4.2. For the initial CFMM state x and its trading function f , denote the map from
the spot price p to the amount of asset B in the CFMM state by B(x, f, p), i.e.,

B(x, f, p) = {zB |f(z) = f(x);
∂f

∂xA
(z)/

∂f

∂xB
(z) = p}.

For strictly quasiconcave CFMM trading functions, A(x, f, p) and B(x, f, p) are singleton. For
non-strict quasiconcave CFMM trading functions, we can use any arbitrary elements of the sets
defined above for the rest of the discussion. This enables us to define two CFMM trading rules.

Definition 6.4.3 (Trading Rule E). The allocation obtained by a CFMM in market equilibrium is
such that it gets as much A as it holds on the intital level curve of f when the spot price equals the
batch price. That is: FE(x, f, p) = z where zA = A(x, f, pA/pB) and zB = (1/pB)(xApA + xBpB −
A(x, f, pA/pB)pA).

In a similar vein, we also have Trading Rule F.

Definition 6.4.4 (Trading Rule F). The allocation obtained by a CFMM in market equilibrium is
such that it gets as much B as it holds on the intital level curve of f when the spot price equals the
batch price. That is: FF (x, f, p) = z where zA = (1/pA)(xApA + xBpB − B(x, f, pA/pB)pB) and
zB = B(x, f, pA/pB).

Observe that both Trading Rules E and F satisfy LCR. We illustrate these trading rules in
Figure 6.1. We define a class of LCR trading rules for 2-asset CFMMs – Strict-Surplus Trading
Rules – as a parameterized interpolation between Trading Rules E and F.

Definition 6.4.5 (Strict-Surplus Trading Rules). The allocation obtained by a CFMM in market
equilibrium under Strict-Surplus Trading Rule with parameter θ ∈ [0, 1] is Fθ(x, f, p) = z where
zA = θA(x, f, pA/pB) + (1− θ)(1/pA)(xApA + xBpB − B(x, f, pA/pB)pB) and,
zB = θ(1/pB)(xApA + xBpB − A(x, f, pA/pB)pA) + (1− θ)B(x, f, pA/pB).

Strict-Surplus Trading Rules have a special property captured in the following theorem.

Theorem 6.4.6. A CFMM with trading function f and initial state x trading in assets A and B
with a Strict-Surplus Trading Rule with parameter θ can, post-batch, extract a non-negative surplus
e where

eA = (1− θ)(xA − A(x, f, pA/pB) + (xB − B(x, f, pA/pB))pB/pA), and
eB = θ((xA − A(x, f, pA/pB))pA/pB + xB − B(x, f, pA/pB)),
and reach a state z′ where z′A = A(x, f, pA/pB) and z′B = B(x, f, pA/pB).
After surplus extraction, the trading function becomes equal to its pre-batch value, i.e., f(z′) =

f(x).
If all CFMMs in the batch extract their respective surplus, the final state satisfies JPD.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 146

Proof. Follows from Definitions 6.4.1, 6.4.2, and 6.4.5.

This result augments our design space in a significant manner if the batch exchange believes
that JPD is important but wants to try solution concepts other than Trading Rule U. Informally,
Trading Rule F, which is a Strict Surplus trading rule, may provide more liquidity to the market
than Trading Rule U in some cases (observe from Fig. 6.1 that in this example, Trading Rule F
implies a larger trade for the CFMM than Trading Rule U at the same batch price).

6.5 A Convex Program for 2-asset WGS Demands

Here we give a convex program that computes market equilibria in batch exchanges that incorporate
CFMMs that trade between two assets and use locally-computable trading rules that satisfy WGS.
Alternatively, this program computes equilibria in Arrow-Debreu exchange markets where every
agent’s demand response satisfies WGS, and every agent has utility in only two assets. The program
is based on the convex program of Devanur et al. [146] for linear exchange markets.

The key observation is that 2-asset CFMMs satisfying WGS can be viewed as (uncountable)
collections of agents with linear utilities and infinitesimal endowments. This correspondence lets us
replace a summation over agents with an integral over this collection of agents. However, proving
the correctness of our program requires direct analysis of the objective instead of the argument based
on Lagrange multipliers used in [146]. The objective is smooth on the feasible region, and gradients
are easily computable for many natural CFMMs.

6.5.1 From a Demand Function to a Continuum of Limit Orders

Suppose that a batch participant is only interested in two assets A and B. We first give a viewpoint
that corresponds such an agent to a continuum of exchange market agents with linear utility functions
that trade between A and B. Under LCR, such an agent’s demand function can only depend on
the price between the two assets (that is, rAB = pA

pB
). We can therefore define a function SA(·) that

gives, for any price rAB , the amount of asset A that the agent sells (in net, relative to its initial
endowment).

Definition 6.5.1 (Supply). Consider a batch participant with endowment x that only trades between
assets A and B. The Supply of the participant of asset A at exchange rate rAB > 0 is the set
SA(rAB) = {max(0, xA − zA)}, where z is an amount of A that could be held by the agent after a
batch is settled.

For agents maximizing a utility function (i.e. limit sell orders), z ranges over utility-maximizing
allocations, and for a CFMM using some trading rule, z is the allocation specified by the trading
rule.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 147

A supply function SA(·) is monotonic if, for any rAB < r̂AB and z1 ∈ SA(rAB), z2 ∈ SA(r̂AB),
we have z1 ≤ z2.

For every exchange rate rAB , it must be the case that either 0 ∈ SA(rAB) or 0 ∈ SB(1/rAB). In
the rest of this section, it will be convenient to consider each density function separately. Specifically,
for the purpose of the convex program, we will assume that an exchange market consists of a set
of supply functions, and that each supply function i sells good Ai and buys Bi (and therefore write
only Si(·), when clear from context).

When a CFMM trades based on a locally-computable trading rule, then Si(·) outputs a single
point. Similarly, for an agent maximizing a utility function, Si(·) always outputs a single point when
the utility function is strictly quasi-concave. Many natural locally-computable CFMM trading rules,
such as rules S and U correspond to differentiable supply functions when CFMM trading functions
are strictly quasi-concave.

Proving existence of equilibria requires that each Si(·) has a closed graph (for an application of
Kakutani’s fixed-point theorem). This requirement holds for trading rules S and U when trading
functions are quasi-concave.

Definition 6.5.2 (Inverse Supply). S−1
i (t) is the least upper bound on the set {r|Si(r) ≤ t}. When

the set is empty, S−1
i (t) = 0, and is ∞ when the set is unbounded.

We make the following simplifying assumption in the rest of the discussion.

Assumption 6.5.3. Every Supply function Si(·) is either a monotonic, differentiable, point-valued
function with Si(∞) > 0 or a “threshold” function of following form: for some constants ri ≥ 0 and
si > 0, Si(r) = 0 for all r < ri, Si(r) = si for r > ri, and Si(ri) = [0, si].

The results below only require that an agent’s net trading behavior at an equilibrium is expressible
as a sum of finitely many supply functions trading from one asset to another. 13

Continuous, strictly quasi-concave trading functions give point-valued, differentiable supply func-
tions, and linear utility functions give threshold supply functions. Each limit sell order, therefore,
corresponds to a threshold supply function.

When supply functions are differentiable, we can define the marginal supply of a CFMM at a
given exchange rate.

Definition 6.5.4 (Marginal Supply function). The marginal supply function s(r) of an agent selling
A in exchange for B is ∂S(r)

∂r .

The marginal supply function represents the marginal amount of A that an agent sells at each
price. Informally, s(r) denotes the size of a limit sell offer with minimum price r, and an agent with
supply function S(r) behaves as a continuum of these marginal limit sell offers.

13The expression may not be unique. Additionally, if one agent’s behavior is expressible as two threshold functions,
one from A to B with limit price r and another from B to A with limit price 1/r, then when pA

pB
= r, these supply

functions may trade with each other, in net. This does not affect any results.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 148

Supply functions are monotonic if and only if an agent’s behaviour satisfies WGS.

Lemma 6.5.5. The behavior of a CFMM with a differentiable supply function satisfies WGS if and
only if Si(·) is monotonic.

Proof. If there is some r such that S(r) is strictly decreasing at r = pA/pB, then there is some pB′

such that pB′ < pB (so r′ = pA/pB > r), Si(r) > Si(r
′), and Si(·) > 0 on the interval [r, r′] (so the

other asset’s supply function is 0 on this interval). In other words, a decrease in the valuation of B
causes the agent to sell less A, which means that its demand for A increases and violates WGS.

Conversely, if Si(r) is always nondecreasing, then for every r = pA/pB and r′ = pA/pB
′ with

pB
′ < pB (so r′ > r), Si(r′) ≥ Si(r). In other words, the agent’s demand for A never increases as

the valuation of B falls, satisfying WGS.

Corollary 6.5.6. All two-asset CFMMs with trading functions satisfying Assumption 5.2.2 have a
WGS demand function under Trading Rule S.

Proof. Trading functions satisfying Assumption 5.2.2 are nondecreasing in every asset. At exchange
rate r, the CFMM with endowment x sells S(r) units of A to receive rS(r) units of B. At r′ > r,
the CFMM has sufficient budget to purchase r′S(r) units of B, and if it does not purchase at
least this much, then the trading function cannot be nondecreasing from (xA−S(r), xB + rS(r)) to
(xA − S(r), xB + r′S(r))

6.5.2 Convex Program

We assume that a set of agents has utility functions that imply a set of supply functions that satisfy
Assumption 6.5.3, with Si(·) for i ∈ J continuous and Si(·) for i ∈ K threshold functions. These
agents trade a set of assets A.

Variables {pA} denote the valuation of assets A ∈ A. The quantity yi/pAi denotes the amount of
good Ai that supply function i sells to the market, receiving yi/pBi units of Bi. By construction, at
equilibrium, it must be the case that yi/pAi ∈ Si(

pA
pB

). Define βi,r(p) = min(pAi, pBir). Informally,
βi,r(p) is the inverse best bang-per-buck for the marginal limit sell order at limit price r of supply
function i.

Finally, for continuous marginal supply functions, define gi(t) to be
∫ S−1

i (t)

0
si(r) ln(1/r) dr. For

threshold supply functions, define gi(t) = min(si, t) ln(1/ri).

Lemma 6.5.7. gi(·) is a concave function, and −pAigi(yi/pAi) is convex.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 149

Proof. For continuous supply density functions,

∂

∂t
gi(t) =

∂

∂t

∫ S−1
i (t)

0

si(r) ln(1/r)dr

= d(S−1
i (t)) ln

(
1

S−1
i (t)

)
1

d(S−1
i (t))

= ln

(
1

S−1
i (t)

)
Because the derivative of gi(·) is a decreasing function, gi(·) must be concave (for t ≥ 0). Con-

cavity clearly holds for threshold supply functions.
−pAigi(yi/pAi) is the perspective transformation of a convex function, so it is convex.

Altogether, we get the following convex program:

Theorem 6.5.8. The following program is convex and always feasible. Its objective value is always
non-negative. When the objective value is 0, the solution forms an exchange market equilibrium with
nonzero prices, and when such an equilibrium exists, the minimum objective value is 0.

Minimize
∑
i∈J

pAi

∫ ∞

0

(
si(r) ln

(
pAi
βi,r(p)

))
dr (COP)

+
∑
i∈K

pAisi ln

(
pAi

βi,ri(p)

)
−

∑
i∈J∪K

pAi gi(yi/pAi)

Subject to
∑

i∈J∪K:Ai=C
yi =

∑
i∈J∪K:Bi=C

yi ∀C ∈ A (C1)

pC ≥ 1 ∀C ∈ A (C2)

0 ≤ yi ≤ pAiSi(∞) ∀i ∈ J ∪ K. (C3)

Proof. Lemma 6.5.9 shows the convexity and feasibility of the program. Lemma 6.5.10 shows that
the objective value is nonnegative, and is 0 if and only if the optimal solutions satisfy yi/pAi ∈ Si(p).

Given the mapping between agents in the Arrow-Debreu exchange market and supply functions
in the convex program, as in Assumption 6.5.3, each yi implies a transfer of yi/pAi units of Ai out of
the corresponding agent’s endowment and yi/pBi units of Bi into their endowment. By construction
of the density functions, these transfers give, for each agent, an optimal bundle of assets in the
original exchange market. When an equilibrium exists, the optimal objective value is 0.

Lemma D.1.3 in the appendix shows that an equilibrium with positive prices exists, given mild
assumptions (i.e. Assumption D.1.1).

Lemma 6.5.9. The program with objective COP and constraints C1, C2, and C3 is convex and
feasible.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 150

Proof. βi,r(·) is concave, and ln(·) is concave and nondecreasing, so each term si(r) ln(pAi/βi,r(p))

is convex, and the integral or sum of convex functions is convex. Feasibility follows from setting
yi = 0 for all i and and pC = 1 for all C ∈ A.

As compared to the program of [146], we combining the first and second constraints of that
program (avoiding infeasibility when an equilibrium does not exist) and implicitly upper bound the
{yi} variables through the utility calculations in the {gi(·)} functions.

Lemma 6.5.10. The objective value of the convex program is nonnegative, and is zero if and only
if yi ∈ pAiSi(pAi/pBi) for all i ∈ J ∪ K.

Proof. Consider the following three quantities.

1. E1 =
∑
i∈J pAi

∫∞
0

(
si(r) ln

(
pAi
βi,r(p)

))
dr +

∑
i∈K pAisi ln

(
pAi

βi,ri (p)

)
2. E2 =

∑
i∈J pAi

∫ S−1
i (yi/pAi)

0

(
si(r) ln

(
pAi
βi,r(p)

))
dr +

∑
i∈K yi ln

(
pAi

βi,ri (p)

)
3. E3 =

∑
i∈J∪K pAi gi(yi/pAi) =

∑
i∈J pAi

∫ S−1
i (yi/pAi)

0
si(r) ln(1/r) dr+

∑
i∈K pAimin(si, yi/pAi) ln(1/ri)

By construction, for all r, lnβi,r(p) ≤ ln(r) + ln(pBi), or equivalently, ln(1/r) ≤ − ln(βi,r(p)) +

ln(pBi). Furthermore, note that by the constraint (C1), for all assets C,
∑
i:Ai=C yi ln pC =

∑
i:Bi=C yi ln pC .

Additionally, for all i ∈ K, because yi ≤ sipAi, it must be the case that min(si, yi/pAi) = yi/pAi.
Using these facts, we get

E3 =
∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) ln(1/r) dr +
∑
i∈K

pAimin(si, yi/pAi) ln(1/ri)

≤
∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) (− lnβi,r(p) + ln(pBi)) dr +
∑
i∈K

yi (− lnβi,ri(p) + ln(pBi))

=
∑

i∈J∪K
yi ln pBi +

∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) (− lnβi,r(p)) dr +
∑
i∈K

yi (− lnβi,ri(p))

=
∑

i∈J∪K
yi ln pAi +

∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) (− lnβi,r(p)) dr +
∑
i∈K

yi (− lnβi,ri(p))

=
∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) (ln pAi − lnβi,r(p)) dr +
∑
i∈K

yi (ln pAi − lnβi,ri(p))

= E2

For any i, define r̂i = pAi
pBi

.
For any r < r̂i, pBi/βi,r(p) = 1/r, and otherwise pBi/βi,r(p) = 1/r̂i ≥ 1/r. As such, for any

i ∈ J ,
∫ S−1

i (yi/pAi)

0
si(r) ln(1/r) dr =

∫ S−1
i (yi/pAi)

0
si(r) ln(pBi/βi,r(p)) dr if and only if yi/pAi ≤

Si(pAi/pBi). Similarly, for any i ∈ K, pAimin(si, yi/pAi) ln(1/ri) = yi (− lnβi,ri(p) + ln(pBi)) if
and only if yi = 0 if ri > r̂i. These conditions hold for each i ∈ J ∪ K if and only if E2 = E3.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 151

Furthermore, observe that pAi/βi,r(p) ≥ 1 for all r, and is equal to 1 for any r > r̂i. Continuing
to rearrange E2 gives

E2 =
∑
i∈J

pAi

∫ S−1
i (yi/pAi)

0

si(r) ln

(
pAi
βi,r(p)

)
dr +

∑
i∈K

yi ln

(
pAi

βi,ri(p)

)
≤

∑
i∈J

pAi

∫ ∞

0

(
si(r) ln

(
pAi
βi,r(p)

))
dr +

∑
i∈K

pAisi ln

(
pAi

βi,ri(p)

)
= E1

Observe that for any i ∈ J ,
∫ S−1

i (yi/pAi)

0
si(r) (ln pAi − lnβi,r(p)) dr =

∫∞
0
si(r) (ln pAi − lnβi,r(p)) dr

if and only if yi/pAi = Si(pAi/pBi). Additionally, for any i ∈ K, if ri < r̂i, then yi (ln pAi − lnβi,ri(p)) =

pAisi ln
(

pAi
βi,ri (p)

)
if and only if yi = pAsi. These conditions hold for each i ∈ J ∪ K if and only if

E1 = E2.
As such, E1 ≥ E3, and the inequality is tight if and only if yi/pAi ∈ Si(pAi/pBi) for all i ∈ J ∪K.

But the objective of the convex program is E1 − E3, proving the theorem.

6.5.3 Rationality of Convex Program

The program of [146] always has a rational solution. Our program may not, given certain CFMMs.
However, rational solutions exist when CFMMs belong to the following class.

Theorem 6.5.11. If the expression pAiSi(pAi/pBi) is a piecewise-linear, rational function of pAi
and pBi for all i, on the range where Si(·) > 0 and Si(·) is monotonic, then the convex program has
an optimal rational solution.

Proof. Note that it suffices without loss of generality to consider functions only of the forms outlined
in Assumption 6.5.3. For each continuous Si(·), at an optimal point (p̂, ŷ), for every CFMM i, it
must be the case that p̂AiSi(p̂Ai/p̂Bi) = ŷi.

Then there are two linear functions q+i (·), q
−
i (·) such that, on an open neighborhood about ŷ,

yi = q+i (pAi , pBi) when pAi
pBi
≥ ˆpAi

ˆpBi
and yi = q−i (pAi , pBi) otherwise.

To the set of existing constraints in the convex program, add the constraints that yi = q+i (pAi, pBi)

and yi = q−i (pAi, pBi).
For each Si(·) representing a threshold function of size si at exchange rate ri, if ŷi = si, add the

constraint that yi = si, and if ŷi = 0, add the constraint that pAi = ripBi.
This system of constraints is clearly satisfiable, and every point satisfying the constraints is a

market equilibrium (every point satisfies yi ∈ pAiSi(pAi/pBi)). Each of the constraints is linear and
rational, so these constraints define a rational polytope. The extremal points of this polytope must
therefore be rational.

Example 6.5.12. The supply function of the constant product CFMM with reserves (xA, xB) under
Trading Rule U in a batch exchange is max(0, (rxA − xB)/(2r)).

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 152

Proof. Without loss of generality, assume batch price r (units of B per A) is greater than the
CFMM’s pre-batch spot price of xB/xA, so the CFMM in net sells A to the market and purchases
B. The CFMM, under Trading Rule U, makes a trade so that its reserves (zA, zB) after trading
satisfy the following two conditions.

First, the post-batch spot price of the CFMM, zB/zA, must be r. And second, the CFMM must
trade at the batch exchange rate, so (xA − zA)r = (zB − xB). Note that S(r) = xA − zA.

Combining these equations gives
xB + rS(r)

xA − S(r)
= r.

Solving for S(r) gives
S(r) =

rxA − xB
2r

.

However, this convex program cannot always have rational solutions; in fact, there exist simple
examples using natural utility functions for which the program has only irrational solutions.

Example 6.5.13. There exists a batch instance containing one CFMM based on the logarithmic
market scoring rule and one limit sell offer that only admits irrational equilibria when the CFMM
implements Trading Rule U.

Proof. Consider a batch instance trading assets A and B that contains one CFMM and one limit sell
order. The CFMM uses trading function f(x) = −(e−xA+e−xB)+2, with initial state xA0 = xB0 = 1.
The limit sell order is to sell 100 units of A for B, with a minimum price of 1

2 B per A.
If the batchprice p = pA/pB is strictly greater than 1

2 , then the limit sell order must sell the
entirety of its A to receive at least 100p > 50 units of B, which the CFMM cannot provide.

On the other hand, if the batch price is less than 1
2 , then the limit sell order will not sell any A

but the CFMM demands a nonzero amount of A. Thus, at equilibrium, the batch price equals 1
2 .

Let the limit sell order sell τ units of A. Clearly, in equilibrium, 0 ≤ τ ≤ 100.
Furthermore, the spot price of the CFMM at equilibrium must be equal to 1

2 . The spot exchange
rate of this CFMM is

∂f
∂xA
∂f
∂xB

=
e−xA

e−xB
= e−xA+xB

Thus, at equilibrium, we must have that

p = e−(xA0+τ)+(xB0−pτ) = e−xA0+xB0e−τ−pτ = e−τ(1+p).

This gives e− 3τ
2 = 1

2 . That is, τ = 2
3 ln(2), which is irrational.

CHAPTER 6. AUGMENTING BATCH EXCHANGES WITH CFMMS 153

6.6 Conclusion and Open Problems

Constant Function Market Makers have become some of the blockchain ecosystem’s most widely
used exchange systems. Batch trading has been proposed and deployed to combat some shortcom-
ings of decentralised and traditional exchanges. Different implementations in practice have taken
substantially different approaches to how these two innovations should interact.

We develop an axiomatic framework and describe several desirable properties of the combined
system. While several pairs of these properties cannot be guaranteed simultaneously, we are able to
provide algorithms that achieve subsets of these properties.

Finally, we construct a convex program that computes equilibria on batches containing CFMMs
that each trade only two assets. For many natural classes of CFMMs, the objective of this convex
program is smooth, and the program has rational solutions.

6.6.1 Open Problems

An important question for batch exchange deployments is the fee structure for CFMMs. Finding
fair compensation for liquidity provision in batch exchanges may require, for example, quantitative
models and a careful analysis of existing trade data.

Giving a convex program for exchange market equilibria for general WGS utilities (not just on
two assets) continues to be an important open problem.

In this work we find Pareto optimal solutions only in a special case of two-asset CFMMs, when
the CFMMs are price-coherent pre-batch. Designing algorithms for finding Pareto optimal solutions
in multi-asset batches in polynomial time is an important open problems. We show that such an
algorithm will necessarily have to give up LCR for CFMMs (Theorem 6.1.7).

From an applied perspective, iterative algorithms like Tâtonnement [127], if implemented naïvely,
would require for each demand query an iteration over every CFMM. Chapter 3 gives a preprocessing
step to enable computation of the aggregate response of a group of limit sell offers in logarithmic time
(§3.5.1); identifying a subclass of CFMM trading functions that admit an analogous preprocessing
step or, more generally, some way of computing the aggregate demand response of a large group of
CFMMs in sublinear time would be of great practical use for batch exchanges using these types of
algorithms.

Chapter 7

Conclusions

If digital currencies and a new generation of digital financial systems are to achieve their full potential
in any context, they must be built on infrastructure that is scalable, flexible, and efficient.

From a computational perspective, chapter 2 develops a new architectural paradigm that ensures
near-linear computational scalability in a replicated state machine underlying digital currencies. A
combination of commutativity in transaction semantics and the choice to order blocks of transactions
only partially, instead of totally ordering all transactions, ensures even (and high) performance on
both low-contention (best-case) and high-contention (worst-case) transaction workloads. These sys-
tems achieve this scalability without substantially limiting transaction flexibility or forcing negative
externalities onto end-users. And chapter 4 completes the picture for the rare class of applica-
tions which cannot be rewritten into this commutative model, recovering a total ordering between
transactions that reflects the way that information propagates nonuniformly through a distributed
system.

Additionally, chapter 3 demonstrates the practical feasibility of implementing an asset exchange
within this architectural paradigm that not only achieves the same computational scalability prop-
erties but also provides novel economic efficiency and fairness properties. As the semantics of a
traditional continuous double-auction mechanism are far from commutative, this requires using in-
stead a uniform-price batch exchange mechanism between many assets, and instantiating this at
scale requires computing market equilibria efficiently at scale.

Subsequent chapters then extend the study of economic mechanisms for exchanging digital
currencies—chapter 5 studies the fine-grained tradeoffs within a class of automated mechanisms
known as “CFMMs,” and chapter 6 explores the different economic consequences of the many plau-
sible ways of combining CFMMs into batch exchange mechanisms.

Of course, the optimal computational and economic design for infrastructure for anything related
to digital currencies must vary based on context, requirements, and policy objectives. However, I
hope that the research of this thesis can push the boundary of what is thought to be possible, help

154

CHAPTER 7. CONCLUSIONS 155

policymakers make well-informed choices, and ultimately help build infrastructure for digital money
that can last for decades.

Appendix A

Chapter 3 Supporting Information

A.1 Mathematical Model Underlying SPEEDEX

Mathematically, SPEEDEX relies on a correspondence between a batch of trade offers and an in-
stance of a linear Arrow-Debreu Exchange Market [78]. Specifically, SPEEDEX’s batch computation
is equivalent to the problem of computing equilibria in these markets.

A.1.1 Arrow-Debreu Exchange Markets

The Arrow-Debreu Exchange Market is a classic model from the economics and theoretical computer
science literature. Conceptually, there exists in this market a set of independent agents, each with
its own endowment of goods. Each agent has some set of preferences over possible collections of
goods. These goods are tradeable on an open market, and agents, all at the same time, make any
set of trades that they wish with the market (or auctioneer), not directly with each other.

Definition A.1.1 (Arrow-Debreu Exchange Market). An Arrow-Debreu Exchange Market consists
of a set of goods A and a set of agents j ∈ {1, ...,M}. Every agent j has a utility function uj(·) and
an endowment ej ∈ R|A|

≥0.
When the market trades at prices p ∈ R|A|

≥0, every agent sells their endowment to the market in
exchange for revenue sj = p · ej, which the agent immediately spends at the market to buy back an
optimal bundle of goods xj ∈ R|A|

≥0 - that is, xj = argmaxx:
∑

A∈AxApA≤sj uj(x).

There are countless variants on this definition. Typically the utility functions are assumed to be
quasi-convex. Some variants include stock dividents, corporations, production of new goods from
existing goods, and multiple trading rounds. SPEEDEX uses only the model outlined above—
SPEEDEX looks only at snapshots of the market, i.e., once per block, and computes batch results
for each block independently.

156

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 157

One potential objection to the above definition is that it assumes that the abstract market has
sufficient quantities available so that every agent can make its preferred trades. We say that a
market is at equilibrium when agents can make their preferred trades and the market does not have
a deficit in any good.

Definition A.1.2 (Market Equilibrium). An equilibrium of an Arrow-Debreu market is a set of
prices p and an allocation xj for every agent j, such that for all goods A,

∑
j eA,j ≥

∑
j xA,j, and

xj is an optimal bundle for agent j. The inequality for asset A is tight whenever pA is nonzero.

Note that an equilibrium includes both a set of market prices and a choice of a utility-maximizing
set of goods for each agent. Say, for example, there are two goods A and B, and one unit of each is
sold by other agents to the market. If two agents are indifferent to receiving either good, then the
equilibrium must specify whether the first receives A or B, and vice versa for the second. It would
not be a market equilibrium for both of these agents to purchase a unit of A and no units of B.

A.1.2 From SPEEDEX to Exchange Markets

SPEEDEX users do not submit abstract utility functions to an abstract market. However, most
natural types of trade offers can be encoded as a simple utility function.

Specifically, our implementation of SPEEDEX accepts limit sell offers (Definition 6.1.1). In
Arrow-Debreu exchange markets, the behavior of a limit sell offer is representable as an agent with
a linear utility function.

Observation A.1.3. Suppose a user submits a sell offer (S, B, e, α). The optimal behavior of
this offer (and the user’s implicit preferences) is equivalent to maximizing the function u(xS , xB) =

αxB + xB (for xS , xB amounts of goods S and B).

Proof. Such an offer makes no trades if pS/pB < α and trades in full if pS/pB > α.
The user starts with k units of S. In the exchange market model, the user can trade these

k units of S in exchange for any quantities xS of S and xB of B, subject to the constraint that
pSxS + pBxB ≤ kpS .

The function u(xS , xB) = αxB+xS is maximized, subject to the above constraint, by (xB , xS) =

(0, k) precisely when pS/pB < α and by (xB, xS) = (kpS/pB, 0) otherwise (and by any convex
combination of the two when pS/pB = α). These allocations correspond exactly to the optimal
behavior of a limit sell offer.

Note that these utility functions have nonzero marginal utility for only two types of assets, and
are not arbitrary linear utilities. §6.5 finds anecdotal evidence that this subclass of utility functions
may be analytically more tractable than the case of general linear utilities.

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 158

A.1.3 Existence of Unique* Equilibrium Prices

Theorem A.1.4. All of the market instances which SPEEDEX considers contain an equilibrium
with nonzero prices.

Proof. All of the utilities of agents derived from limit sell offers are linear (Observation A.1.3), and
have a nonzero marginal utility on the good being sold.

This means our market instances trivially satisfy condition (*) of Devanur et al. [146]. Existence
of an equilibrium with nonzero prices follows therefore from Theorem 1 of [146].

In fact, all of the equilibria in a market instance contain the same equilibrium prices, unless there
are two sets of assets across which no trading activity occurs. In such a case, one might be able to
uniformly increase or decrease all the prices together on one set of assets, relative to the other set
of assets.

Theorem A.1.5. Suppose there are two equilibria (p, x) and (p′, x′) and there exist two assets A
and B for which pA/pB < p′A/p

′
B.

Then it must be the case that there is a partitioning of the assets A1,A2 with A ∈ A1, B ∈ A2

such that both equilibria include no trading activity across the partition.

Proof. Consider the set of offers trading from A to B. Let ZA,B(r) be the set of amounts of asset A
that may be sold (when every agent receives an optimal bundle) by these offers to the market at an
exchange rate r = pA/pB. Observe that if r1 < r2, then every z1 ∈ ZA,B(r1) is no more than than
any z2 ∈ ZA,B(r2) (as sell offers always prefer higher exchange rates).

At the equilibrium (p, x), let zA,B be the total amount of A sold for B for every asset pair (and
z′A,B similarly for (p′, x′)). Note that zA,B ∈ ZA,B(pA/pB).

Suppose that there exists a pair of assets A,B as in the theorem statement. Then there exists a
set of assets A1 such that for every asset pair C ∈ A1 and D /∈ A1, pC/pD < p′C/p

′
D.

For each of these asset pairs, we must have that zC,D ≤ z′C,D, zD,C ≥ z′D,C , and pC
pD
zC,D ≤ p′C

p′D
z′C,D.

Combining these equations gives

pCzC,D − pDzD,C ≤ (p′Cz
′
C,D − p′Dz′D,C)pD/p′D

Each of these inequalities is tight if and only if zC,D = 0.
It is without loss of generality to rescale p′ so that pD/p′D < 1 for all D /∈ A1. Thus,

pCzC,D − pDzD,C ≤ (p′Cz
′
C,D − p′Dz′D,C)

Because (p, x) and (p′, x′) are equilibria, we must have that

0 =
∑
C∈A1

∑
D/∈A1

pCzC,D − pDzD,C ≤
∑
C∈A1

∑
D/∈A1

p′Cz
′
C,D − p′Dz′D,C

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 159

But the second inequality is tight only if each zC,D = 0.
Hence, (p′, x′) can only be an equilibrium if there exists a partitioning of the assets that separates

A and B, and for which there is no trading activity between the sets in either equilibrium.

Corollary A.1.6. Let (p, x) be an equilibrium.
Construct an undirected graph G = (V,E) with one vertex for each asset, and an edge e =

(A,B) ∈ E if, at equilibrium, any A is sold for B or any B is sold for A.
If G is connected, then the market equilibrium prices p are unique (up to uniform rescaling).

Proof. If the theorem hypothesis holds, then for any other equilibrium (p′, x′), it must be the case
that for every asset pair (A,B), pA/pB = p′A/p

′
B. By Theorem A.1.5, if this did not hold, then there

would exist a partitioning of V into two sets of assets, across which there is no trading at equilibrium
(p, x) (contradicting the assumption that G is connected).

A.2 Approximation Error

SPEEDEX measures two forms of approximation error: first, every trade is charged a ε transaction
commision, and second, some offers with in-the-money limit prices might not be able to be executed
(while preserving asset conservation). Formally, the output of the batch price computation is a price
pA on each asset A, and a trade amount xA,B denoting the amount of A sold in exchange for B.

Formally, we say that the result of a batch price computation is (ε, µ)-approximate if:

1 Asset conservation is preserved with an ε commission. The amount of A sold to the auctioneer,
ΣBxA,B, must exceed the amount of A bought from the auctioneer, ΣB(1− ε) pBpAxB,A.

2 No offer trades outside of its limit price. That is to say, an offer selling A for B with a limit
price of r cannot execute if pA

pB
< r.

3 No offer with a limit price “far” from the batch exchange rate does not trade. That is to say,
an offer selling A for B with a limit price of r must trade in full if r < (1− µ)pApB .

Intuitively, the lower the limit price, the more an offer prefers trading to not trading.

This notion of approximation is closely related to but not exactly the same as notions of approx-
imation used in the theoretical literature on Arrow-Debreu exchange markets (e.g., [127], Definition
1). In particular, we find it valuable in SPEEDEX to distinguish between the two types of ap-
proximation error (and measure each separately) and SPEEDEX must maintain certain guarantees
exactly (e.g., assets must be conserved, and no offer can trade outside its limit price).

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 160

A.3 Tâtonnement Modifications

A.3.1 Price Update Rule

One significant algorithmic difference between the Tâtonnement implemented within SPEEDEX and
the Tâtonnement described in Codenotti et al. [127] is the method in which Tâtonnement adjusts
prices in response to a demand query. Codenotti et al. use an additive rule that they find amenable
to theoretical analysis. If Z(p) is the market demand at prices p, they update prices according to
the following rule:

pA ← pA + ZA(p)δ (A.1)

for some constant δ. The authors show that there is a sufficiently small δ so that Tâtonnement is
guaranteed to move closer to an equilibrium after each step.

The relevant constant is unfortunately far too small to be usable in practice, and more generally,
we want an algorithm that can quickly adapt to a wide variety of market conditions (not one that
always proceeds at a slow pace).

First, we update prices multiplicatively, rather than additively. This dramatically reduces the
number of required rounds, especially when Tâtonnement starts at prices that are far from the
clearing prices.

pA ← pA(1 + ZA(p)δ) (A.2)

Second, we normalize asset amounts by asset prices, so that our algorithm will be invariant to
redenominating an asset. It is equivalent to trade 100 pennies or 1 USD, and our algorithm performs
better when it can take that kind of context into account.

pA ← pA(1 + pAZA(p)δ) (A.3)

Next, we make δ a variable factor. We use a heuristic to guide the dynamic adjustment. Our
experiments used the l2 norm of the price-normalized demand vector,

∑
A(pAZA(p))

2; other natural
heuristics (i.e. other lp norms) perform comparably (albeit not quite as well). In every round,
Tâtonnement computes this heuristic at its current set of candidate prices, and at the prices to
which it would move should it take a step with the current step size. If the heuristic goes down,
Tâtonnement makes the step and increases the step size, and otherwise decreases the step size. This
is akin to a backtracking line search [75, 99] with a weakened termination condition.

pA ← pA(1 + pAZA(p)δt) (A.4)

Finally, we normalize adjustments by a trade volume factor νA. Without this adjustment factor,
computing prices when one asset is traded much less than another asset takes a large number of
rounds, simply because the lesser traded asset’s price updates are always of a lower magnitude than

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 161

those of the more traded asset. Many other numerical optimization problems run most quickly when
gradients are normalized (e.g., see [94]).

νA need not be perfectly accurate—indeed, knowing the factor exactly would require first com-
puting clearing prices—but we can estimate it well enough from the trading volume in prior blocks
and from trading volume in earlier rounds of Tâtonnement (specifically, we use the minimum of the
amount of an asset sold to the auctioneer and the amount bought from the auctioneer). Real-world
deployments could estimate these factors using external market data.

Putting everything together gives the following update rule:

pA ← pA (1 + pAZA(p)δtνA) (A.5)

The step size is represented internally as a 64-bit integer and a constant scaling factor. As mentioned
in §3.5.2, we run several copies of Tâtonnement in parallel with different scaling factors and different
volume normalization strategies and take whichever finishes first as the result.

Heuristic Choice

A natural question is why do we use the seemingly theoretically unfounded l2 norm of the demand
vector as our line-search heuristic. A typical line search in an optimization context uses the convex
objective function of the optimization problem (e.g., [99]). Devanur et al. [146] even give a con-
vex objective function for computing exchange market equilibria, which we reproduce below (in a
simplified form):

∑
i:mpi<

pSi
pBi

pSiEi ln

(
mpi

pSi
pBi

)
− yi ln(mpi) (A.6)

for mpi the minimum limit price of an offer i that sells Ei units of good Si and buys good Bi, and
yi = xipSi for xi the amount of Si sold by the offer to the market.

This objective is accompanied by an asset conservation constraint for each asset A:

∑
i:Si=A

yi =
∑

i:Bi=A
yi (A.7)

However, unlike the problem formulation in [146], Tâtonnement does not have decision variables {yi}.
Rather, Tâtonnement pretends offers respond rationally to market prices, and then adjusts prices
so that constraints become satisfied. As such, mapping our algorithms onto the above formulation
would mean that yi = pSiEi if mpi <

pSi
pBi

and 0 otherwise (although §A.3.2 would slightly change
this picture). This would make the objective universally 0, and thus not useful.

We could incorporate the constraints into the objective by using the Lagrangian of the above

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 162

problem, which gives the objective

∑
A
λA(

∑
i:Si=A

yi(p)−
∑

i:Bi=A
yi(p)) (A.8)

for a set of langrange multipliers {λA}.
We write yi(p) to denote that in this formulation, offer behavior is directly a function of prices.

It appears difficult to use equation A.8 directly as an objective to minimize, as it is nonconvex and
the gradients of the functions yi(·) are numerically unstable (even with the application of §A.3.2).

However, observe that equation A.8 is another way of writing “the l1 norm of the net demand
vector” (weighted by the lagrange multipliers). We use the l2 norm instead of the l1 to sidestep the
need to actually solve for these multipliers.

An observant reader might notice that the derivative of Equation A.8 with respect to λA is the
amount by which (the additive version of) Tâtonnement updates pA. This might suggest using pA
in place of λA in equation A.8. However, that search heuristic performs extremely poorly.

A.3.2 Demand Smoothing

Observe that the demand of a single offer is a (discontinuous) step function; an offer trades in full
when the market exchange rate exceeds its limit price, and not at all when the market rate is less
than its limit price.

These discontinuities are difficult for Tâtonnement. (Analogously, many optimization problems
struggle on nondifferentiable objective functions.) As such, we approximate the behavior of each
offer with a continuous function.

Recall that §A.2 measures one form of approximation error (using the parameter µ) which asks
how closely realized offer behavior matches optimal offer behavior. Specifically, SPEEDEX wants to
maintain the guarantee that every offer (selling A for B) with a limit price below (1− µ)pApB trades
in full, and those with limit prices above pA

pB
trade not at all.

As such, SPEEDEX has the flexibility to specify offer behavior on the gap between (1 − µ)pApB
and pA

pB
. Instead of a step function, SPEEDEX linearly interpolates across the gap. That is to say,

if α = pA
pB

, we say that an offer with limit price (1− µ)α ≤ β ≤ α sells an α−β
µα fraction of its assets.

Observe that as µ gets increasingly small, this linear interpolation becomes an increasingly close
approximation of a step function. This explains some of the behavior in Figure 3.2, particularly why
the price computation problem gets increasingly difficult as µ decreases.

A.3.3 Periodic Feasibility Queries

Tâtonnement’s linear interpolation simplifies computing each round, but also restricts the range of
prices that meet the approximation criteria, as it does not capitalize on the flexibility we have in

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 163

handling offers within µ of the market price. As a result, Tâtonnement may arrive at adequate prices
without recognizing that fact. To identify good valuations, SPEEDEX runs the more expensive linear
program every 1,000 iterations of Tâtonnement.

A.4 Linear Program

Recall that the role of the linear program in SPEEDEX is to compute the maximum amount of
trading activity possible at a given set of prices. That is to say, Tâtonnement first computes an
approximate set of market clearing prices, and then SPEEDEX runs this linear program taking the
output of Tâtonnement as a set of input, constant parameters.

Throughout the following, we denote the price of an asset A (as output from Tâtonnement) as
pA, and the amount of A sold in exchange for B as xA,B. We will also denote the two forms of
approximation error as ε and µ, as defined in §A.2.

To maintain asset conservation, the linear program must satisfy the following constraint for every
asset A:

∑
B
xA,B ≥

∑
B
(1− ε) pB

pA
xB,A

Define UA,B to be the upper bound on the amount of A that is available for sale by all offers
with in the money limit prices (i.e., limit prices at or below pA

pB
), and define LA,B to be the lower

bound on the amount of A that must be exchanged for B if SPEEDEX is to be µ-approximate (i.e.,
execute all offers with minimum prices at or below (1− µ)pApB , as described in §A.2).

Then the linear program must also satisfy the constraint, for every asset pair (A,B),

LA,B ≤ xA,B ≤ UA,B

Informally, the goal of our linear program is to maximize the total amount of trading activity.
Any measurement of trading activity needs to be invariant to redenominating assets; intuitively, it
is the same to trade 1 USD or 100 pennies. As such, the objective of our linear program is:

∑
A,B

pAxA,B

Putting this all together gives the following linear program (let A be the set of all assets):

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 164

max
∑
A,B

pAxA,B (A.9)

s.t. pALA,B ≤ pAxA,B ≤ pAUA,B(p) ∀A,B ∈ A, (A ̸= B) (A.10)

pA
∑
B∈A

xA,B ≥ (1− ε)
∑
B∈A

pBxB,A ∀A ∈ A (A.11)

From the point of view of the linear program, pA is a constant (for each asset A). As such, this
optimization problem is in fact a linear program.

It is possible that Tâtonnement could output prices where this linear program is infeasible (this
is the case of the Tâtonnement timeout, as discussed in §3.6). In these cases, we set the lower bound
on each xA,B to be 0 instead of LA,B. This change makes the program always feasible (e.g., an
assigment of each variable to 0 satisfies the constraints).

Observe that as written, every instance of the variable xA,B appears adjacent to pA. We can
simplify the program by replacing each occurrence of pAxA,B by a new variable yA,B. After solving
the program, we can compute xA,B as yA,B

pA
.

This substitution gives the following linear program:

max
∑
A,B

yA,B (A.12)

s.t. pALA,B ≤ yA,B ≤ pAUA,B(p) ∀(A,B), (A ̸= B) (A.13)∑
B∈A

yA,B ≥ (1− ε)
∑
B∈A

yA,B ∀A (A.14)

The Stellar implementation charges no transaction commission (i.e., sets ε to 0) in its SPEEDEX
deployment. This makes the linear program into an instance of the maximum circulation problem
(i.e., variable yA,B denotes the flow from vertex A to vertex B). It is well known that the constraint
matrices of these problems are totally unimodular (Chapter 19, Example 4 [283]). This means that
it always has an integral solution (Theorem 19.1, [283]) and can be solved by specialized algorithms
(such as those outlined in [210]). Some of these algorithms run substantially faster than general
simplex-based solvers.

A.5 Market Structure Decomposition

Suppose that the set of goods could be partitioned between a set of numeraires, which might be
traded with any other asset, and a set of stocks, which are only traded with one of the pricing assets.

Then SPEEDEX could compute a batch equilibrium by first computing an equilibrium taking

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 165

into account only trades between pricing assets, then computing an equilibrium exchange rate for
every stock between the stock and its pricing asset, and finally combining the results.

More specifically:

Theorem A.5.1. Let A be the set of numeraires and S the set of stocks. A stock S ∈ S is traded
with asset a(S) ∈ A.

Suppose (p, x) is an equilibrium for the restricted market instance considering only the nu-
meraires. For each S ∈ S, let (r, y) be an equilibrium for the restricted market instance considering
only S and a(S).

Then (p′, x′) is an equilibrium for the entire market instance, where

1. p′A = pA for A ∈ A

2. p′S =
(
rS/ra(S)

)
pa(S)

3. x′A,B = xA,B for A,B ∈ A

4. x′S,a(S) = yS,a(S)

5. x′ = 0 otherwise

Proof. More generally, let G be a graph whose vertices are the traded assets and which contains an
edge (A,B) if A and B can be traded directly.

Decompose G into an arbitrary set of edge-disjoint subgraphs {Gi}, such that any two subgraphs
Gi, Gj share at most one common vertex. Then define a graph H whose vertices are the subgraphs
Gi, and where a subgraph Gi is connected to Gj if Gi and Gj share a common vertex.

If H is acyclic, then an equilibrium can be reconstructed from equilibria computed independently
on each Gi.

We reconstruct a unified set of prices iteratively, traversing along H. Given adjacent Gi and Gj
sharing common vertex vij , let (pi, xi) and (pj , xj) be equilibria on Gi and Gj , respectively, rescale
all of the prices pj by pivij/p

j
vij

.
This rescaling constructs a new equilibria (pj′, xj)for Gj that agrees with that of Gi on the price

of the shared good. As such, the combined system (pi∪pj′, xi∪xj) forms an equilibrium for Gi∪Gj .
This iteration is possible precisely because H is acyclic (a cycle could prevent us from finding a

rescaling of some subgraph that satisfied two constraints on the prices of shared vertices).

A.6 Alternative Batch Solving Strategies

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 166

Figure A.1: Time to solve the convex program of Devanur et al. [146] using the CVXPY toolkit
[149], varying the number of assets and offers.

A.6.1 Convex Optimization

We implemented the convex program of Devanur et al. [146] directly, using the CVXPY toolkit
[149] backed by the ECOS convex solver [152]. Figure A.1 plots the runtimes we observed to solve
the problem while varying the number of assets and offers.

The runtimes are not directly comparable to those of Tâtonnement—namely, this strategy does
not have the potential to shortcircuit operation upon early arrival at an equilibrium (our notions of
approximation error also do not directly translate to the notions used interally in the solver), nor is
it optimized for our particular class of problems.

The important observation is that the runtime of this strategy scales linearly in the number
of trade offers. Instances trading 1000 offers, for example, take roughtly 10x as long as instances
trading only 100 offers.

This is not a surprising result, given that the number of variables in the convex program scales
linearly with the number of trade offers.

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 167

The choice of solver strategy does not, of course, change the structure of the input problem
instances. The same observation used in §3.5.1 makes it possible to refactor the convex program so
that the number of variables does not depend on the number of open offers, and so that the objective
(and its derivatives) can be evaluated in time logarithmic in the number of open offers.

Unfortunately, this transformation makes the objective nondifferentiable. The demand smoothing
tactic of §A.3.2 gives a differentiable but not twice differentiable objective (and presents challenges
regarding numerical stability of the derivative). Construction of a convex objective that approxi-
mates that of [146] while maintaining sufficient smoothness and numerical stability is an interesting
open problem.

A.6.2 Mixed Integer Programming

Gnosis (Walther, [12]) give several formulations of a batch trading system as mixed-integer program-
ming problems. These formulations track token amounts as integers (instead of as real numbers, as
used in Tâtonnement’s underlying mathematical formulation), which enables strict conservation of
asset amounts with no rounding error.

However, mixed-integer problems appear to be computationally difficult to solve. Walther [12]
finds that the runtime of this approach scales faster than linearly. Instances with more than a few
hundred assets appear to be intractable for practical systems.

A.7 Tâtonnement Preprocessing

We include this section so that this paper can provide a comprehensive reference for anyone to
develop their own Tâtonnement implementation.

Every demand query in Tâtonnement requires computing, for every asset pair, the amount of
the asset available for sale below the queried exchange rate. As discussed in §3.9.2, Tâtonnement
lays out contiguously in memory all the information it needs to return this result quickly.

For a version of Tâtonnement without the demand smoothing of §A.3.2, a demand query for
exchange rate p (i.e. the ratio of the price of the sold asset to the price of the purchased asset)

∑
i:mpi≤p

Ei (A.15)

where mpi denotes the minimum price of an offer i and Ei denotes the amount of the asset offered
for sale.

We can efficiently answer these queries by computing expression A.15 for every price p used as
a limit price

Demand smoothing complicates the picture. The result of a demand query (with smoothing

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 168

parameter µ) ∑
i:mpi<p(1−µ)

Ei +
∑

i:p(1−µ)≤mpi≤p

Ei ∗ (p−mpi)/(pµ) (A.16)

We can rearrange the second term of the summation into

1/(pµ)
∑

i:p(1−µ)≤mpi≤p

(pEi − Eimpi) (A.17)

With this, we can efficiently compute the demand query after precomputing, for every unique
price p that is used as a limit price, both expression A.15 and

∑
i:mpi<p

mpiEi (A.18)

The division in equation A.16 can be avoided by recognizing that Tâtonnement normalizes all
asset amounts by asset valuations (so equation A.16 is always multiplied by p).

A.8 Buy Offers are PPAD-hard

A natural type of trade offer is one that offers to sell any number of units of one good to buy a
fixed amount of a good (subject to some minimum price constraint). We call these limit buy offers
(Definition 6.1.3).

These offers unfortunately do not satsify a property known as “Weak Gross Substitutability”
(WGS, see e.g., [127]). This property captures the core logic of Tâtonnement. If the price of one
good rises, the net demand for that good should fall, and the net demand for every other good
should rise (or at least, not decrease). Limit sell offers always satisfy this property, but limit buy
offers may not.

Example A.8.1. Consider a buy offer, as in Definition 6.1.3, which offers to buy 100 USD selling
as few EUR as possible, if and only if one EUR trades for at least 1.1 USD.

The demand of this offer, when pEUR = 2 and pUSD = 1, is (−50 EUR, 100 USD).

If pUSD rises to 1.6, then the demand for the offer is (−80 EUR, 100 USD).
Observe that the price of USD rose and the demand for EUR fell.

Informally speaking, if offers do not satisfy the core logic of Tâtonnement’s price update rule,
then Tâtonnement cannot handle them in a mathematically sound manner.

More formally, Chen et al. [119] show through Theorem 7 and Example 2.4 that markets consist-
ing of collections of limit buy offers are PPAD-hard. These theorems are phrased in the language
of the Arrow-Debreu exchange market model; see §A.1 for the correspondence between SPEEDEX

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 169

and this model. In fact, the utility functions used in Example 2.4 to demonstrate an example “non-
monotone” (i.e., defying WGS) instance are of the type that would arise by mapping limit buy offers
into the Arrow-Debreu exchange market model.

A.9 Deterministic Filtering Performance

The deterministic transaction batch pruning system works by eliminating the transactions from
all of the accounts that could create an unresolvable conflict. To be specific, if the sum of the
amount of an asset used (either sent in a payment option or locked to create a offer) by all of an
account’s transactions exceeds that account’s balance, then that account’s transactions are removed.
If an account sends two transactions with the same sequence number (both of which have valid
signatures, and the sequence numbers are higher than the sequence number of the account’s most
recent transaction), or two transactions cancel the same offer ID, then that account’s transactions
are removed. If two transactions create the same account ID, then both transactions are removed.

We generated batches of 400,000 transactions from the same synthetic transaction model as in
§3.7, and then duplicated 100,000 transactions at random to create a batch of 500,000. A small
number of accounts (1000) send transactions with conflicting sequence numbers. We initialize the
database (again, 10 million accounts) to give each account a small amount of money, and a small
number (one or two hundred) of accounts attempt to overdraft.

This filtering takes 0.13s and 0.07s seconds with 24 and 48 threads, respectively (averaged over
50 trials, after a warmup), giving a 21.0× and 38.4× speedup over the serial benchmark. On a
more contested benchmark, with only 10,000 accounts (almost all of which overdraft) the maximum
speedup over the single threaded trial is only 5.3×, but the overall filtering runtime is still just 0.10s.
Our implementation of the filtering is not heavily optimized, but in either parameter setting, the
overhead is small.

A.10 Block-STM Baseline

To provide a baseline for the measurements in Fig. 3.7, we also ran Block-STM on our hardware
(with hyperthreading disabled, as in [179]). Fig. A.2 displays the results.

These performance measurements are similar, quantitatively and qualitatively, to those reported
in [179] (on different hardware). Note that performance appears to reach a maximum after approxi-
mately 16 to 24 threads, and, unlike SPEEDEX, does not effectively use additional hardware beyond
this point, even on relatively low-contention workloads.

A.11 Additional Implementation Details

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 170

Figure A.2: Throughput of Block-STM on batches of “Aptos p2p” transactions with varying thread
counts (average of 100 trials).

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 171

A.11.1 Data Organization

Account balances are stored in a Merkle-Patricia trie. However, because a trie is not self-rebalancing,
its worst-case adversarial lookup performance can be slow. As such, we store account balances in
memory indexed by a red-black tree, with updates pushed to the trie once per block.

For each pair of assets (A, B), we build a trie storing offers selling asset A in exchange for B.
Finally, in each block, we build a trie logging which accounts were modified.

We store information in hashable tries so that nodes can efficiently compare their database state
with another replica’s (to validate consensus and check for errors), and construct short proofs for
users about exchange state.

A.11.2 Data Storage and Persistence

SPEEDEX uses a combination of an in-memory cache and ACID-compliant databases (several
LMDB[124] instances). This choice suffices for our experiments, but a database that persists data
in epochs, like Silo [296], or is otherwise optimized for batch operation might improve performance.

Our implementation uses one LMDB instance for the set of open offers, one instance for Hotstuff
logs, one instance for storing block headers, and 16 instances for storing account states. LMDB is
single-threaded, and we find that the throughput of one thread generating database writes does not
keep up with SPEEDEX. Accounts are randomly divided between these instances, according to a
hash function keyed by a (persistent) secret key (which is different per blockchain node). This key
must be kept secret so as to prevent nodes from denial of service attacks.

Processing transactions in a nondeterministic order complicates recovery from a database snap-
shot where a block has been partially applied. Cancellation transactions, in particular, refund to an
account the remainder of an offer’s asset amount. We therefore cannot recover if the snapshot of the
orderbooks is more recent than the snapshot of the set of account balances, and our implementation
takes care to commit updates to the account LMDB instances before committing updates to the
orderbook LMDB.

A.11.3 Follower Optimizations

A block proposal includes the output of Tâtonnement and the linear program in (the prices and
trade amounts, as in §3.4.2). This permits the nondeterminism in Tâtonnement (§3.5.2), and lets
the other nodes skip the work of running Tâtonnement.

Proposals also include, for every pair of assets, the trie key of the offer with the highest minimum
price that trades in that block. When executing a proposal from another node, a follower can compare
the trie key of a newly created offer with this marginal key and know immediately whether to make
a trade or add the offer to the resting orderbooks. A node also defers all checks that an account
balance is not overdrafted to after it has executed all the transactions in a block.

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 172

A.11.4 Replay Prevention

Transactions have per-account sequence numbers to ensure a transaction can execute only once.
Many blockchains require sequence numbers from an account to increase strictly sequentially. Our
implementation allows small gaps in sequence numbers, but restricts sequence numbers to increase
by at most an arbitrary limit (64) in a given block. Allowing gaps simplifies some clients (such
as our open-loop load generator), but more importantly lets validators efficiently track consumed
sequence numbers out of order with a fixed-size bitmap and hardware atomics.

The Stellar implementation requires strictly consecutive sequence numbers, mostly for backwards
compatibility.

A.11.5 Fast Offer Sorting

The running times of §3.6 do not include times to sort or preprocess offers. Naïvely sorting large
lists takes a long time. Therefore, we build one trie storing offers per asset pair, and we use an
offer’s price, written in big-endian, as the first 6 bytes of the offer’s 22-byte trie key. Constructing
the trie thus automatically sorts offers by price.

Additionally, SPEEDEX executes offers with the lowest minimum prices, so a set of offers exe-
cuted in a round forms a dense (set of) subtrie(s), which is trivial to remove.

A.11.6 Nondeterministic Block Assembly

As discussed in §3.3, SPEEDEX must assemble blocks of transactions in a manner that guarantees
no account is overdrafted after applying all of the transactions in the block. The block proposal
system (Fig. 3.1, 2) manages this by carefully controlling writes to shared state.

The proposal module takes as input a set of unconfirmed transactions (the “mempool”, in typical
blockchain parlance) and outputs a proposed block containing a subset of the unconfirmed trans-
actions. For each candidate unconfirmed transaction, a thread reserves the ability to perform all
necessary modifications by “locking” all relevant data elements. Once a transaction acquires all of its
locks, it performs its necessary state modifications and finally releases the locks. If it cannot acquire
all necessary locks, it releases any locks and excludes the transaction from the proposed block.

Conceptually, a transaction offering a trade or sending a payment must lock the number of units
of assets that could be debited from the account if the operation succeeds. However, doing this
with spinlocks would preclude the scalability displayed in Figure 3.7. Instead, most reservations are
performed with hardware atomics to decrement the number of available units. Crediting an account
can never fail because SPEEDEX caps the total amount of any asset issued at INT64_MAX. This
process is conservative in that it may reject transactions that could have executed safely.

Unique offer IDs ensure that no offer is created twice, and atomic boolean flags ensure an offer
cannot be cancelled twice. Sequence numbers can be reserved by atomic bitmaps (as in §A.11.4).

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 173

Figure A.3: Transactions per second on SPEEDEX when running with 10 replicas (on weaker
hardware than in Fig. 3.3), plotted over the number of open offers.

For simplicity, our implementation does use exclusive locks when creating new accounts (which we
assume occurs relatively infrequently).

A.12 Additional Replicas

SPEEDEX invokes a consensus protocol no more than once per second in our experiments. To
demonstrate that this overhead is negligible, we ran SPEEDEX with 10 replicas, although with
weaker hardware per replica, due to resource limitations. Each replica is one AWS c5ad.16xlarge
instance, with one AMD EPYC 7R32 processor (48 CPUs @ 2.8Ghz per physical chip, 32 of which
are allocated to our instances), 128 GB of memory, and two 1.1TB NVMe drives in a RAID0
configuration. Performance measurements are plotted in Figure A.3.

The overall throughput numbers are lower here than in Figure 3.3 due to the weaker hardware,
but the scalability trends are the same. Doubling the thread count increases performance by a factor

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 174

of between 1.8x and 1.9x, except that the jump from 16 to 32 gives a roughly 1.4x increase due to
contention with background tasks (particularly logging to persistent storage).

This graph also highlights how SPEEDEX responds to insufficient hardware resources. As the
number of open offers increases, SPEEDEX’s memory requirements increase. Eventually, memory
starts to be paged to disk, which dramatically increases disk usage and contends with the logging
to persistent storage. SPEEDEX slows down in response, to ensure for safety that data in peristent
storage is never too far out of sync.

Appendix B

Chapter 4 Supporting Information

B.1 Truncation of Ranked Pairs

Ranked Pairs preserves its output ordering when restricted to considering only an initial segment of
its output. In the statement below, A(· · ·) denotes Ranked Pairs Voting (Algorithm 1).

Lemma B.1.1. Suppose that (σ1, . . . , σn) is a set of ordering votes on a set V of transactions, and
let σ = A(σ1, . . . , σn).

Consider a set V ′ ⊂ V that forms the transactions in an initial segment of σ, and for each
i ∈ [n], let σ′

i be σi restricted to V ′.
Then σ extends A(σ′

1, . . . , σ
′
n).

Proof. The proof follows by executing A(σ1, . . . , σn) and comparing against an execution on the
restricted input.

Whenever the algorithm includes an edge, inclusion cannot create a cycle in the graph of previ-
ously included edges, so it cannot create a cycle in the graph of previously included edges restricted
to V ′.

Whenever the algorithm rejects an edge (tx, tx′), it must have included already a directed path
from tx′ to tx. If tx and tx′ both lie within V ′ (that is, the algorithm run on the restricted input
would iterate over this edge), then the previously included path must be entirely contained within
V ′. Otherwise, there would be some tx∗ on this path in V \V ′, but that would imply that tx∗ would
come before tx in σ and thus that V ′ is not the set of transactions in an initial segment of σ (as
tx ∈ V ′).

175

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 176

B.2 On the Difficulty of Statically Choosing γ

One challenge with prior work on this topic is that prior systems require choosing a static value of
γ [209, 208, 110]. It is not immediately obvious whether a higher or lower value of γ provides a
stronger fairness guarantee. In fact, which value of γ gives the stronger guarantee depends on the
scenario, as we show by example here. These examples assume that there are no faulty replicas, and
therefore invoke not Definition 4.4.1 of prior work but the stronger Definition 4.4.3, which fixes the
problems around batch minimality discussed in §4.4.2.

For simplicity, in this section, suppose that there are n = 10 replicas.

Example B.2.1 (High γ). Suppose that 3 replicas receive tx1 ≼ tx2 ≼ tx ≼ tx′, 3 replicas receive
tx2 ≼ tx ≼ tx′ ≼ tx1, and 4 replicas receive tx ≼ tx′ ≼ tx1 ≼ tx2.

Then Definition 4.4.3 only ensures that tx ≼ tx′ (an ordering relation on which every replica
agrees) if γ ≥ 0.6.

Example B.2.2 (Low γ). Suppose that 6 replicas receive tx ≼ tx′, and 4 tx′ ≼ tx. Then Definition
4.4.3 only ensures that tx ≼ tx′ in an algorithm’s output if γ ≤ 0.6.

Example B.2.3 (Intermediate γ). Suppose that 4 replicas receive tx1 ≼ tx2 ≼ tx3, 4 replicas receive
tx3 ≼ tx1 ≼ tx2, and 2 replicas receive tx2 ≼ tx3 ≼ tx1.

Then 80% receive tx1 ≼ tx2, 60% receive tx2 ≼ tx3, and 60% receive tx3 ≼ tx1. Thus, Definition
4.4.3 only provides any constraint on the output ordering (in this case, that the strongest ordering
dependency, between tx1 and tx2, is respected) if 0.6 < γ ≤ 0.8.

B.3 Themis and Early Finalization

Themis [208], by design, achieves bounded liveness by acknowledging the possibility that a Condorcet
cycle could be output spread across multiple rounds of its protocol.

For simplicity, assume for the example that the number of faulty replicas f is 0, and assume that
γn and n

3 are integers. For simplicity of exposition, we assume that 2
3 + 1

n < γ < 1. Analogous
examples will work for other values of n and γ.

There will be five transactions in this example. Ultimately, replicas will receive transactions in
the following order.

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 177

Class 1 1 replica tx1 ≼ tx2 ≼ tx4 ≼ tx3 ≼ tx5

Class 2 (1− γ)n replicas tx1 ≼ tx2 ≼ tx5 ≼ tx4 ≼ tx3

Class 3 n(γ − 2

3
)− 1 replicas tx1 ≼ tx2 ≼ tx3 ≼ tx5 ≼ tx4

Class 4 n

3
replicas tx3 ≼ tx1 ≼ tx2 ≼ tx5 ≼ tx4

Class 5 n

3
replicas tx2 ≼ tx3 ≼ tx1 ≼ tx5 ≼ tx4

Clearly, if Ranked Pairs is run on the full ordering votes, the result would have tx5 ≼ tx4, as
all but 1 replica receive those transactions in that order (and that is the first edge considered by
Ranked Pairs).

Themis operates in rounds, each of which has three phases. First, in the “FairPropose” phase,
replicas submit ordering votes to a leader, who gathers them and publishes a proposal. Suppose
that, due to the timing of messages over the network, the leader receives the following set of votes.

Class 1 tx1 ≼ tx2 ≼ tx4 ≼ tx3

Class 2 tx1 ≼ tx2 ≼ tx5 ≼ tx4 ≼ tx3

Class 3 tx1 ≼ tx2 ≼ tx3

Class 4 tx3 ≼ tx1 ≼ tx2

Class 5 tx2 ≼ tx3 ≼ tx1

Themis then considers transactions by the number of replicas which include the transactions in
their votes. Those in n votes are “solid”, those with fewer than n but at least γn+ 1 are “shaded,”
and the rest are “blank.” Clearly transactions tx1, tx2, and tx3 are solid, tx4 is shaded, and tx5 is
blank.

Themis then builds a dependency graph between the solid and shaded vertices. A dependency
is added between two transactions tx and tx′ if at least (1− γ)n+1 replicas vote tx ≼ tx′ and fewer
replicas vote tx′ ≼ tx.

As such, the dependencies that get added here are tx1 ≼ tx2, tx2 ≼ tx3, tx3 ≼ tx1, tx1 ≼ tx4,
tx2 ≼ tx4 and tx4 ≼ tx3.

The next step is to compute the strongly connected components of this graph and topologically
sort it. In this case, the graph has one component. This component is the last in the ordering that
contains a solid vertex, so, per Themis’s rules, this graph is the output of FairPropose.

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 178

Next, replicas send “updates” to a “FairUpdate” algorithm, which orders shaded transactions
in the output of FairPropose relative to the other solid and shaded transactions in that output.
This is where applying Ranked Pairs (or any ranking algorithm) to each output batch of Themis
individually breaks down. The response of honest replicas at this point (namely, those in classes 3,
4 and 5) is to vote that they received tx4 after each of tx1, tx2 and tx3. In fact, no edges get added
to the dependency graph at this stage, because the graph is already complete.

Finally, in “FairFinalize,” Themis computes some ordering on transactions tx1, tx2, tx3, and tx4,
and includes them in the output.

Observe that tx5 is forced to come after tx4.

B.4 Ranked Pairs and Interleaved Components

The following example demonstrates the need in Definition 4.4.5 to allow what would be distinct
but incomparable batches in prior work (specifically Aequitas [209]) to be output in an interleaved
ordering, instead of requiring that one be fully output before the other. As a corollary, this demon-
strates that no process for ordering transactions within Aequitas’s batches can always achieve the
same ordering as output in Ranked Pairs.

Consider the following set of ordering votes on 8 transactions from 16 replicas. In this example,
we assume no replicas are faulty.

The general pattern is two condorcet cycles of four transactions each, with one set on the extremes
and one set in the middle. Differences from this pattern are bolded for clarify.

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 179

tx1 ≼ tx2 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx3 ≼ tx4

tx1 ≼ tx2 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx3 ≼ tx4

tx1 ≼ tx2 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx3 ≼ tx4

tx1 ≼ tx2 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx3 ≼ tx4

tx2 ≼ tx3 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx4 ≼ tx8 ≼ tx1

tx2 ≼ tx3 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx4 ≼ tx1

tx2 ≼ tx3 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx4 ≼ tx1

tx2 ≼ tx3 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx1 ≼ tx4

tx3 ≼ tx4 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx1 ≼ tx2

tx3 ≼ tx4 ≼ tx6 ≼ tx7 ≼ tx5 ≼ tx8 ≼ tx1 ≼ tx2

tx3 ≼ tx4 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx1 ≼ tx2

tx3 ≼ tx4 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx1 ≼ tx2

tx4 ≼ tx5 ≼ tx1 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx2 ≼ tx3

tx4 ≼ tx1 ≼ tx6 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx2 ≼ tx3

tx4 ≼ tx1 ≼ tx7 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx2 ≼ tx3

tx4 ≼ tx1 ≼ tx8 ≼ tx5 ≼ tx6 ≼ tx7 ≼ tx2 ≼ tx3

Sorting edges by weight gives the following:

12/16 tx1 ≼ tx2, tx2 ≼ tx3, tx3 ≼ tx4, tx5 ≼ tx6, tx6 ≼ tx7, tx7 ≼ tx8

11/16 tx4 ≼ tx1, tx8 ≼ tx5

9/16 tx5 ≼ tx1, tx4 ≼ tx8

All others have weight 8/16 or less.
As such, when Aequitas is run with γ between 9/16 and 11/16, would recognize the sets

{tx1, tx2, tx3, tx4} and {tx5, tx6, tx7, tx8} as incomparable batches, and would output all of one be-
fore beginning to output the other—no matter how it orders transactions within these two batches.

However, Ranked Pairs, on this input, would first select all of the weight 12/16 edges, reject the
weight 11/16 edges, and accept the weight 9/16 edges. This means that, no matter how the rest of
the edges are considered, Ranked Pairs will at least output tx5 ≼ tx1, tx1 ≼ tx4, and tx4 ≼ tx8.

This ordering thus cannot be the result of any Aequitas invocation with this choice of γ.

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 180

B.5 Algorithm 2 Is Not Asymptotically Live

Consider the following setting. There are two replicas (neither of which is faulty), and a countably
infinite set of transactions {tx1, tx2, tx3, . . .}.

Example B.5.1.
Replica 1 receives transactions in the order
tx2 ≼ tx1 ≼ tx4 ≼ tx3 ≼ tx6 ≼ tx5 ≼ . . . ≼ tx2∗i ≼ tx2∗i−1 ≼ . . ., for all i ≥ 1.
Replica 2 receives transactions in the order
tx1 ≼ tx3 ≼ tx2 ≼ tx5 ≼ tx4 ≼ tx7 ≼ tx6 . . . ≼ tx2∗i+1 ≼ tx2∗i . . ., for all i ≥ 1.

This means that any edge (txi, txj) has weight 1
2 if i = j +1 or j = i+1, and otherwise 1 (resp.

0) if i < j (resp. i > j).
Additionally, suppose that of the edges of weight 1/2 of the form ei = (txi+1, txi), the determin-

istic tiebreaking ordering sorts (txi+1, txi) just before (txi, txi+1) and ei before ej for i > j.

Theorem B.5.2. Algorithm 2 never outputs any transaction on any finite subset of the input in
Example B.5.1.

Proof. On any finite truncation of this input, suppose that N is the highest index such that txN
and all txi for i ≤ N appear in the votes of both replicas.

Then txN+1 must be present in the output of one of the replicas, but not both. This means
that the other replica’s vote (that does not contain txN+1) may contain txN+2, but the transaction
after this in the replica’s true vote is txN+1, so the other replica’s vote must stop here. As such,
the streamed ordering graph used in Algorithm 2 will contain all transactions up to txN , possibly
txN+2, and v̂. There will be one edge from v̂ to txN , and if it is present, an edge from v̂ to txN+2.

Algorithm 2 will accept all of the edges of weight 1 and then proceed to the edges of weight
1
2 . The first to be considered will be eN , which will be marked indeterminate because of the path
(txN−1, v̂), (v̂, txN) (and so will the reversal of eN also be marked indeterminate). Continuing
through the sequence of edges, If ek is marked indeterminate, then so too will ek−1, because of the
path (txk−2, txk), ek. Note that this is the only path that Algorithm 2 considers when visiting ek−1,
as the only other transactions in Utxk−1,txk−2

are txk and txk−3.
Thus, Algorithm 2 never outputs any transactions on a finite subset of the input in Example

B.5.1.

We remark that this construction requires that the ordering between edges of weight 1
2 is not

isomorphic to a subset of ω.

APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 181

B.6 Oracle Implementation

Algorithm 3 relies on an oracle to a past invocation of the algorithm. Implementing the oracle
naively would require maintaining a map from the set of all edges of the past invocation to their
status, the cost of which would grow logarithmically. However, the only edges for which a path
search must be performed are those (tx, tx′) for which neither tx nor tx′ were included in the prior
output (if either tx or tx′ were in the prior output, then monotonicity immediately implies whether
the edge is included or excluded). As such, the map in the oracle could be pruned of edges connected
to transactions in the prior output. Although the number of such edges is not bounded, it is not
guaranteed to grow over time without bound.

Appendix C

Chapter 5 Supporting Information

C.1 CFMMs and Market Scoring Rules

We highlight here for completeness the equivalence between market scoring rules [190] and CFMMs.
Chen and Pennock [121] show that every prediction market, based on a market scoring rule, can be
represented using some “cost function.”

A prediction market trades n types of shares, each of which pays out 1 unit of a numeraire if a
particular future event occurs. The cost function C(q) of [121] is a map from the total number of
issued shares of each event, q ∈ Rn, to some number of units of the numeraire. To make a trade
δ ∈ Rn with the prediction market (i.e. to change the total number of issued shares to q+ δ), a user
pays z = C(q + δ)− C(q) units of the numeraire to the market.

One discrepancy is that traditional formulations of prediction markets (e.g. [121, 191]) allow an
arbitrary number of shares to be issued by the market maker, but the CFMMs described in this
work trade in assets with finite supplies. Suppose for the moment, however, that a CFMM could
possess a negative quantity of shares (with the trading function f defined on the entirety of Rn,
instead of just the positive orthant). This formulation of a prediction market directly gives a CFMM
that trades the n shares and the numeraire, with trading function f(r, z) = −C(−r) + z for r ∈ Rn

the number of shares owned by the CFMM, and z the number of units of the numeraire owned by
the CFMM. Observe that for any trade δ and dz = C(−(r+ δ))−C(−r), f(r, z) = f(r+ δ, z + dz).
This establishes the correspondence between prediction markets and CFMMs.

In our examples with the LMSR, we consider a CFMM for which z = 0 (i.e., it doesn’t exchange
shares for dollars, but only shares of one future event for shares of another future event). The
cost function C(r) for the LMSR is log(

∑n
i=1 exp(−ri)). The CFMM representation with this cost

function follows by setting it to a constant.

182

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 183

C.2 Continuous Trade Size Distributions

Definition C.2.1. Let size(·) be some distribution on R≥0 with support in a neighborhood of 0.
A trader appears at every timestep. The trade has size k units of Y , where k is drawn from

size(·). A trade buys or sells from the CFMM with equal probability.

This definition implicitly encodes an assumption that the amount of trading from X to Y is
balanced in expectation against the amount of trading from Y to X.

An additional assumption makes this setting analytically tractable.

Assumption C.2.2 (Strict Slippage). Trade requests measure slippage relative to the post-trade
spot exchange rate of the CFMM, not the overall exchange rate of the trade.

In other words, a trade request succeeds if and only if it would move the CFMM’s reserves to
some state within Lε(p̂).

We now analyze the Markov chain over the CFMM’s state, the stationary distribution of which
gives us the trade failure probability under Assumption C.2.2.

Lemma C.2.3. Let M be the Markov chain defined by the state of Y in the asset reserves of the
CFMM with Y ∈ Lε(p̂) and transitions induced by trades drawn from the distribution in Definition
C.2.1. Under Assumption C.2.2, the stationary distribution of M is uniform over Lε(p̂).

Proof. Let µ(·) be the uniform measure on Lε(p̂) and let τ(v,A) be the state transition kernel induced
by the trade distribution. Specifically, given the trade size distribution size(v) on the probability
that the CFMM sells (for v > 0) or buys (for v < 0) |v| units of Y , τ(v,A) measures the probability
that for any set A, the CFMM is in a state in A after attempting a trade of size v. It suffices to
show that µ is an invariant measure of the Markov chain that is induced on Lε((̂p), and that this
invariant measure is unique.

Note that from any y ∈ Lε(p̂), after a trade of size v, the Markov chain lands in a set A if either
y+ v ∈ A (that is, the trade succeeds) or if y ∈ A and y+ v /∈ Lε(p̂) (that is, the trade fails and the
initial state was in A). Note that trade success and failure are mutually exclusive events.

∫
Lε(p̂)

µ(y)τ(y,A)dy

=

∫
Lε(p̂)

∞∫
−∞

size(v)(1(y + v ∈ A) + 1(y ∈ A ∧ y + v /∈ Lε(p̂)))dv dy

=

∫
A

∞∫
−∞

size(v)(1(y + v ∈ Lε(p̂)))dv dy +
∫
A

∞∫
−∞

1(y + v /∈ Lε(p̂)))dv dy

= µ(A)

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 184

where the second equality follows from the symmetricity of the trade size distribution (as in Defini-
tion C.2.1).

Because the trade size distribution is supported on a neighborhood of 0 (and Lε(p̂) is a connected
interval), for any set A of nonzero measure, the probability of a transition from Lε(p̂) \ A to A is
nonzero, so the Markov chain must A infinitely many times. As such, µ(·) is the unique invariant
measure on Lε(p̂) (by Theorem 1 of [192]).

Proposition C.2.4. The probability that a trade of size k units of Y fails is approximately min(1, k
|Lε(p̂)|),

where the approximation error is up to Assumption C.2.2.

Proof. The probability that a (without loss of generality) sell of size k units of Y fails is equal to
the probability that a state y, drawn uniformly from the range Lε(p) = [y1, y2], lies in the range
[y2 − k, y2]. Lemma C.2.3 shows this probability is min(1, k

y2−y1).

C.3 Omitted Proofs

C.3.1 Omitted Proofs of §5.2 and §5.3

Restatement (Observation 5.2.4). If f is strictly quasi-concave and differentiable, then for any
constant K and spot exchange rate p, the point (x, y) where f(x, y) = K and p is a spot exchange
rate at (x, y) is unique.

Proof. A constant K = f(X0, Y0) defines a set {x : f(x) ≥ K}. Because f is strictly quasi-concave,
this set is strictly convex. Trades against the CFMM (starting from initial reserves (X0, Y0)) move
along the boundaries of this set. Because this set is strictly convex, no two points on the boundary
can share a gradient (or subgradient).

Restatement (Observation 5.2.5). If f is strictly increasing in both X and Y at every point on
the positive orthant, then for a given constant function value K, the amount of Y in the CFMM
reserves uniquely specifies the amount of X in the reserves, and vice versa.

Proof. If not, then f would be constant on some line with either X or Y constant.

Restatement (Observation 5.2.6). Y(p) is monotone nondecreasing.

Proof. If Y(p) is decreasing, the level set of f , i.e., {(x, y) : f(x, y) ≥ K} cannot be convex.

Restatement (Lemma 5.3.8). The function Y(·) is differentiable when the trading function f is
twice-differentiable on the nonnegative orthant, f is 0 when x = 0 or y = 0, and Assumption 5.2.2
holds.

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 185

Proof. Observation 5.2.5 implies that the amount of Y in the reserves can be represented as a
function Ŷ(x) of the amount of X in the reserves. By assumption, the level sets of f (other than for
f(·) = 0) cannot touch the boundary of the nonnegative orthant.

Because f is differentiable and increasing at every point in the positive orthant, the map g(x)

from reserves x to spot exchange rates at (x, Ŷ(x)) must be a bijection from (0,∞) to (0,∞). Because
f is twice-differentiable, g(x) must be differentiable, and so the map h(p) = g−1(p) must also be
differentiable. The map Y(p) from spot exchange rates to reserves Y is equal to Ŷ(h(p)), and so
Ŷ (p) is differentiable because Ŷ(·) is differentiable and h(·) is differentiable.

Restatement (Lemma 5.3.9). If the function Y(·) is differentiable, then L(p) = dY(p)
d ln(p) .

Proof. Follows from Definitions 5.3.6 and 5.3.7.

C.3.2 Omitted Proof of Corollary 5.4.6

Restatement (Corollary 5.4.6). Any two beliefs ψ1, ψ2 give the same optimal liquidity allocations
if there exists a constant α > 0 such that for every θ,∫

r

ψ1(r cos(θ), r sin(θ))dr = α

∫
r

ψ2(r cos(θ), r sin(θ))dr

Proof. Follows by substitution. α rescales the derivative of the objective with respect to every
variable by the same constant, and thus does not affect whether an allocation is optimal.

C.3.3 Omitted Proof of Corollary 5.4.7

Restatement (Corollary 5.4.7). Define φψ(θ) =
∫
r
ψ(r cos(θ), r sin(θ))dr. Then∫∫

pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY =

∫
p

φψ(cot
−1(p)) sin(cot−1(p))

L(p)
dp

Proof. ∫
pX ,pY

ψ(pX , pY)

pY L(pX/pY)
dpX dpY =

∫
θ

φψ(θ)

L(cot(θ)) sin(θ)
dθ

=

∫
p

φψ(θ) sin
2(θ)

L(cot(θ)) sin(θ)
dp

=

∫
p

φψ(cot
−1(p)) sin(cot−1(p))

L(p)
dp

The first line follows by Lemma 5.4.5 (recall that dpX dpY = r dr dθ), the second by substitution
of p = cot(θ) and dθ = − sin2(θ)dp (and changing the direction of integration — recall θ = 0 when
p =∞), and the third by substitution.

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 186

C.3.4 Omitted Proof of Lemma 5.4.8

Restatement (Lemma 5.4.8). The optimization problem of Theorem 5.4.4 always has a solution
with finite objective value.

Proof. Set L(p) = 1 for p ≤ 1 and L(p) = φψ(cot
−1(p))/p2 otherwise. Then∫

p

φψ(cot
−1(p)) sin(cot−1(p))

L(p)
dp

≤
∫
p

φψ(cot
−1(p))

L(p)
dp

≤
∫ 1

0

φψ(cot
−1(p))dp+

∫ ∞

1

dp

p2

The first term of the last line is finite, as per our assumption on trader beliefs.
Set Y0 =

∫ p0
0

L(p)dp
p and X0 =

∫∞
p0

L(p)dp
p2 . Clearly both X0 and Y0 are finite. Finally, rescale

each L(p), X0, and Y0 by a factor of B
PXX0+PY Y0

to get a new allocation L′(p), X ′
0, and Y ′

0 satisfing
the constraints and that still gives a finite objective value.

C.3.5 Omitted Proof of Lemma 5.4.10

Restatement. The following hold at any optimal solution.

1.
∫ p0
0

L(p)
p dp = Y0

2.
∫∞
p0

L(p)
p2 dp = X0

3. X0PX + Y0PY = B

Proof. The third equation holds since the objective function is strictly decreasing in at least one
L(p) (where the belief puts a nonzero probability on the exchange rate p), so any unallocated capital
could be allocated to increase this L(·) on a neighborhood of L(p) and reduce the objective.

The first equation holds because any unallocated units of X could be allocated to L(p′) for a set
of p′ in a neighborhood of some p ≤ p0 and thereby reduce the objective. If there is no p ≤ p0 where
the belief puts a nonzero probability, then all of the capital allocated by the third constraint to X0

could be reallocated into increasing Y0 and thereby decreasing the objective.
The second equation follows by symmetry with the argument for the first.

C.3.6 Omitted Proof of Corollary 5.4.12

Restatement (Corollary 5.4.12). The integral Y(p̃) =
∫ p̃
0
L(p)dp
p is well defined for every p̃ and Y(·)

is monotone nondecreasing and continuous.

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 187

Proof. The last item of Lemma 5.4.10 shows that L(p) ̸= 0 if and only if φψ(cot−1(p)) sin(cot−1(p)) ̸=
0. When L(p) is nonzero, it is either

√
p2

λX
φψ(cot

−1(p)) sin(cot−1(p)) or
√

p
λY
φψ(cot

−1(p)) sin(cot−1(p))

(depending on the value of p).
By our assumption on trader beliefs, φψ(cot−1(p)) sin(cot−1(p)) is a well-defined function of p

and is integrable. Thus, both
√

p2

λX
φψ(cot

−1(p)) sin(cot−1(p)) and
√

p
λY
φψ(cot

−1(p)) sin(cot−1(p))

are integrable. Monotonicity follows from L(p) ≥ 0 and continuity from basic facts about integrals.

C.3.7 Omitted Proof of Corollary 5.4.15

Restatement (Corollary 5.4.15). A liquidity allocation L(·) and an initial spot exchange rate p0
are sufficient to uniquely specify an equivalence class of beliefs (as defined in Corollary 5.4.6) for
which L(·) is optimal.

Proof. It suffices to uniquely identify φψ(cot
−1(p)) for each p, up to some scalar. Lemma 5.4.13

shows that φψ(cot−1(p)) is a function of an optimal L(p) and Lagrange multipliers λX or λY , and
because λX PX

PY
= λY , we must have that φψ is specified by L(p) and p0 up to some scalar λX .

C.3.8 Omitted Proof of Corollary 5.4.16

Restatement (Corollary 5.4.16). Let PX and PY be initial reference valuations, and let L(·) denote
a liquidity allocation. Define the belief ψ(pX , pY) to be (L(pX/pY))2

pX/pY
when pX ∈ (0, PX] and pY ∈

(0, PY], and to be 0 otherwise. Then L(·) is the optimal allocation for ψ(·, ·).

Proof. Recall the definition of φψ(·) in 5.4.7. For the given belief function ψ, standard trigonometric
arguments show that when p ≥ p0, we have φψ(cot−1(p)) = PXL(p)

2/p
cos(cot−1(p)) and that when p ≤ p0, we

have φψ(cot−1(p)) = PY L(p)
2/p

sin(cot−1(p)) .
Let L̂(p) be the allocation that results from solving the optimization problem for minimising the

expected CFMM inefficiency for belief ψ. Lemma 5.4.13 part 3, gives the complementary slackness
condition of L̂(p) and its corresponding Lagrange multiplier. With this, Lemma 5.4.11 gives the
following: when p ≥ p0, λBPXp2 = 1

L̂(p)2
(PXL(p)

2/p)/p, and when p ≤ p0, λBPYp = 1
L̂(p)2

(PY L(p)
2/p).

In other words, for all p, λB = L(p)2

L̂(p)2
, so L(·) and L̂(·) differ by at most a constant multiplicative

factor. But both allocations use the same budget, so it must be that λB = 1 and L̂(·) = L(·).

C.3.9 Omitted Proof of Corollary 5.4.17

Restatement (Corollary 5.4.17). Let ψ1, ψ2 be any two belief functions (that give φψ1
and φψ2

)
with optimal allocations L1(·) and L2(·), and let L(·) be the optimal allocation for ψ1 + ψ2. Then
L2(·) is a linear combination of L2

1(·) and L2
2(·).

Further, when φψ1
and φψ2

have disjoint support, L(·) is a linear combination of L1(·) and L2(·).

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 188

Proof. Note that
∫
r
ψ(r cos(θ), r sin(θ)dr is a linear function of each ψ(pX , pY), and thus φψ1+ψ2(·) =

φψ1(·) + φψ2(·). For any p with p ≥ p0 and nonzero φψ1(cot
−1(p)), we must have that L1(p)

2 =
p2

λ1,X
φψ1

(cot−1(p)) sin(cot−1(p)).

Similarly, for nonzero φψ2(cot
−1(p)), L2(p)

2 = p2

λ2,X
φψ2(cot

−1(p)) sin(cot−1(p)).
If either φψ1

or φψ2
is nonzero at cot−1(p), then

L(p)2 =
p2

λX
(φψ1

(cot−1(p)) sin(cot−1(p)) + φψ2
(cot−1(p)) sin(cot−1(p)))

Therefore,
L(p)2 =

λ1,X
λX

L1(p)
2 +

λ2,X
λX

L2(p)
2

An analogous argument holds for p ≤ p0.
The second statement follows from the fact that that when only one of L1(p) or L2(p) is nonzero,

we must have that either L(p) =
√

λ1,X

λX
L1(p) or L(p) =

√
λ2,X

λX
L2(p).

C.3.10 Omitted Proof of Proposition 5.5.3

Restatement (Proposition 5.5.3). Let pmin < pmax be two arbitrary exchange rates, and let
ψ(pX , pY) = 1 if and only if 0 ≤ pX ≤ PX , 0 ≤ pY ≤ PY , and pmin ≤ pX/pY ≤ pmax, and
0 otherwise. The allocation L(·) that maximizes the fraction of successful trades is the allocation
implied by a concentrated liquidity position with price range defined by pmin and pmax.

Proof. A concentrated liquidity position trades exactly as a constant product market maker within
its price bounds pmin and pmax, and makes no trades outside of that range.

By Lemma 5.4.10, the optimal L(p) is 0 for p outside of the range [pmin, pmax]. Inside that
range, by Proposition 5.4.14, L(p) differs from the optimal liquidity allocation for the constant
product market maker by a constant, multiplicative factor (the same factor for every p). Thus, the
resulting liquidity allocation has the same behavior as a concentrated liquidity position.

C.3.11 Omitted Proof of Proposition 5.5.5

Restatement (Proposition 5.5.5). The belief function ψ(pX , pY) =
(
pX
pY

)α−1
α+1 when (pX , pY) ∈

(0, PX]× (0, PY] and 0 otherwise corresponds to the weighted product market maker f(x, y) = xαy.

Proof. This trading function gives the relation p = yα
x and thus Y(p) = p

α
α+1 (Kαα)

1
α , for K = f(X̂, Ŷ)

and X̂, Ŷ is some initial state of the CFMM reserves.
Thus, as defined by the trading function, L(p) = p

α
α+1 α

α+1

(
K
αα

) 1
α+1 .

Corollary 5.4.16 shows that a belief that leads to this liquidity allocation is

L(p)2

p
= p−1p

2α
α+1

(
α

α+ 1

)2 (
K

αα

) 2
α+1

= p
α−1
. α+1C

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 189

on the rectangle (0, PX] × (0, PY] and 0 elsewhere, for some constant C. The result follows by
rescaling the belief function (Corollary 5.4.6).

C.3.12 Omitted Proof of Proposition 5.5.6

Restatement (Proposition 5.5.6). The optimal trading function to minimize the expected CFMM
inefficiency for the belief ψ(pX , pY) = pXpY

(pX+pY)2 when (pX , pY) ∈ (0, PX]× (0, PY] and 0 otherwise,
is f(x, y) = 2− e−x − e−y.

Proof. This trading function implies the relationship p = ey−x.

Combining this with the equation e−y + e−x = K (for some constant K) gives (1 + p)e−y = K

and thus Y(p) = ln(1+pK). From the definition of liquidity, we obtain L(p) = p
1+p .

Corollary 5.4.16 shows that a belief function that leads to this liquidity allocation is (with p =

pX/pY)
L(p)2

p
=

p

(1 + p)2
=

pXpY
(pX + pY)2

for (pX , pY) ∈ (0, PX]× (0, PY] and 0 elsewhere. The result follows by rescaling the belief function
(Corollary 5.4.6).

C.3.13 Omitted Proof of Proposition 5.6.4

Restatement (Proposition 5.6.4). The expected future value of the CFMM’s reserves, as per belief
ψ(pX , pY), is

ν(ψ) =
1

Nψ

∫∫
pX ,pY

ψ(pX , pY) (pXX (pX/pY) + pY Y(pX/pY)) dpX dpY

=
1

Nψ

∞∫
0

L(p)

p2

∫∫
pX ,pY

pXψ(pX , pY)1{ pXpY ≤p}dpXdpY +
L(p)

p

∫∫
pX ,pY

pY ψ(pX , pY)1{ pXpY ≥p}dpXdpY

 dp

where X (p) and Y(p) denote the amounts of X and Y held in the reserves at spot exchange rate
p, and 1E is the characteristic function of the event E.

This expression for ν(ψ) is a linear function of each L(p).

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 190

Proof.

1

Nψ

∫
pX ,pY

ψ(pX , pY) (pXX (pX/pY)) + pY Y(pX/pY)) dpX dpY

=
1

Nψ

∫
pX ,pY

ψ(pX , pY)

pX ∞∫
pX/pY

L(p)

p2
dp+ pY

pX/pY∫
0

L(p)

p
dp

 dpX dpY

=
1

Nψ

∞∫
0

L(p)

p2

∫∫
pX ,pY

pXψ(pX , pY)1{ pXpY ≤p}dpXdpY +
L(p)

p

∫∫
pX ,pY

pY ψ(pX , pY)1{ pXpY ≥p}dpXdpY

 dp

The first equation follows by substitution of the equations in Observation 5.3.10.
Note that for any pX , pY , the term L(p)

p2 for any p appears in the integral
∫∞
pX/pY

L(p)dp
p2 if and

only if p ≥ pX/pY . The result follows from rearranging the integral to group terms by L(p).

C.3.14 Omitted Proof of Theorem 5.6.7

Restatement (Theorem 5.6.7). Let L1(p) be the optimal liquidity allocation that maximizes fee
revenue — the solution to the optimization problem for the objective of minimizing the following:

− δ

Nψ

∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

(
1− s

pY L(pX/pY)

)
dpX dpY

Let L2(p) be the optimal liquidity allocation that maximizes fee revenue while accounting for
divergence loss — the solution to the optimization problem for the objective of minimizing the fol-
lowing:

−ν(ψ)− δ

Nψ

∫∫
pX ,pY

rateδ(pX , pY)ψ(pX , pY)

(
1− s

pY L(pX/pY)

)
dpX dpY

Let X1 =
∫∞
p0

L1(p)
p2 dp and X2 =

∫∞
p0

L2(p)
p2 dp be the optimal initial quantities of X for the above

two problems respectively.
Then there exists some p1 > p0 such that for p0 ≤ p ≤ p1, L1(p)

X1
≥ L2(p)

X2
and for p ≥ p1,

L1(p)
X1
≤ L2(p)

X2
. An analogous statement holds for the allocations of Y .

Proof. Define φ′(θ) = δ
∫
r
rateδ(r cos(θ), r sin(θ)ψ(r cos(θ), r sin(θ))dr.

The KKT conditions for the first problem give the following (nearly identically to those in Lemma
5.4.11, just using L1(·) in place of L(·)):

1. For all p with p ≥ p0, λX
p2 = 1

L1(p)2
φ′(cot−1(p)) sin(cot−1(p)) + λL1(p).

2. For all p with p ≤ p0, λY
p = 1

L1(p)2
φ′(cot−1(p)) sin(cot−1(p)) + λL1(p).

3. λX = PXλB and λY = PY λB .

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 191

Observe that the derivative, with respect to L(p), of the divergence loss, is

κ(p) =
1

Nψ

 1

p2

∫∫
pX ,pY

pXψ(pX , pY)1{ pXpY ≤p}dpX dpY +
1

p

∫∫
pX ,pY

pY ψ(pX , pY)1{ pXpY ≥p}dpX dpY

 .

Computing the KKT conditions for the second problem gives the following:

1. For all p with p ≥ p0, λX
p2 = 1

L2(p)2
φ′(cot−1(p)) sin(cot−1(p)) + κ(p) + λL2(p).

2. For all p with p ≤ p0, λY
p = 1

L2(p)2
φ′(cot−1(p)) sin(cot−1(p)) + κ(p) + λL2(p).

As defined in the theorem statement, X1 =
∫∞
p0

L1(p)
p2 dp and X2 =

∫∞
p0

L2(p)
p2 dp are the optimal

initial quantities of X. Normalizing L1 and L2 by X1 and X2 respectively gives the equation∫ ∞

p0

L1(p)

X1p2
dp =

∫ ∞

p0

L2(p)

X2p2
dp (C.1)

This implies that, when normalized by X1 and X2, p ≥ p0, and φ′(cot−1(p)) ̸= 0, we have that

L2(p) =

√
φ′(cot−1(p)) sin(cot−1(p))

λX
p2 − κ(p)

=

√√√√φ′(cot−1(p)) sin(cot−1(p))
λX
p2

∗
λX
p2

λX
p2
− κ(p)

= L1(p)
X2

X1

√
λX

λX − p2κ(p)

A similar argument shows that when p ≤ p0,

L2(p) = L1(p)
Y2
Y1

√
λY

λY − pκ(p)

Arithmetic calculation gives that

κ(p)p2 =
1

Nψ

∫
r

∫ π/2

θ′=θ

r2 cos(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′

+ cot(θ)

∫
r

∫ θ

θ′=0

r2 sin(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′

and thus that

d(κ(cot(θ)) cot(θ)2)

dθ
= −csc2(θ)

Nψ

∫
r

∫ θ

θ′=0

r2 sin(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′ ≤ 0

κ(cot(θ)) cot(θ)2 is therefore decreasing in θ, so κ(p)p2 is increasing in p (since p = cot(θ)).
Therefore,

√
λX

λX−p2κ(p) increases as p goes to ∞.

APPENDIX C. CHAPTER 5 SUPPORTING INFORMATION 192

By an analogous argument,

κ(p)p =
tan(θ)

Nψ

∫
r

∫ π/2

θ′=θ

r2 cos(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′

+

∫
r

∫ θ

θ′=0

r2 sin(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′

and thus

d(κ(cot(θ)) cot(θ))

dθ
=

sec2(θ)

Nψ

∫
r

∫ π/2

θ′=θ

r2 sin(θ′)ψ(r cos(θ′), r sin(θ′))dr dθ′ ≥ 0

κ(cot(θ)) cot(θ) is therefore increasing in θ, so κ(p)p increases as p decreases.
Therefore,

√
λY

λY −pκ(p) increases as p goes to 0.

Equation C.1 implies that the quantities L1(p)
X1p2

and L2(p)
X2p2

integrate to the same value, but L2(·)
increases strictly more quickly than L1(·), so there must be a point p1 > p0 beyond which L1(p)

X1
≤

L2(p)
X2

.
An analogous argument holds for p < p0.

Appendix D

Chapter 6 Supporting Information

D.1 Existence of Equilibra with Positive Valuations

Assumption D.1.1. For every asset A and every set of prices p, if pA = 0, then there exists at
least one agent who always has positive marginal utility for A (no matter how much A the agent
purchases).

We also make a standard set of assumptions (e.g. as in [78]) on utility functions of agents in an
Arrow-Debreu exchange market.

Assumption D.1.2. A utility function u(·) satisfies the following properties.

1 u(·) is continuous.

2 For all endowments x, there exists x′ with u(x) < u(x′).

3 For any x, x′ with u(x) < u(x′) and any 0 < t < 1, u(x) < u(tx+ (1− t)x′).

Lemma D.1.3. If Assumption D.1.1 holds in some Arrow-Debreu exchange market consisting of
CFMMs with supply functions satisfying Assumption 6.5.3 and agents with utility functions satisfies
Assumption D.1.2, then there always exists an equilibrium of that market and every equilibrium has
a positive valuation on every asset.

Proof. Let ê = (
∑
i ei) + (1, ..., 1) be a vector of assets strictly larger than the total amount of

each asset available in the market, and let E = {x|0 ≤ x ≤ ê}. Let P be the price simplex on A

(P={p|
∑

A pA = 1}).
Consider the following game. There is one player for each agent in the exchange market and one

“market” player, for a combined state space of E× ...×E×P . Clearly, this state space is compact,
convex, and nonempty.

193

APPENDIX D. CHAPTER 6 SUPPORTING INFORMATION 194

Given the set of prices p, each agent player picks a utility-maximizing set of goods xi subject to
resource constraints (specifically, for each agent i, xi maximizes ui(·) subject to p · x ≤ p · ei and
xi ∈ E), receiving payoff ui(xi). The market player chooses a set of prices p̂, for payoff

∑
i(ei−xi)·p.

Define Ai(p) = {x|x ∈ E, p · x ≤ p · ei} be the set of utility-maximizing sets of goods for agent i.
Quasi-concavity of ui(·) implies that Ai(p) is convex, Ai(·) cannot be nonempty. It suffices to show
that Ai(·) is a continuous function for each agent i.

Let p1, p2... and x1, x2, ... be any sequences of prices and demand responses converting to p and
x, respectively, with xj ∈ Ai(pj) for all j ∈ Z+. Let rj = pj · xj for each j. Naturally, the sequence
r1, r2, ... must converge to r = p · x, and the sequence ui(x1), ui(x2)... must converge to ui(x).

Consider a sequence {x′j} converging to x′ with pj · x′j = rj and x′ ∈ Ai(p). It must be the case
that ui(xj) ≥ ui(x

′
j). Because {ui(x′j)} converges to ui(x

′), we must have that ui(x) ≥ ui(x
′), so

x ∈ Ai(p) and thus Ai(·) must be continuous.
If some agent is a CFMM defined by a supply function (instead of an agent maximizing a utility

function), it suffices that the CFMM’s action space, implicitly defined by the supply function, satisfies
the same conditions. These must hold for any CFMM Supply function satisfying Assumption 6.5.3.

It follows from Kakutani’s fixed point theorem that there must exist a fixed point of this game;
that is, there exists a p and an xi for each i such that xi ∈ Ai(p) and (

∑
i xi)A ≤ 0, with the

inequality tight if pA > 0 for all assets A.
By Assumption D.1.1, if pA = 0 for some asset A, then there exists an agent i for which every

xi ∈ Ai(p) has (xi)A = êA. But then the demand for A must exceed the available supply, so
(
∑
i xi)A > 0, a contradiction. Analogously, it must be the case that for every asset A and every

agent i, it must be the case that (xi)A < êA, and thus (by parts 2 and 3 of Assumption D.1.2) xi
maximizes ui(·) subject to xi · p ≤ ei, xi ≥ 0 (i.e. without the restriction that xi ∈ E).

D.2 Trading Rule U and Parallel Running

We show here that in the case where a market is not especially sparse, Trading Rule U is the only
trading rule that eliminates parallel running. To be specific, we say that a batch is sufficiently large
if there is a market sell order trading between every asset pair that can be traded on a CFMM in
the batch.

Definition D.2.1 (Large Batch). A batch instance has a set C of CFMMs. Let CFMM c ∈ C trade
in the set of assets Ac. Denote the set of asset pairs that can be traded on some CFMM in C by
Pairs(C) = {(A,B)|∃c ∈ C, s.t. (A,B) ∈ Ac}.

We say that the batch instance is large if there exists a market sell order for every asset pair in
Pairs(C).

APPENDIX D. CHAPTER 6 SUPPORTING INFORMATION 195

We first define a property of equilibrium computation algorithm which is very natural but is
required for our result in this subsection.

Definition D.2.2 (Split Invariance). Consider two batch instances.

1. There is a set C of CFMMs and a set L of limit sell orders.

2. There is a set C of CFMMs and a set L∪{l̃1, l̃2}\{l} of limit sell orders, where l = (A,B, k, r),
l̃1 = (A,B, t, r) and l̃2 = (A,B, k − t, r), where A,B are any two assets, k > t > 0, and r ≥ 0.

An equilibrium computation algorithm is split-invariant if it always computes the same asset valua-
tions in the above two cases.

Split invariance is a natural condition for algorithms whose output depend on the aggregate
behavior of the limit orders, and never on the exact sizes of individual limit orders. Many natural
algorithms (such as [127, 90]) satisfy this condition.

We have the following result.

Theorem D.2.3. In a batch exchange using a split-invariant equilibrium computation algorithm,
JPD is necessary to ensure that parallel running is impossible on large batch instances.

Proof. Suppose that JPD is not guaranteed by a batch exchange, and that there is some large batch
input X where JPD is not satisfied.

As such, there must exist some CFMM c in X trading in some assets A and B for which the post-
batch CFMM spot exchange rate q̂A,B differs from the equilibrium batch exchange rate p̂A,B = pA

pB
.

Without loss of generality, suppose that q̂A,B < p̂A,B, and denote δA,B = p̂A,B − q̂A,B > 0. Let l be
the market order that sells A for B in the batch, and denote the amount of A sold by this order by
sA,B.

Define εA,B to be the amount of A sold by c as its spot price moves from q̂A,B to p̂A,B when
operating as a standalone CFMM. It must be the case that εA,B > 0 (or else the above scenario
would not violate JPD).

Now, consider an alternate batch instance X ′, which differs from X only in that the order l is
replaced with two market orders l̃1 and l̃2, of sizes εA,B and sA,B − εA,B respectively. Because the
batch uses a split-invariant equilibrium computation algorithm, the exchange rate in X ′ between A
and B is the same as that computed in X ′, namely, p̂A,B.

Now consider an additional, alternative batch instance X ′′, which is equal to X ′ except that it
does not include order l̃1.

We claim that X ′′ admits a parallel-running opportunity. A parallel runner (who has complete
information of X ′′ and the equilibrium computation algorithm) can insert a market sell order selling
εA,B units of A for B, thereby creating batch X ′. After the batch, CFMM c’s spot price will be
q̂A,B < p̂A,B, and the parallel runner can sell some amount of B less than εA,Bp̂A,B to buy back εA,B
units of A from the CFMM.

APPENDIX D. CHAPTER 6 SUPPORTING INFORMATION 196

Note that Definition D.2.1 is sufficient but not necessary for the proof of Theorem D.2.3. In-
formally, many natural market scenarios admit similar parallel-running scenarios when not using
JPD.

Bibliography

[1] Balancer swap interface. https://app.balancer.fi/#/trade. Accessed 07/04/2022.

[2] Binance chain docs - fees. https://web.archive.org/web/20200617014623/https://docs.

binance.org/guides/concepts/fees.html. Accessed 10/18/2022.

[3] Binance chain docs - introduction. https://web.archive.org/web/20200616190856/https:

//docs.binance.org/guides/intro.html. Accessed 10/18/2022.

[4] Binance chain docs - match steps and examples. https://web.archive.org/

web/20200617065916/https://docs.binance.org/match-examples.html. Accessed
10/18/2022.

[5] Coinbase pricing and fees disclosures. https://web.archive.org/web/20210301043800/

https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-

fees/fees.

[6] Cow protocol overview: The batch auction optimization problem. https://web.

archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-

depth-solver-specification/the-batch-auction-optimization-problem. Accessed
10/19/2022.

[7] Cowswap faq. https://cowswap.exchange/#/faq#how-does-cowswap-determine-prices.
Accessed 2/9/2022.

[8] enaira. https://web.archive.org/web/20230624204115/https://www.enaira.gov.ng/.
Accessed 1/13/2022.

[9] Eth2 shard chains. https://web.archive.org/web/20210310043308/https://ethereum.

org/en/eth2/shard-chains/.

[10] Ethereum development documentation: Optimistic rollups. https://web.archive.org/web/

20230330021451/https://ethereum.org/en/developers/docs/scaling/optimistic-

rollups/. Accessed 07/31/2023.

197

https://app.balancer.fi/#/trade
https://web.archive.org/web/20200617014623/https://docs.binance.org/guides/concepts/fees.html
https://web.archive.org/web/20200617014623/https://docs.binance.org/guides/concepts/fees.html
https://web.archive.org/web/20200616190856/https://docs.binance.org/guides/intro.html
https://web.archive.org/web/20200616190856/https://docs.binance.org/guides/intro.html
https://web.archive.org/web/20200617065916/https://docs.binance.org/match-examples.html
https://web.archive.org/web/20200617065916/https://docs.binance.org/match-examples.html
https://web.archive.org/web/20210301043800/https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://web.archive.org/web/20210301043800/https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://web.archive.org/web/20210301043800/https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://cowswap.exchange/#/faq#how-does-cowswap-determine-prices
https://web.archive.org/web/20230624204115/https://www.enaira.gov.ng/
https://web.archive.org/web/20210310043308/https://ethereum.org/en/eth2/shard-chains/
https://web.archive.org/web/20210310043308/https://ethereum.org/en/eth2/shard-chains/
https://web.archive.org/web/20230330021451/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://web.archive.org/web/20230330021451/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://web.archive.org/web/20230330021451/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/

BIBLIOGRAPHY 198

[11] Ethereum development documentation: Zk rollups. https://web.archive.org/web/

20230623142748/https://ethereum.org/en/developers/docs/scaling/zk-rollups/.
Accessed 07/31/2023.

[12] An exchange protocol for the decentralized web. https://docs.gnosis.io/

protocol/docs/introduction1/ and https://github.com/gnosis/dex-research/blob/

08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf.

[13] Intel oneapi threading building blocks. "https://software.intel.com/content/www/us/

en/develop/tools/oneapi/components/onetbb.html". Accessed 5/6/2021.

[14] The maker protocol: Makerdao’s multi-collateral dai (mcd) system. https://web.archive.

org/web/20220301170838/https://makerdao.com/en/whitepaper/. Accessed 08/02/2023.

[15] Near. https://near.org/.

[16] Official go implementation of the ethereum protocol. https://github.com/ethereum/go-

ethereum/tree/release/1.10. Accessed 10/13/2022.

[17] The penumbra protocol: Sealed-bid batch swaps. https://web.archive.org/web/

20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html. Accessed
10/19/2022.

[18] Polygon lightpaper: Ethereum’s internet of blockchains. https://polygon.technology/

lightpaper-polygon.pdf. Accessed 12/6/2021.

[19] Serum: Faster, cheaper, and more powerful defi. https://web.archive.org/web/

20220516140755/https://www.projectserum.com/. Accessed 12/6/2021.

[20] Solana documentation: Rent. https://web.archive.org/web/20220903121658/https://

docs.solana.com/implemented-proposals/rent.

[21] Starkex. https://starkware.co/product/starkex/.

[22] Starkex applications. https://web.archive.org/web/20230521060655/https://docs.

starkware.co/starkex/architecture/starkware-exchange-applications.html.

[23] Stellar. https://www.stellar.org/.

[24] A technical introduction to the serum dex. https://web.

archive.org/web/20221112173940/https://docs.google.com/document/d/

1isGJES4jzQutI0GtQGuqtrBUqeHxl_xJNXdtOv4SdII/edit. Accessed 12/11/22.

[25] Uniswap swap interface. https://app.uniswap.org/#/swap?chain=mainnet. Accessed
07/04/2022.

https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://docs.gnosis.io/protocol/docs/introduction1/
https://docs.gnosis.io/protocol/docs/introduction1/
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
"https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html"
"https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html"
https://web.archive.org/web/20220301170838/https://makerdao.com/en/whitepaper/
https://web.archive.org/web/20220301170838/https://makerdao.com/en/whitepaper/
https://near.org/
https://github.com/ethereum/go-ethereum/tree/release/1.10
https://github.com/ethereum/go-ethereum/tree/release/1.10
https://web.archive.org/web/20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html
https://web.archive.org/web/20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html
https://polygon.technology/lightpaper-polygon.pdf
https://polygon.technology/lightpaper-polygon.pdf
https://web.archive.org/web/20220516140755/https://www.projectserum.com/
https://web.archive.org/web/20220516140755/https://www.projectserum.com/
https://web.archive.org/web/20220903121658/https://docs.solana.com/implemented-proposals/rent
https://web.archive.org/web/20220903121658/https://docs.solana.com/implemented-proposals/rent
https://starkware.co/product/starkex/
https://web.archive.org/web/20230521060655/https://docs.starkware.co/starkex/architecture/starkware-exchange-applications.html
https://web.archive.org/web/20230521060655/https://docs.starkware.co/starkex/architecture/starkware-exchange-applications.html
https://www.stellar.org/
 https://web.archive.org/web/20221112173940/https://docs.google.com/document/d/1isGJES4jzQutI0GtQGuqtrBUqeHxl_xJNXdtOv4SdII/edit
 https://web.archive.org/web/20221112173940/https://docs.google.com/document/d/1isGJES4jzQutI0GtQGuqtrBUqeHxl_xJNXdtOv4SdII/edit
 https://web.archive.org/web/20221112173940/https://docs.google.com/document/d/1isGJES4jzQutI0GtQGuqtrBUqeHxl_xJNXdtOv4SdII/edit
https://app.uniswap.org/#/swap?chain=mainnet

BIBLIOGRAPHY 199

[26] USDC: the world’s leading digital dollar stablecoin. https://web.archive.org/web/

20230726103908/https://www.circle.com/en/usdc. Accessed 08/02/2023.

[27] wasm3: The fastest webassembly interpreter, and the most universal runtime. https://

github.com/wasm3/wasm3.

[28] Hyperconomy. https://web.archive.org/web/20230124140406/https://github.com/

patrick-layden/HyperConomy and https://dev.bukkit.org/projects/hyperconomy and
https://web.archive.org/web/20220427213437/https://dev.bukkit.org/projects/

hyperconomy/pages/information, 2012. Accessed 08/03/2023.

[29] The battery powered picklejar heads. https://web.archive.org/web/20230201115717/

https://blog.picklejarheads.com/about/, 2013.

[30] Loopring: A decentralized token exchange protocol. September 2018.

[31] Aave protocol whitepaper, version 1.0. https://web.archive.org/web/20230426224123/

https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_

Whitepaper_v1_0.pdf, January 2020.

[32] Uniswap v2 smart contract source. https://web.archive.org/web/20220324172913/https:

//github.com/Uniswap/v2-core/blob/1136544ac842ff48ae0b1b939701436598d74075/

contracts/UniswapV2Pair.sol, 2020.

[33] Uniswapv2router02.sol. https://web.archive.org/web/20220605141506/https:

//github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol,
Jun 2020.

[34] Gpv2 objective criterion. https://web.archive.org/web/20211019155516/https://

forum.gnosis.io/t/gpv2-objective-criterion/1254, April 2021. Accessed 04/30/2021.

[35] Loopring 3 design doc. https://web.archive.org/web/20220411224154/https://github.

com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results,
2021.

[36] The aptos blockchain: Safe, scalable, and upgradeable web3 infrastructure. https:

//web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-

Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf, August 2022. Accessed 10/20/22.

[37] Compound iii docs. https://web.archive.org/web/20230715092703/https://docs.

compound.finance/, 2022.

[38] Cosmwasm documentation: Actor model for contract calls. https://web.archive.org/web/

20220811195538/https://docs.cosmwasm.com/docs/1.0/architecture/actor/, 2022.

https://web.archive.org/web/20230726103908/https://www.circle.com/en/usdc
https://web.archive.org/web/20230726103908/https://www.circle.com/en/usdc
 https://github.com/wasm3/wasm3
 https://github.com/wasm3/wasm3
https://web.archive.org/web/20230124140406/https://github.com/patrick-layden/HyperConomy
https://web.archive.org/web/20230124140406/https://github.com/patrick-layden/HyperConomy
https://dev.bukkit.org/projects/hyperconomy
https://web.archive.org/web/20220427213437/https://dev.bukkit.org/projects/hyperconomy/pages/information
https://web.archive.org/web/20220427213437/https://dev.bukkit.org/projects/hyperconomy/pages/information
https://web.archive.org/web/20230201115717/https://blog.picklejarheads.com/about/
https://web.archive.org/web/20230201115717/https://blog.picklejarheads.com/about/
https://web.archive.org/web/20230426224123/https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://web.archive.org/web/20230426224123/https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://web.archive.org/web/20230426224123/https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://web.archive.org/web/20220324172913/https://github.com/Uniswap/v2-core/blob/1136544ac842ff48ae0b1b939701436598d74075/contracts/UniswapV2Pair.sol
https://web.archive.org/web/20220324172913/https://github.com/Uniswap/v2-core/blob/1136544ac842ff48ae0b1b939701436598d74075/contracts/UniswapV2Pair.sol
https://web.archive.org/web/20220324172913/https://github.com/Uniswap/v2-core/blob/1136544ac842ff48ae0b1b939701436598d74075/contracts/UniswapV2Pair.sol
https://web.archive.org/web/20220605141506/https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol
https://web.archive.org/web/20220605141506/https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20230715092703/https://docs.compound.finance/
https://web.archive.org/web/20230715092703/https://docs.compound.finance/
https://web.archive.org/web/20220811195538/https://docs.cosmwasm.com/docs/1.0/architecture/actor/
https://web.archive.org/web/20220811195538/https://docs.cosmwasm.com/docs/1.0/architecture/actor/

BIBLIOGRAPHY 200

[39] Loopring protocol. https://web.archive.org/web/20220409050852/https://loopring.

org/#/protocol, April 2022.

[40] Near documentation: Cross-contract calls. https://web.archive.org/web/

20221021051657/https://docs.near.org/develop/contracts/crosscontract, 2022.

[41] Solana documentation: Accounts. https://web.archive.org/web/20221110215034/https:

//docs.solana.com/developing/programming-model/accounts/, 2022.

[42] United States Securities and Exchange Commission v. Lawrence Billimek and Alan Williams,
case 1:22-cv-10542, December 2022. https://www.sec.gov/files/litigation/complaints/

2022/comp-pr2022-228.pdf.

[43] Wasm-instrument: Instrument and transform wasm modules. https://github.com/

paritytech/wasm-instrument, 2022.

[44] Compound finance. https://web.archive.org/web/20230414212550/https://compound.

finance/, 2023. Accessed 04/14/2023.

[45] DefiLlama: Dexs volume. https://web.archive.org/web/20230628135700/https://

defillama.com/dexs, 2023.

[46] Dydx v4 technical overview. https://web.archive.org/web/20230516231337/https://

dydx.exchange/blog/v4-technical-architecture-overview, 2023.

[47] Securities and Exchange Commission v. Binance Holdings Limited, BAM Trading Services Inc.,
BAM Management US Holdings Inc., and Changpeng Zhao, civil action no. 1:23-cv-01599, June
2023. https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-101.pdf.

[48] Securities and Exchange Commission v. Celsius Network Limited and Alexander "Alex"
Mashinsky, no. 1:23-cv-6003. https://www.sec.gov/files/litigation/complaints/2023/

comp-pr2023-133.pdf, July 2023.

[49] Securities and Exchange Commission v. Coinbase Inc. and Coinbase Global, Inc., case 1:23-
cv-04738, June 2023. https://www.sec.gov/files/litigation/complaints/2023/comp-

pr2023-102.pdf.

[50] Securities and Exchange Commission v. Terraform Labs Pte Ltd. and Do Hyeong Kwon, no.
1:23-cv-1346, February 2023. https://www.sec.gov/files/litigation/complaints/2023/

comp-pr2023-32.pdf.

[51] Synthetix litepaper, version 1.6. https://web.archive.org/web/20230327133255/https:

//docs.synthetix.io/synthetix-protocol/the-synthetix-protocol/synthetix-

litepaper, January 2023.

https://web.archive.org/web/20220409050852/https://loopring.org/#/protocol
https://web.archive.org/web/20220409050852/https://loopring.org/#/protocol
https://web.archive.org/web/20221021051657/https://docs.near.org/develop/contracts/crosscontract
https://web.archive.org/web/20221021051657/https://docs.near.org/develop/contracts/crosscontract
https://web.archive.org/web/20221110215034/https://docs.solana.com/developing/programming-model/accounts/
https://web.archive.org/web/20221110215034/https://docs.solana.com/developing/programming-model/accounts/
https://www.sec.gov/files/litigation/complaints/2022/comp-pr2022-228.pdf
https://www.sec.gov/files/litigation/complaints/2022/comp-pr2022-228.pdf
https://github.com/paritytech/wasm-instrument
https://github.com/paritytech/wasm-instrument
https://web.archive.org/web/20230414212550/https://compound.finance/
https://web.archive.org/web/20230414212550/https://compound.finance/
https://web.archive.org/web/20230628135700/https://defillama.com/dexs
https://web.archive.org/web/20230628135700/https://defillama.com/dexs
https://web.archive.org/web/20230516231337/https://dydx.exchange/blog/v4-technical-architecture-overview
https://web.archive.org/web/20230516231337/https://dydx.exchange/blog/v4-technical-architecture-overview
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-101.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-133.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-133.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-102.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-102.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-32.pdf
https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-32.pdf
https://web.archive.org/web/20230327133255/https://docs.synthetix.io/synthetix-protocol/the-synthetix-protocol/synthetix-litepaper
https://web.archive.org/web/20230327133255/https://docs.synthetix.io/synthetix-protocol/the-synthetix-protocol/synthetix-litepaper
https://web.archive.org/web/20230327133255/https://docs.synthetix.io/synthetix-protocol/the-synthetix-protocol/synthetix-litepaper

BIBLIOGRAPHY 201

[52] United States of America v. Alexander Mashinsky and Roni Cohen-Pavon, no. 23 crim
347, July 2023. https://www.justice.gov/d9/2023-07/u.s._v._mashinsky_and_cohen-

pavon_indictment.pdf.

[53] United States of America v. Samuel Bankman-Fried, a/k/a "SBF", case 1:22-cr-00673-
lak, February 2023. https://storage.courtlistener.com/recap/gov.uscourts.nysd.

590940/gov.uscourts.nysd.590940.80.0.pdf.

[54] Michael Ackerman, Sul-Young Choi, Peter Coughlin, Eric Gottlieb, and Japheth Wood. Elec-
tions with partially ordered preferences. Public Choice, 157:145–168, 2013.

[55] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. 2020.

[56] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap
v3 core. Technical report, Tech. rep., Uniswap, 2021.

[57] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J Marathe, Athanasios
Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages
599–616, 2020.

[58] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob
Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al. Status report on the third round of
the nist post-quantum cryptography standardization process. US Department of Commerce,
NIST, 2022.

[59] Amjad Aldweesh, Maher Alharby, Maryam Mehrnezhad, and Aad van Moorsel. The opbench
ethereum opcode benchmark framework: Design, implementation, validation and experiments.
Performance Evaluation, 146:102168, 2021.

[60] Aurélien Alfonsi, Antje Fruth, and Alexander Schied. Optimal execution strategies in limit
order books with general shape functions. Quantitative finance, 10(2):143–157, 2010.

[61] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec.
Design of symmetric-key primitives for advanced cryptographic protocols. IACR Transactions
on Symmetric Cryptology, pages 1–45, 2020.

[62] Yakov Amihud and Haim Mendelson. Dealership market: Market-making with inventory.
Journal of financial economics, 8(1):31–53, 1980.

[63] Yakov Amihud and Haim Mendelson. Asset pricing and the bid-ask spread. Journal of financial
Economics, 17(2):223–249, 1986.

https://www.justice.gov/d9/2023-07/u.s._v._mashinsky_and_cohen-pavon_indictment.pdf
https://www.justice.gov/d9/2023-07/u.s._v._mashinsky_and_cohen-pavon_indictment.pdf
https://storage.courtlistener.com/recap/gov.uscourts.nysd.590940/gov.uscourts.nysd.590940.80.0.pdf
https://storage.courtlistener.com/recap/gov.uscourts.nysd.590940/gov.uscourts.nysd.590940.80.0.pdf

BIBLIOGRAPHY 202

[64] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018.

[65] Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market
makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 80–91, 2020.

[66] Guillermo Angeris, Alex Evans, and Tarun Chitra. Replicating monotonic payoffs without
oracles. arXiv preprint arXiv:2111.13740, 2021.

[67] Guillermo Angeris, Alex Evans, and Tarun Chitra. Replicating market makers. Digital Fi-
nance, pages 1–21, 2023.

[68] Guillermo Angeris, Alex Evans, Tarun Chitra, and Stephen Boyd. Optimal routing for constant
function market makers. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 115–128, 2022.

[69] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of uniswap markets. Cryptoeconomic Systems Journal, 2021.

[70] Parwat Singh Anjana, Hagit Attiya, Sweta Kumari, Sathya Peri, and Archit Somani. Effi-
cient concurrent execution of smart contracts in blockchains using object-based transactional
memory. In International Conference on Networked Systems, pages 77–93. Springer, 2020.

[71] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani. An effi-
cient framework for optimistic concurrent execution of smart contracts. In 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), pages
83–92. IEEE, 2019.

[72] Jun Aoyagi. Liquidity provision by automated market makers. Available at SSRN 3674178,
2020.

[73] Matteo Aquilina, Eric Budish, and Peter O’neill. Quantifying the high-frequency trading “arms
race”. The Quarterly Journal of Economics, 137(1):493–564, 2022.

[74] Matteo Aquilina, Eric B Budish, and Peter O’Neill. Quantifying the high-frequency trading"
arms race": A simple new methodology and estimates. Technical report, Working Paper, 2020.

[75] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.

BIBLIOGRAPHY 203

[76] Kenneth J Arrow. A difficulty in the concept of social welfare. Journal of political economy,
58(4):328–346, 1950.

[77] Kenneth J Arrow, Henry D Block, and Leonid Hurwicz. On the stability of the competitive
equilibrium, ii. Econometrica: Journal of the Econometric Society, pages 82–109, 1959.

[78] Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.
Econometrica: Journal of the Econometric Society, pages 265–290, 1954.

[79] Jean-Philippe Aumasson and Markku-Juhani O Saarinen. The blake2 cryptographic hash and
message authentication code (mac). RFC 7693, 2015.

[80] Vivek Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy improves latency and
throughput in payment-channel networks. In International Conference on Financial Cryptog-
raphy and Data Security, pages 304–324. Springer, 2020.

[81] Balancer Labs. Balancer v2 documentation: Weighted pools. https://web.archive.org/

web/20220625080037/https://docs.balancer.fi/products/balancer-pools/weighted-

pools, 2021.

[82] Markus Baldauf and Joshua Mollner. High-frequency trading and market performance. The
Journal of Finance, 75(3):1495–1526, 2020.

[83] European Central Bank. The case for a digital euro: key objectives and design
considerations. https://www.ecb.europa.eu/pub/pdf/other/key_objectives_digital_

euro~f11592d6fb.en.pdf, July 2022.

[84] European Central Bank. Digital euro - prototype summary and lessons learned. https://www.

ecb.europa.eu/pub/pdf/other/ecb.prototype_summary20230526~71d0b26d55.en.pdf,
May 2023.

[85] European Central Bank. Successful launch of new t2 wholesale payment system.
https://web.archive.org/web/20230323155412/https://www.ecb.europa.eu/press/

pr/date/2023/html/ecb.pr230321~f5c7bddf6d.en.html, March 2023.

[86] Yogev Bar-On and Yishay Mansour. Uniswap liquidity provision: An online learning approach.
arXiv preprint arXiv:2302.00610, 2023.

[87] Nicolas Barry. Core advancement protocol 46-07: Fee model in smart con-
tracts. https://web.archive.org/web/20221212214353/https://github.com/stellar/

stellar-protocol/blob/master/core/cap-0046-07.md, Jun 2022.

https://web.archive.org/web/20220625080037/https://docs.balancer.fi/products/balancer-pools/weighted-pools
https://web.archive.org/web/20220625080037/https://docs.balancer.fi/products/balancer-pools/weighted-pools
https://web.archive.org/web/20220625080037/https://docs.balancer.fi/products/balancer-pools/weighted-pools
https://www.ecb.europa.eu/pub/pdf/other/key_objectives_digital_euro~f11592d6fb.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/key_objectives_digital_euro~f11592d6fb.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/ecb.prototype_summary20230526~71d0b26d55.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/ecb.prototype_summary20230526~71d0b26d55.en.pdf
https://web.archive.org/web/20230323155412/https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.pr230321~f5c7bddf6d.en.html
https://web.archive.org/web/20230323155412/https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.pr230321~f5c7bddf6d.en.html
https://web.archive.org/web/20221212214353/https://github.com/stellar/stellar-protocol/blob/master/core/cap-0046-07.md
https://web.archive.org/web/20221212214353/https://github.com/stellar/stellar-protocol/blob/master/core/cap-0046-07.md

BIBLIOGRAPHY 204

[88] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of auto-
mated market makers in defi. In International Conference on Coordination Languages and
Models, pages 168–187. Springer, 2021.

[89] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A true concurrent model of smart
contracts executions. In International Conference on Coordination Languages and Models,
pages 243–260. Springer, 2020.

[90] Xiaohui Bei, Jugal Garg, and Martin Hoefer. Ascending-price algorithms for unknown markets.
ACM Transactions on Algorithms (TALG), 15(3):1–33, 2019.

[91] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. 2018.

[92] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. Deep-fri: sampling
outside the box improves soundness. arXiv preprint arXiv:1903.12243, 2019.

[93] Walter Benjamin. The work of art in the age of mechanical reproduction, 1935.

[94] Michele Benzi. Preconditioning techniques for large linear systems: a survey. Journal of
computational Physics, 182(2):418–477, 2002.

[95] Philippe Bergault, Louis Bertucci, David Bouba, and Olivier Guéant. Automated market
makers: Mean-variance analysis of lps payoffs and design of pricing functions. arXiv preprint
arXiv:2212.00336, 2022.

[96] Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov. Analysis and probing of parallel
channels in the lightning network. In International Conference on Financial Cryptography
and Data Security, pages 337–357. Springer, 2022.

[97] Ivan Bogatyy. Implementing ethereum trading front-runs on the bancor exchange in python.
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-

running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798, Aug
2017.

[98] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 947–964. IEEE, 2020.

[99] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798

BIBLIOGRAPHY 205

[100] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels,
Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz, et al. Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks. https://web.archive.org/

web/20230504134314/https://research.chain.link/whitepaper-v2.pdf, 2021. Accessed
08/03/2023.

[101] Eric Budish. Response to esma’s call for evidence: “periodic auctions for equity instruments”
(esma70-156-785). https://ericbudish.org/wp-content/uploads/2022/03/response_

esmas_call_evidence_periodic_auctions.pdf, January 2019. Accessed 10/17/2022.

[102] Eric Budish, Peter Cramton, and John Shim. Implementation details for frequent batch auc-
tions: Slowing down markets to the blink of an eye. American Economic Review, 104(5):418–24,
2014.

[103] Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms race: Frequent
batch auctions as a market design response. The Quarterly Journal of Economics, 130(4):1547–
1621, 2015.

[104] Eric B Budish, Peter Cramton, Albert S Kyle, and Jeongmin Lee. Flow trading. University
of Chicago, Becker Friedman Institute for Economics Working Paper, (2022-82), 2022.

[105] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
symposium on security and privacy (SP), pages 315–334. IEEE, 2018.

[106] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for special
sound protocols. Cryptology ePrint Archive, 2023.

[107] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner
pairing products and applications. In Advances in Cryptology–ASIACRYPT 2021: 27th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part III 27, pages 65–97. Springer, 2021.

[108] Vitalik Buterin. A quick explanation of what the point of the eip 2929 gas cost increases
in berlin is. https://web.archive.org/web/20211017034159/https://www.reddit.com/

r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/,
April 2021.

[109] Vitalik Buterin. A state expiry and statelessness roadmap. https://web.archive.org/web/

20220916204724/https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_

proposal, 2021.

https://web.archive.org/web/20230504134314/https://research.chain.link/whitepaper-v2.pdf
https://web.archive.org/web/20230504134314/https://research.chain.link/whitepaper-v2.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/
https://web.archive.org/web/20220916204724/https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://web.archive.org/web/20220916204724/https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://web.archive.org/web/20220916204724/https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal

BIBLIOGRAPHY 206

[110] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. Quick order fair-
ness. In Financial Cryptography and Data Security: 26th International Conference, FC 2022,
Grenada, May 2–6, 2022, Revised Selected Papers, pages 316–333. Springer, 2022.

[111] Agostino Capponi and Ruizhe Jia. The adoption of blockchain-based decentralized exchanges.
arXiv preprint arXiv:2103.08842, 2021.

[112] Álvaro Cartea, Fayçal Drissi, and Marcello Monga. Decentralised finance and automated
market making: Predictable loss and optimal liquidity provision. Available at SSRN 4273989,
2022.

[113] Álvaro Cartea and Sebastian Jaimungal. A closed-form execution strategy to target volume
weighted average price. SIAM Journal on Financial Mathematics, 7(1):760–785, 2016.

[114] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation (OSDI 99), pages
173–186, 1999.

[115] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd Symposium on
Operating Systems Design and Implementation, pages 173–186, New Orleans, LA, February
1999.

[116] New York Innovation Center. Project cedar: Phase 1 report. https://www.newyorkfed.org/

medialibrary/media/nyic/project-cedar-phase-one-report.pdf, 2022.

[117] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo, Man Ho Au, and
Xiaosong Zhang. An adaptive gas cost mechanism for ethereum to defend against under-priced
dos attacks. In International conference on information security practice and experience, pages
3–24. Springer, 2017.

[118] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of arrow-debreu
equilibria in markets with additively separable utilities. In 2009 50th Annual IEEE Symposium
on Foundations of Computer Science, pages 273–282. IEEE, 2009.

[119] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone mar-
kets. Journal of the ACM (JACM), 64(3):1–56, 2017.

[120] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou, and Xian
Zhang. Forerunner: Constraint-based speculative transaction execution for ethereum (full
version). 2021.

[121] Yiling Chen and David M Pennock. A utility framework for bounded-loss market makers.
arXiv preprint arXiv:1206.5252, 2012.

https://www.newyorkfed.org/medialibrary/media/nyic/project-cedar-phase-one-report.pdf
https://www.newyorkfed.org/medialibrary/media/nyic/project-cedar-phase-one-report.pdf

BIBLIOGRAPHY 207

[122] Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction markets via
no-regret learning. In Proceedings of the 11th ACM conference on Electronic commerce, pages
189–198, 2010.

[123] Graciela Chichilnisky and Geoffrey Heal. Social choice with infinite populations: construction
of a rule and impossibility results. Social Choice and Welfare, 14:303–318, 1997.

[124] Howard Chu and Symas Corporation. Lightning memory-mapped database manager (lmdb).
http://www.lmdb.tech/doc/. Accessed 04/29/2021.

[125] Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich, Robert T Morris, and Eddie
Kohler. The scalable commutativity rule: Designing scalable software for multicore processors.
ACM Transactions on Computer Systems (TOCS), 32(4):1–47, 2015.

[126] Dan Cline, Thaddeus Dryja, and Neha Narula. Clockwork: An exchange protocol for proofs
of non front-running.

[127] Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the
excess demand function. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 74–83, 2005.

[128] Bruno Codenotti, Sriram V Pemmaraju, and Kasturi R Varadarajan. On the polynomial time
computation of equilibria for certain exchange economies. In SODA, volume 5, pages 72–81,
2005.

[129] Kalman J Cohen and Robert A Schwartz. An electronic call market: Its design and desirabil-
ity. The Electronic Call Auction: Market Mechanism and Trading: Building A Better Stock
Market, pages 55–85, 2001.

[130] CoinGecko. Cryptocurrency prices by market cap. https://web.archive.org/web/

20221210015628/https://www.coingecko.com/.

[131] Richard Cole and Lisa Fleischer. Fast-converging tatonnement algorithms for one-time and
ongoing market problems. In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 315–324, 2008.

[132] Josep M Colomer. Ramon llull: from ‘ars electionis’to social choice theory. Social Choice and
Welfare, 40(2):317–328, 2013.

[133] Marquis de Condorcet and Marquis de Caritat. An essay on the application of analysis to
the probability of decisions rendered by a plurality of votes. Classics of social choice, pages
91–112, 1785.

http://www.lmdb.tech/doc/
https://web.archive.org/web/20221210015628/https://www.coingecko.com/
https://web.archive.org/web/20221210015628/https://www.coingecko.com/

BIBLIOGRAPHY 208

[134] Vincent Conitzer and Tuomas Sandholm. Communication complexity of common voting rules.
In Proceedings of the 6th ACM conference on Electronic commerce, pages 78–87, 2005.

[135] OpenZeppelin Contracts. Erc20.sol. https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/token/ERC20/ERC20.sol.

[136] Arthur H Copeland. A reasonable social welfare function. Technical report, mimeo, 1951.
University of Michigan, 1951.

[137] Bernard Cornet. Linear exchange economies. Cahier Eco-Math, Université de Paris, 1, 1989.

[138] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, 2016.

[139] Simon Cousaert, Jiahua Xu, and Toshiko Matsui. Sok: Yield aggregators in defi. In 2022 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–14. IEEE, 2022.

[140] Karl-Dieter Crisman, Abraham Holleran, Micah Martin, and Josephine Noonan. Voting on
cyclic orders, group theory, and ballots. arXiv preprint arXiv:2211.04545, 2022.

[141] John Cullinan, Samuel K Hsiao, and David Polett. A borda count for partially ordered ballots.
Social Choice and Welfare, 42:913–926, 2014.

[142] B Curtis Eaves. Finite solution of pure trade markets with cobb-douglas utilities. Economic
Equilibrium: Model Formulation and Solution, pages 226–239, 1985.

[143] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

[144] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Nar-
whal and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Sev-
enteenth European Conference on Computer Systems, pages 34–50, 2022.

[145] Sourav Das, Vinith Krishnan, and Ling Ren. Efficient cross-shard transaction execution in
sharded blockchains. arXiv preprint arXiv:2007.14521, 2020.

[146] Nikhil R Devanur, Jugal Garg, and László A Végh. A rational convex program for linear
arrow-debreu markets. ACM Transactions on Economics and Computation (TEAC), 5(1):1–
13, 2016.

[147] Nikhil R Devanur and Vijay V Vazirani. An improved approximation scheme for comput-
ing Arrow-Debreu prices for the linear case. In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 149–155. Springer, 2003.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

BIBLIOGRAPHY 209

[148] Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. Muxproofs: Succinct arguments for
machine computation from tuple lookups. Cryptology ePrint Archive, 2023.

[149] Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for
convex optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.

[150] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding concurrency
to smart contracts. Distributed Computing, pages 1–17, 2019.

[151] OpenZeppelin Documentation. Erc20. https://docs.openzeppelin.com/contracts/2.x/

api/token/erc20. Accessed 12/10/22.

[152] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded
systems. In 2013 European Control Conference (ECC), pages 3071–3076. IEEE, 2013.

[153] Eric Dorre. Hold on... this doesn’t make sense - frequent batch auctions, part i. https://

web.archive.org/web/20230809001613/https://highburyassociates.com/blog/wait-

a-0100-second-this-doesnt-make-sense-frequent-batch-auctions-part-i, 2020.
Accessed 6/3/2023.

[154] Ran Duan and Kurt Mehlhorn. A combinatorial polynomial algorithm for the linear Arrow–
Debreu market. Information and Computation, 243:112–132, 2015.

[155] Nicholas Economides and Robert A Schwartz. Electronic call market trading. Springer, 2001.

[156] Boris A Efimov and Gleb A Koshevoy. A topological approach to social choice with infinite
populations. Mathematical Social Sciences, 27(2):145–157, 1994.

[157] Michael Egorov. Stableswap-efficient mechanism for stablecoin liquidity. Retrieved Feb,
24:2021, 2019.

[158] Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-mutuel
method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.

[159] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721: Erc-721 non-
fungible token standard. Ethereum Improvement Proposals, 721, 2018.

[160] William Entriken, Dieter Shirley, and Nastassia Sachs. Eip-721: Non-fungible token standard.
Ethereum Improvement Protocols, 721, 2018.

[161] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty:
front-running attacks on blockchain. In Financial Cryptography and Data Security: FC 2019
International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers 23, pages 170–189. Springer, 2020.

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://web.archive.org/web/20230809001613/https://highburyassociates.com/blog/wait-a-0100-second-this-doesnt-make-sense-frequent-batch-auctions-part-i
https://web.archive.org/web/20230809001613/https://highburyassociates.com/blog/wait-a-0100-second-this-doesnt-make-sense-frequent-batch-auctions-part-i
https://web.archive.org/web/20230809001613/https://highburyassociates.com/blog/wait-a-0100-second-this-doesnt-make-sense-frequent-batch-auctions-part-i

BIBLIOGRAPHY 210

[162] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal fees for geometric mean market
makers. In International Conference on Financial Cryptography and Data Security, pages
65–79. Springer, 2021.

[163] Brandon Fain, Ashish Goel, Kamesh Munagala, and Nina Prabhu. Random dictators with a
random referee: Constant sample complexity mechanisms for social choice. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 1893–1900, 2019.

[164] Jose M Faleiro and Daniel J Abadi. Rethinking serializable multiversion concurrency control.
arXiv preprint arXiv:1412.2324, 2014.

[165] Zhou Fan, Francisco Marmolejo-Cossío, Ben Altschuler, He Sun, Xintong Wang, and David C
Parkes. Differential liquidity provision in uniswap v3 and implications for contract design.
arXiv preprint arXiv:2204.00464, 2022.

[166] Zhou Fan, Francisco Marmolejo-Cossio, Daniel Moroz, Michael Neuder, Rithvik Rao, and
David C Parkes. Strategic liquidity provision in uniswap v3. arXiv preprint arXiv:2106.12033,
2023.

[167] Matheus VX Ferreira and David C Parkes. Credible decentralized exchange design via verifiable
sequencing rules. arXiv preprint arXiv:2209.15569, 2022.

[168] Peter C Fishburn. Arrow’s impossibility theorem: concise proof and infinite voters. Journal
of Economic Theory, 2(1):103–106, 1970.

[169] Stellar Development Foundation. Stellar for cbdcs. https://resources.stellar.org/hubfs/

Stellar_CBDC_Whitepaper.pdf. Accessed 2/24/2023.

[170] Stellar Development Foundation. Ukraine electronic hryvnia pilot launched by tas-
combank and bitt on stellar. https://web.archive.org/web/20230401101149/https:

//www.stellar.org/press-releases/ukraine-electronic-hryvnia-pilot-launched-

by-tascombank-and-bitt-on-stellar, December 2021.

[171] Rafael Frongillo, Maneesha Papireddygari, and Bo Waggoner. An axiomatic characterization
of cfmms and equivalence to prediction markets. arXiv preprint arXiv:2302.00196, 2023.

[172] Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

[173] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, 2019.

https://resources.stellar.org/hubfs/Stellar_CBDC_Whitepaper.pdf
https://resources.stellar.org/hubfs/Stellar_CBDC_Whitepaper.pdf
https://web.archive.org/web/20230401101149/https://www.stellar.org/press-releases/ukraine-electronic-hryvnia-pilot-launched-by-tascombank-and-bitt-on-stellar
https://web.archive.org/web/20230401101149/https://www.stellar.org/press-releases/ukraine-electronic-hryvnia-pilot-launched-by-tascombank-and-bitt-on-stellar
https://web.archive.org/web/20230401101149/https://www.stellar.org/press-releases/ukraine-electronic-hryvnia-pilot-launched-by-tascombank-and-bitt-on-stellar

BIBLIOGRAPHY 211

[174] Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu. Utilizing parallelism in
smart contracts on decentralized blockchains by taming application-inherent conflicts. arXiv
preprint arXiv:2201.03749, 2022.

[175] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology-EUROCRYPT 2015: 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, pages 281–310. Springer, 2015.

[176] Jugal Garg, Edin Husić, and László A Végh. Auction algorithms for market equilibrium with
weak gross substitute demands and their applications. arXiv preprint arXiv:1908.07948, 2019.

[177] Jugal Garg and László A Végh. A strongly polynomial algorithm for linear exchange markets.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
54–65, 2019.

[178] Corey Garriott and Ryan Riordan. Trading on long-term information. In Proceedings of Paris
December 2020 Finance Meeting EUROFIDAI-ESSEC, 2020.

[179] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia
Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain execution by turning
ordering curse to a performance blessing. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, pages 232–244, 2023.

[180] Austin Gerig and David Michayluk. Automated liquidity provision and the demise of tradi-
tional market making. arXiv preprint arXiv:1007.2352, 2010.

[181] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 51‒68, New York, NY, USA, 2017. Association
for Computing Machinery.

[182] Lawrence R Glosten and Paul R Milgrom. Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders. Journal of financial economics, 14(1):71–100,
1985.

[183] Ashish Goel and Geoffrey Ramseyer. Continuous credit networks and layer 2 blockchains:
Monotonicity and sampling. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 613–635, 2020.

[184] Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: Undefining money. 2021.

BIBLIOGRAPHY 212

[185] Mohak Goyal, Geoffrey Ramseyer, Ashish Goel, and David Mazieres. Finding the right curve:
Optimal design of constant function market makers. EC ’23, page 783‒812, New York, NY,
USA, 2023. Association for Computing Machinery. DOI 10.1145/3580507.3597688.

[186] F Grafe and J Grafe. On arrow-type impossibility theorems with infinite individuals and
infinite alternatives. Economics Letters, 11(1-2):75–79, 1983.

[187] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II 35, pages 305–326. Springer, 2016.

[188] Günter Hägele and Friedrich Pukelsheim. Lulls’ writings on electoral sytems. 2001.

[189] Runchao Han, Haoyu Lin, and Jiangshan Yu. On the optionality and fairness of atomic swaps.
In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pages 62–75,
2019.

[190] Robin Hanson. Combinatorial information market design. Information Systems Frontiers,
5(1):107–119, 2003.

[191] Robin Hanson. Logarithmic markets scoring rules for modular combinatorial information
aggregation. The Journal of Prediction Markets, 1(1):3–15, 2007.

[192] Theodore E Harris. The existence of stationary measures for certain markov processes. In
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol-
ume 2, pages 113–124, 1956.

[193] Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. Risks and returns of uniswap v3
liquidity providers. arXiv preprint arXiv:2205.08904, 2022.

[194] Eyal Hertzog, Guy Benartzi, and Galia Benartzi. Bancor protocol. 2018.

[195] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. In Advance Papers of the Conference, volume 3, page 235. Stanford
Research Institute Menlo Park, CA, 1973.

[196] Graydon Hoare. Core advancement protocol 53: Smart contract data, Mar 2022. https:

//github.com/stellar/stellar-protocol/blob/master/core/cap-0053.md.

[197] BIS Innovation Hub. Project helvetia phase ii: Settling tokenised assets in wholesale cbdc.
https://www.bis.org/publ/othp45.pdf, 2022. Accessed 2/24/2023.

https://github.com/stellar/stellar-protocol/blob/master/core/cap-0053.md
https://github.com/stellar/stellar-protocol/blob/master/core/cap-0053.md
https://www.bis.org/publ/othp45.pdf

BIBLIOGRAPHY 213

[198] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed. {ZooKeeper}: Wait-
free coordination for internet-scale systems. In 2010 USENIX Annual Technical Conference
(USENIX ATC 10), 2010.

[199] Kamal Jain. A polynomial time algorithm for computing an Arrow–Debreu market equilibrium
for linear utilities. SIAM Journal on Computing, 37(1):303–318, 2007.

[200] Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating market equilibria. In Ap-
proximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques,
pages 98–108. Springer, 2003.

[201] Jonathan Jove, Geoffrey Ramseyer, and Jay Geng. Core advancement protocol 45: Speedex -
pricing. https://web.archive.org/web/20221013012607/https://github.com/stellar/

stellar-protocol/blob/master/core/cap-0045.md, Feb 2022.

[202] Mudabbir Kaleem, Keshav Kasichainula, Rabimba Karanjai, Lei Xu, Zhimin Gao, Lin Chen,
and Weidong Shi. An event driven framework for smart contract execution. In Proceedings of
the 15th ACM International Conference on Distributed and Event-based Systems, pages 78–89,
2021.

[203] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W Fel-
ten. Arbitrum: Scalable, private smart contracts. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1353–1370, 2018.

[204] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike Dahlin.
All about eve: Execute-verify replication for multi-core servers. In Presented as part of the
10th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 12),
pages 237–250, 2012.

[205] Alireza Kavousi, Duc V Le, Philipp Jovanovic, and George Danezis. Blindperm: Efficient mev
mitigation with an encrypted mempool and permutation. Cryptology ePrint Archive, 2023.

[206] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165–175, 2021.

[207] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permis-
sionless setting. In Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop,
pages 3–14, 2022.

[208] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. Cryptology ePrint Archive, 2021.

https://web.archive.org/web/20221013012607/https://github.com/stellar/stellar-protocol/blob/master/core/cap-0045.md
https://web.archive.org/web/20221013012607/https://github.com/stellar/stellar-protocol/blob/master/core/cap-0045.md

BIBLIOGRAPHY 214

[209] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part
III 40, pages 451–480. Springer, 2020.

[210] Zoltán Király and Péter Kovács. Efficient implementations of minimum-cost flow algorithms.
arXiv preprint arXiv:1207.6381, 2012.

[211] Alan P Kirman and Dieter Sondermann. Arrow’s theorem, many agents, and invisible dicta-
tors. Journal of Economic Theory, 5(2):267–277, 1972.

[212] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal machine executions
without universal circuits. Cryptology ePrint Archive, 2022.

[213] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for customizable
constraint systems. Cryptology ePrint Archive, 2023.

[214] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge argu-
ments from folding schemes. In Annual International Cryptology Conference, pages 359–388.
Springer, 2022.

[215] Kiyoshi Kuga. Weak gross substitutability and the existence of competitive equilibrium. Econo-
metrica: Journal of the Econometric Society, pages 593–599, 1965.

[216] Albert S Kyle. Continuous auctions and insider trading. Econometrica: Journal of the Econo-
metric Society, pages 1315–1335, 1985.

[217] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

[218] Pi Lanningham and SundaeSwap Team. Sundaeswap fundamentals. https://web.archive.

org/web/20220413054236/https://sundaeswap.finance/papers/SundaeSwap-2021-06-

01-Fundamentals.pdf, June 2021.

[219] Yi-Tsung Lee, Roberto Riccò, and Kai Wang. Frequent batch auctions vs. continuous trading:
Evidence from taiwan. Continuous Trading: Evidence from Taiwan (November 19, 2020),
2020.

[220] Alfred Lehar, Christine A Parlour, and Marius Zoican. Liquidity fragmentation on decentral-
ized exchanges. Available at SSRN 4267429, 2022.

[221] Robert Leshner and Geoffrey Hayes. Compound: The money market protocol. White Paper,
2019.

https://web.archive.org/web/20220413054236/https://sundaeswap.finance/papers/SundaeSwap-2021-06-01-Fundamentals.pdf
https://web.archive.org/web/20220413054236/https://sundaeswap.finance/papers/SundaeSwap-2021-06-01-Fundamentals.pdf
https://web.archive.org/web/20220413054236/https://sundaeswap.finance/papers/SundaeSwap-2021-06-01-Fundamentals.pdf

BIBLIOGRAPHY 215

[222] Lamport Leslie. The part-time parliament. ACM Trans. on Computer Systems, 16:133–169,
1998.

[223] Yudi Levi. Bancor’s response to today’s smart contract vulnerability. https://web.archive.

org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-

s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877, Jun 2020.

[224] David A Levin and Yuval Peres. Markov Chains and Mixing Times, volume 107. American
Mathematical Soc., 2017.

[225] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor
Vafeiadis. Automating the choice of consistency levels in replicated systems. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages 281–292, 2014.

[226] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Ro-
drigues. Making {Geo-Replicated} systems fast as possible, consistent when necessary. In 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pages 265–
278, 2012.

[227] Cheng Li, Nuno Preguiça, and Rodrigo Rodrigues. Fine-grained consistency for geo-replicated
systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 359–372,
2018.

[228] Rujia Li, Xuanwei Hu, Qin Wang, Sisi Duan, and Qi Wang. Transaction fairness in blockchains,
revisited. Cryptology ePrint Archive, 2023.

[229] Haoran Lin, Yajin Zhou, and Lei Wu. Operation-level concurrent transaction execution for
blockchains. arXiv preprint arXiv:2211.07911, 2022.

[230] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Michael
Williams. Replication in the harp file system. ACM SIGOPS Operating Systems Review,
25(5):226–238, 1991.

[231] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with cops. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, pages 401–416, 2011.

[232] Ramon Llull and Jordi Gaya. Ars notatoria. Citema, 1978.

[233] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
’19, page 80‒96, New York, NY, USA, 2019. Association for Computing Machinery.

https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877

BIBLIOGRAPHY 216

[234] James Lovejoy, Madars Virza, Cory Fields, Kevin Karwaski, Anders Brownworth, and Neha
Narula. Hamilton: A high-performance transaction processor for central bank digital curren-
cies. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
23), pages 901–915, 2023.

[235] Tyler Lu and Craig Boutilier. Multi-winner social choice with incomplete preferences. In
Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

[236] Ananth Madhavan. Trading mechanisms in securities markets. the Journal of Finance,
47(2):607–641, 1992.

[237] Andrew Makhorin. Glpk (gnu linear programming kit). http://www.gnu.org/s/glpk/glpk.html,
2008.

[238] Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value (mev) protection on a dag.
arXiv preprint arXiv:2208.00940, 2022.

[239] Akaki Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, and Edward W Felten. Buying
time: Latency racing vs. bidding in fair transaction ordering. arXiv preprint arXiv:2306.02179,
2023.

[240] Viktor Manahov. Front-running scalping strategies and market manipulation: why does high-
frequency trading need stricter regulation? Financial Review, 51(3):363–402, 2016.

[241] Fernando Martinelli and Nikolai Mushegian. Balancer whitepaper. Technical report, 9 2019.
Accessed 2/4/2022.

[242] David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 32, 2015.

[243] Jason Milionis, Ciamac C Moallemi, and Tim Roughgarden. A myersonian framework for
optimal liquidity provision in automated market makers. arXiv preprint arXiv:2303.00208,
2023.

[244] Jason Milionis, Ciamac C Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing. arXiv preprint arXiv:2208.06046, 2022.

[245] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and communica-
tions security, pages 31–42, 2016.

[246] T Mizuta and K Izumi. Investigation of frequent batch auctions using agent based model. In
JPX working paper. Japan Excgange Group, 2016.

BIBLIOGRAPHY 217

[247] Nicolas Mohnblatt. Sangria: a folding scheme for plonk. https://github.com/

geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf, 2023.

[248] Mojang Studios. Minecraft. https://www.minecraft.net/, 2009.

[249] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.

org/bitcoin.pdf.

[250] EI Nenakov and ME Primak. One algorithm for finding solutions of the arrow-debreu model.
Kibernetica, 3:127–128, 1983.

[251] Reserve Bank of Australia. Research project exploring use cases for cbdc.
https://web.archive.org/web/20230301223652/https://www.rba.gov.au/media-

releases/2023/mr-23-06.html, March 2023.

[252] Bank of England and HM Treasury. The digital pound: a new form of money for households and
businesses? https://www.bankofengland.co.uk/-/media/boe/files/paper/2023/the-

digital-pound-consultation-working-paper.pdf, February 2023.

[253] Board of Governors of the Federal Reserve System. Federal reserve announces
that its new system for instant payments, the fednowő service, is now live.
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/

newsevents/pressreleases/other20230720a.htm, June 2023.

[254] Reserve Bank of India. Concept note on central bank digital currency. https:

//web.archive.org/web/20230331170938/https://www.rbi.org.in/Scripts/

PublicationReportDetails.aspx?UrlPage=&ID=1218, October 2020.

[255] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing, pages 8–17, 1988.

[256] Working Group on E-CNY Research and Development of the People’s Bank of China. Progress
of research and development of E-CNY in china. http://www.pbc.gov.cn/en/3688110/

3688172/4157443/4293696/2021071614584691871.pdf, Jul 2021. Accessed 12/14/2021.

[257] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX annual technical conference (USENIX ATC 14), pages 305–319, 2014.

[258] Abraham Othman, David M Pennock, Daniel M Reeves, and Tuomas Sandholm. A practical
liquidity-sensitive automated market maker. ACM Transactions on Economics and Computa-
tion (TEAC), 1(3):1–25, 2013.

https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://www.minecraft.net/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20230301223652/https://www.rba.gov.au/media-releases/2023/mr-23-06.html
https://web.archive.org/web/20230301223652/https://www.rba.gov.au/media-releases/2023/mr-23-06.html
https://www.bankofengland.co.uk/-/media/boe/files/paper/2023/the-digital-pound-consultation-working-paper.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2023/the-digital-pound-consultation-working-paper.pdf
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm
https://web.archive.org/web/20230721012415/https://www.federalreserve.gov/newsevents/pressreleases/other20230720a.htm
https://web.archive.org/web/20230331170938/https://www.rbi.org.in/Scripts/PublicationReportDetails.aspx?UrlPage=&ID=1218
https://web.archive.org/web/20230331170938/https://www.rbi.org.in/Scripts/PublicationReportDetails.aspx?UrlPage=&ID=1218
https://web.archive.org/web/20230331170938/https://www.rbi.org.in/Scripts/PublicationReportDetails.aspx?UrlPage=&ID=1218
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf

BIBLIOGRAPHY 218

[259] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. Scaling verifiable computation
using efficient set accumulators. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2075–2092. USENIX Association, August 2020.

[260] Andreas Park. Conceptual flaws of decentralized automated market making. Available at
SSRN 3805750, 2022.

[261] Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering in evm. 2020.

[262] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts. White paper,
pages 1–47, 2017.

[263] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

[264] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling highly contended oltp workloads using
fast dynamic partitioning. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 527–542, 2020.

[265] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198–214.
IEEE, 2022.

[266] Sonbol Rahimpour and Majid Khabbazian. Spear: fast multi-path payment with redundancy.
In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, pages 183–
191, 2021.

[267] Geoffrey Ramseyer and Ashish Goel. Fair ordering via social choice theory. arXiv preprint
arXiv:2304.02730, 2023.

[268] Geoffrey Ramseyer, Ashish Goel, and David Mazières. Liquidity in credit networks with
constrained agents. In Proceedings of The Web Conference 2020, pages 2099–2108, 2020.

[269] Geoffrey Ramseyer, Ashish Goel, and David Mazières. SPEEDEX: A scalable, parallelizable,
and economically efficient decentralized EXchange. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 849–875, Boston, MA, April 2023.
USENIX Association.

[270] Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and David Mazières. Augmenting batch
exchanges with constant function market makers. arXiv preprint arXiv:2210.04929, 2022.

[271] Geoffrey Ramseyer and David Mazières. Groundhog: Scaling smart contracting through com-
mutative transaction semantics. 2023.

BIBLIOGRAPHY 219

[272] Daniël Reijsbergen and Tien Tuan Anh Dinh. On exploiting transaction concurrency to speed
up blockchains. In 2020 IEEE 40th International Conference on Distributed Computing Sys-
tems (ICDCS), pages 1044–1054. IEEE, 2020.

[273] Dan Robinson. Uniswap v3: The universal amm. https://web.archive.org/web/

20210622195731/https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-

amm/, Jun 2021.

[274] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer.
Scalable and probabilistic leaderless bft consensus through metastability. arXiv preprint
arXiv:1906.08936, 2019.

[275] Michael H Rothkopf, Aleksandar Pekeč, and Ronald M Harstad. Computationally manageable
combinational auctions. Management science, 44(8):1131–1147, 1998.

[276] Tim Roughgarden. Tweet thread on cfmm research directions. https://web.

archive.org/web/20221128200801/https://twitter.com/Tim_Roughgarden/status/

1465095782533582858, Nov 2021. Accessed 08/03/2023.

[277] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen, and
Beng Chin Ooi. A transactional perspective on execute-order-validate blockchains. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages
543–557, 2020.

[278] Vikram Saraph and Maurice Herlihy. An empirical study of speculative concurrency in
ethereum smart contracts. arXiv preprint arXiv:1901.01376, 2019.

[279] Ferdinand Mongin Saussure. Course in general linguistics. Columbia University Press, [1916]
2011.

[280] Leopold Schabel. Reflections on solana’s sept 14 outage. https://web.archive.org/

web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-

outage/, Oct 2021. Accessed 12/7/2021.

[281] Jan Christoph Schlegel, Mateusz Kwaśnicki, and Akaki Mamageishvili. Axioms for constant
function market makers. In Proceedings of the 24th ACM Conference on Economics and
Computation, EC ’23, page 1079, New York, NY, USA, 2023. Association for Computing
Machinery.

[282] Noah Schmid, Christian Cachin, Orestis Alpos, and Giorgia Marson. Secure causal atomic
broadcast, 2021.

[283] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

https://web.archive.org/web/20210622195731/https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-amm/
https://web.archive.org/web/20210622195731/https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-amm/
https://web.archive.org/web/20210622195731/https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-amm/
https://web.archive.org/web/20221128200801/https://twitter.com/Tim_Roughgarden/status/1465095782533582858
https://web.archive.org/web/20221128200801/https://twitter.com/Tim_Roughgarden/status/1465095782533582858
https://web.archive.org/web/20221128200801/https://twitter.com/Tim_Roughgarden/status/1465095782533582858
https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/
https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/
https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/

BIBLIOGRAPHY 220

[284] Robert A Schwartz. The electronic call auction: Market mechanism and trading: Building a
better stock market, volume 7. Springer Science & Business Media, 2012.

[285] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level
language. arXiv preprint arXiv:1801.00687, 2018.

[286] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Symposium on Self-Stabilizing Systems, pages 386–400. Springer, 2011.

[287] Clara Shikhelman and Sergei Tikhomirov. Unjamming lightning: A systematic approach.
Cryptology ePrint Archive, 2022.

[288] Alexander Spiegelman and Rati Gelashvili. Block-stm: How we execute over 160k trans-
actions per second on the aptos blockchain. https://medium.com/aptoslabs/block-stm-

how-we-execute-over-160k-transactions-per-second-on-the-aptos-blockchain-

3b003657e4ba.

[289] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and Natacha
Crooks. Basil: Breaking up bft with acid (transactions). In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages 1–17, 2021.

[290] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck.
Scalability in the xfs file system. In USENIX Annual Technical Conference, volume 15, 1996.

[291] NEAR Team. Near launches nightshade sharding, paving the way for mass adop-
tion. https://web.archive.org/web/20221007081239/https://near.org/blog/near-

launches-nightshade-sharding-paving-the-way-for-mass-adoption/, November 2021.
Accessed 10/18/2022.

[292] SundaeSwap Team. Sundaeswap scalability. https://web.archive.org/web/

20220523234648/https://sundaeswap.finance/posts/sundaeswap-scalability, Novem-
ber 2021.

[293] Tether. Tether: Fiat currencies on the bitcoin blockchain. https://web.archive.org/web/

20211103054629/https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.

pdf. Accessed 12/14/2021.

[294] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J Abadi. Calvin: fast distributed transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,
pages 1–12, 2012.

[295] T Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3):185–206, 1987.

https://medium.com/aptoslabs/block-stm-how-we-execute-over-160k-transactions-per-second-on-the-aptos-blockchain-3b003657e4ba
https://medium.com/aptoslabs/block-stm-how-we-execute-over-160k-transactions-per-second-on-the-aptos-blockchain-3b003657e4ba
https://medium.com/aptoslabs/block-stm-how-we-execute-over-160k-transactions-per-second-on-the-aptos-blockchain-3b003657e4ba
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20220523234648/https://sundaeswap.finance/posts/sundaeswap-scalability
https://web.archive.org/web/20220523234648/https://sundaeswap.finance/posts/sundaeswap-scalability
https://web.archive.org/web/20211103054629/https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://web.archive.org/web/20211103054629/https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://web.archive.org/web/20211103054629/https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

BIBLIOGRAPHY 221

[296] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[297] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

[298] Mohammad Amin Vafadar and Majid Khabbazian. Condorcet attack against fair transaction
ordering. arXiv preprint arXiv:2306.15743, 2023.

[299] Robbert Van Renesse and Fred B Schneider. Chain replication for supporting high throughput
and availability. In OSDI, volume 4, 2004.

[300] Mikhail Vladimirov and Dmitry Khovratovich. Erc20 api: An attack vector on the ap-
prove/transferfrom methods. https://web.archive.org/web/20221108114451/https://

docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit.

[301] Fabian Vogelsteller and Vitalik Buterin. Eip 20: Erc-20 token standard. Ethereum Improve-
ment Proposals, 20, 2015.

[302] Tom Walther. Multi-token batch auctions with uniform clearing prices - features and models.
3 2021.

[303] Gerui Wang, Shuo Wang, Vivek Bagaria, David Tse, and Pramod Viswanath. Prism removes
consensus bottleneck for smart contracts. In 2020 Crypto Valley Conference on Blockchain
Technology (CVCBT), pages 68–77. IEEE, 2020.

[304] Will Warren and Amir Bandeali. 0x: An open protocol for decentralized exchange on the
ethereum blockchain. 2017.

[305] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William
Knottenbelt. Sok: Decentralized finance (defi). In Proceedings of the 4th ACM Conference on
Advances in Financial Technologies, pages 30–46, 2022.

[306] E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society: Finding web3’s soul.
Available at SSRN 4105763, 2022.

[307] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper, 21,
2016.

[308] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

https://web.archive.org/web/20221108114451/https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://web.archive.org/web/20221108114451/https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

BIBLIOGRAPHY 222

[309] Yu Xia, Xiangyao Yu, William Moses, Julian Shun, and Srinivas Devadas. Litm: a lightweight
deterministic software transactional memory system. In Proceedings of the 10th International
Workshop on Programming Models and Applications for Multicores and Manycores, pages 1–10,
2019.

[310] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando Krell,
and Philippe Camacho. Veri-zexe: Decentralized private computation with universal setup.
Cryptology ePrint Archive, 2022.

[311] Anatoly Yakovenko. Sealevel: Parallel processing thousands of smart contracts.
https://web.archive.org/web/20220124143042/https://medium.com/solana-

labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192.
Accessed 12/6/2021.

[312] Anatoly Yakovenko. Solana: A new architecture for a high performance blockchain v0.8.13.
Whitepaper, 2018.

[313] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse, Giulia Fanti, and
Pramod Viswanath. Prism: Scaling bitcoin by 10,000 x. arXiv preprint arXiv:1909.11261,
2019.

[314] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispers-
edLedger: High-Throughput byzantine consensus on variable bandwidth networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages
493–512, Renton, WA, April 2022. USENIX Association.

[315] Yinyu Ye. A path to the Arrow–Debreu competitive market equilibrium. Mathematical Pro-
gramming, 111(1-2):315–348, 2008.

[316] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. Hot-
stuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, PODC ’19, page 347‒356, New York, NY,
USA, 2019. Association for Computing Machinery.

[317] Wei Yu, Kan Luo, Yi Ding, Guang You, and Kai Hu. A parallel smart contract model. In Pro-
ceedings of the 2018 International Conference on Machine Learning and Machine Intelligence,
pages 72–77, 2018.

[318] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications III: Variational Methods
and Optimization. Springer Science & Business Media, 1985.

[319] Eberhard Zeidler. Applied Functional Analysis: Main Principles and their Applications, volume
109. Springer Science & Business Media, 1995.

https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192

BIBLIOGRAPHY 223

[320] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and Bryan Ford. Flash freezing
flash boys: Countering blockchain front-running. In The Workshop on Decentralized Internet,
Networks, Protocols, and Systems (DINPS), 2022.

[321] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng Zhan, Song Guo, and Wuhui Chen. Sky-
chain: A deep reinforcement learning-empowered dynamic blockchain sharding system. In 49th
International Conference on Parallel Processing-ICPP, pages 1–11, 2020.

[322] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without byzantine oligarchy. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 633–649, 2020.

[323] 日本銀行決済機構局. 中央銀行デジタル通貨に関する実証実験「概念実証フェーズ 2」結
果報告書. https://www.boj.or.jp/paym/digital/dig230417a.pdf, translated at https:

//www.boj.or.jp/en/paym/digital/dig230529a.pdf, May 2023.

https://www.boj.or.jp/paym/digital/dig230417a.pdf
https://www.boj.or.jp/en/paym/digital/dig230529a.pdf
https://www.boj.or.jp/en/paym/digital/dig230529a.pdf

	Preface
	Acknowledgments
	Introduction
	Thesis Objective
	Technical Overview
	Replicated State Machines
	Scalability and Computational Performance
	Ordering and Information Flow
	Economic Performance

	Thesis Outline

	Groundhog: Scaling Smart Contracting via Commutative Transaction Semantics
	Introduction
	Architecture Overview
	Design Properties
	Design Motivation

	Commutative Semantics
	Snapshot Reads
	Typed Storage Objects

	Evaluation: Semantic Flexibility
	Tokens
	Locks
	Replay Prevention
	Auctions
	Money Market
	Sequencers and the Actor Model

	Implementation
	Block Proposal via 2-Phase Locking
	Additional Details

	Evaluation: Scalability
	Extension: Incomplete External Calls
	Design Limitations
	Related Work
	Semantic Changes
	Parallel Execution
	Ordering Semantics
	Divided State

	Conclusion

	SPEEDEX: A Scalable, Parallelizable, and Economically Efficient Decentralized EXchange
	Introduction
	SPEEDEX: Towards an Ideal DEX
	SPEEDEX Overview

	System Architecture
	SPEEDEX Module Architecture
	Design Properties

	Commutative DEX Semantics
	Price Computation
	Requirements
	From Theory To Practice

	Price Computation: Tâtonnement
	Efficient Demand Queries
	Multiple Tâtonnement Instances

	Evaluation: Price Computation
	Accuracy and Orderbook Size
	Robustness Checks

	Evaluation: Scalability
	Alternative Scaling Techniques

	Design Limitations and Mitigations
	Implementation Details
	Blockchain Integration
	Caches and Tâtonnement
	Batched Trie Design

	Related Work
	Conclusion

	Fair Ordering via Streaming Social Choice Theory
	Introduction
	Our Results

	Preliminaries and System Model
	Related Work
	Defining Fair Ordering
	Batch Order Fairness
	Batch Minimality
	Comparison to Prior Work

	Ranked Pairs Voting
	Streaming Ranked Pairs
	Decisions Are Local
	A Streaming Algorithm

	Liveness and Efficiency
	Efficient Marginal Runtime
	Protocol Liveness
	Trading Accuracy for Liveness

	Protocol Instantiation
	Conclusion

	Finding the Right Curve: Optimal Design of Constant Function Market Makers
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Model
	Liquidity
	CFMM Inefficiency
	A Liquidity Provider's Beliefs
	Belief Functions From Price Dynamics

	Optimizing for Liquidity Provision
	A Convex Program for Optimal Liquidity Allocation
	Optimality Conditions

	Common CFMMs and Beliefs
	The Uniform, Independent Belief: Constant Product Market Makers
	Uniform Beliefs on Exchange Rate Ranges: Concentrated Liquidity Positions
	Skew in Belief Function: Weighted Product Market Makers
	Logarithmic Market Scoring Rule

	Market-Maker Profit and Loss
	Fee Revenue
	Liquidity Provider Loss
	Net Profit
	Divergence Loss Shifts Liquidity Away From the Current Exchange Rate

	Conclusion

	Augmenting Batch Exchanges with Constant Function Market Makers
	Introduction
	Preliminaries
	System Model
	Our Results
	Related Work

	Axioms of Batch Exchanges with CFMMs
	Asset Conservation
	Uniform Valuations
	Limit Sell Orders Make a Best Response
	CFMM Design Specification

	Desirable Properties of Market Equilibria
	Pareto Optimality
	Price Coherence and Mitigating Cyclic Arbitrage
	Joint Price Discovery and Mitigating Parallel Running
	Locally Computable Response for CFMMs
	Path Independence

	Beyond Market Equilibria Solutions
	A Convex Program for 2-asset WGS Demands
	From a Demand Function to a Continuum of Limit Orders
	Convex Program
	Rationality of Convex Program

	Conclusion and Open Problems
	Open Problems

	Conclusions
	Chapter 3 Supporting Information
	Mathematical Model Underlying SPEEDEX
	Arrow-Debreu Exchange Markets
	From SPEEDEX to Exchange Markets
	Existence of Unique* Equilibrium Prices

	Approximation Error
	Tâtonnement Modifications
	Price Update Rule
	Demand Smoothing
	Periodic Feasibility Queries

	Linear Program
	Market Structure Decomposition
	Alternative Batch Solving Strategies
	Convex Optimization
	Mixed Integer Programming

	Tâtonnement Preprocessing
	Buy Offers are PPAD-hard
	Deterministic Filtering Performance
	Block-STM Baseline
	Additional Implementation Details
	Data Organization
	Data Storage and Persistence
	Follower Optimizations
	Replay Prevention
	Fast Offer Sorting
	Nondeterministic Block Assembly

	Additional Replicas

	Chapter 4 Supporting Information
	Truncation of Ranked Pairs
	On the Difficulty of Statically Choosing Gamma
	Themis and Early Finalization
	Ranked Pairs and Interleaved Components
	Algorithm 2 Is Not Asymptotically Live
	Oracle Implementation

	Chapter 5 Supporting Information
	CFMMs and Market Scoring Rules
	Continuous Trade Size Distributions
	Omitted Proofs
	Omitted Proofs of §5.2 and §5.3
	Omitted Proof of Corollary 5.4.6
	Omitted Proof of Corollary 5.4.7
	Omitted Proof of Lemma 5.4.8
	Omitted Proof of Lemma 5.4.10
	Omitted Proof of Corollary 5.4.12
	Omitted Proof of Corollary 5.4.15
	Omitted Proof of Corollary 5.4.16
	Omitted Proof of Corollary 5.4.17
	Omitted Proof of Proposition 5.5.3
	Omitted Proof of Proposition 5.5.5
	Omitted Proof of Proposition 5.5.6
	Omitted Proof of Proposition 5.6.4
	Omitted Proof of Theorem 5.6.7

	Chapter 6 Supporting Information
	Existence of Equilibra with Positive Valuations
	Trading Rule U and Parallel Running

	Bibliography

