BFMLALB (indexed)

BFloat16 floating-point multiply-add long to single-precision (bottom, indexed)

This BFloat16 floating-point multiply-add long instruction widens the even-numbered BFloat16 elements in the first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to single-precision format and then destructively multiplies and adds these values without intermediate rounding to the single-precision elements of the destination vector that overlap with the corresponding BFloat16 elements in the first source vector. This instruction is unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

313029282726252423222120191817161514131211109876543210
01100100111i3hZm0100i3l0ZnZda
o2opT

BFMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED; integer n = UInt(Zn); integer m = UInt(Zm); integer da = UInt(Zda); integer index = UInt(i3h:i3l);

Assembler Symbols

<Zda>

Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn>

Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm>

Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm>

Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

CheckSVEEnabled(); constant integer VL = CurrentVL; constant integer PL = VL DIV 8; constant integer elements = VL DIV 32; constant integer eltspersegment = 128 DIV 32; bits(VL) operand1 = Z[n, VL]; bits(VL) operand2 = Z[m, VL]; bits(VL) operand3 = Z[da, VL]; bits(VL) result; for e = 0 to elements-1 integer segmentbase = e - (e MOD eltspersegment); integer s = 2 * segmentbase + index; bits(16) element1 = Elem[operand1, 2 * e + 0, 16]; bits(16) element2 = Elem[operand2, s, 16]; bits(32) element3 = Elem[operand3, e, 32]; Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR); Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:


Internal version only: aarchmrs v2023-12_rel, pseudocode v2023-12_rel, sve v2023-12_rel ; Build timestamp: 2023-12-15T16:46

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.