SRSHL (multiple vectors)

Multi-vector signed rounding shift left

Shift the signed elements of the two or four first source vectors by corresponding elements of the two or four second source vectors and destructively place the rounded results in the corresponding elements of the two or four first source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is performed.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
11000001size1Zm010110010001Zdn0
U

SRSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

if !HaveSME2() then UNDEFINED; constant integer esize = 8 << UInt(size); integer dn = UInt(Zdn:'0'); integer m = UInt(Zm:'0'); constant integer nreg = 2;

Four registers
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
11000001size1Zm0010111010001Zdn00
U

SRSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

if !HaveSME2() then UNDEFINED; constant integer esize = 8 << UInt(size); integer dn = UInt(Zdn:'00'); integer m = UInt(Zm:'00'); constant integer nreg = 4;

Assembler Symbols

<Zdn1>

For the two registers variant: is the name of the first scalable vector register of the destination and first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and first source multi-vector group, encoded as "Zdn" times 4.

<T>

Is the size specifier, encoded in size:

size <T>
00 B
01 H
10 S
11 D
<Zdn4>

Is the name of the fourth scalable vector register of the destination and first source multi-vector group, encoded as "Zdn" times 4 plus 3.

<Zdn2>

Is the name of the second scalable vector register of the destination and first source multi-vector group, encoded as "Zdn" times 2 plus 1.

<Zm1>

For the two registers variant: is the name of the first scalable vector register of the second source multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source multi-vector group, encoded as "Zm" times 4.

<Zm4>

Is the name of the fourth scalable vector register of the second source multi-vector group, encoded as "Zm" times 4 plus 3.

<Zm2>

Is the name of the second scalable vector register of the second source multi-vector group, encoded as "Zm" times 2 plus 1.

Operation

CheckStreamingSVEEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV esize; array [0..3] of bits(VL) results; for r = 0 to nreg-1 bits(VL) operand1 = Z[dn+r, VL]; bits(VL) operand2 = Z[m+r, VL]; for e = 0 to elements-1 integer element = SInt(Elem[operand1, e, esize]); integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize); integer res; if shift >= 0 then res = element << shift; else shift = -shift; res = (element + (1 << (shift - 1))) >> shift; Elem[results[r], e, esize] = res<esize-1:0>; for r = 0 to nreg-1 Z[dn+r, VL] = results[r];


Internal version only: aarchmrs v2023-12_rel, pseudocode v2023-12_rel, sve v2023-12_rel ; Build timestamp: 2023-12-15T16:46

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.