STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/Store addressing modes.

313029282726252423222120191817161514131211109876543210
01001000000Rs0(1)(1)(1)(1)(1)RnRt
sizeLo0Rt2

STXRH <Ws>, <Wt>, [<Xn|SP>{, #0}]

integer n = UInt(Rn); integer t = UInt(Rt); integer s = UInt(Rs); // ignored by all loads and store-release boolean tagchecked = n != 31; boolean rt_unknown = FALSE; boolean rn_unknown = FALSE; if s == t then Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP); assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP}; case c of when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value when Constraint_UNDEF UNDEFINED; when Constraint_NOP EndOfInstruction(); if s == n && n != 31 then Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP); assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP}; case c of when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN when Constraint_UNDEF UNDEFINED; when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Ws>

Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:

0
If the operation updates memory.
1
If the operation fails to update memory.
<Wt>

Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP>

Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address; bits(16) data; AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked); if n == 31 then CheckSPAlignment(); address = SP[]; elsif rn_unknown then address = bits(64) UNKNOWN; else address = X[n, 64]; if rt_unknown then data = bits(16) UNKNOWN; else data = X[t, 16]; bit status = '1'; // Check whether the Exclusives monitors are set to include the // physical memory locations corresponding to virtual address // range [address, address+dbytes-1]. // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, // if accessed, would generate a synchronous Data Abort exception, it is // IMPLEMENTATION DEFINED whether the exception is generated. // It is a limitation of this model that synchronous Data Aborts are never // generated in this case, as Mem[] is not called. // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the // physical address packet is output when permitted and when // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction. // This behavior is not reflected here due to the previously stated limitation. if AArch64.ExclusiveMonitorsPass(address, 2, accdesc) then // This atomic write will be rejected if it does not refer // to the same physical locations after address translation. Mem[address, 2, accdesc] = data; status = ExclusiveMonitorsStatus(); X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.


Internal version only: aarchmrs v2023-12_rel, pseudocode v2023-12_rel, sve v2023-12_rel ; Build timestamp: 2023-12-15T16:46

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.