
Architecture Specification
Language

Language Reference Manual

Document number DDI0612

Document quality BET

Document version 00bet7

Document confidentiality Non-confidential

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.

Architecture Specification Language

Proprietary Notice

Architecture Specification Language Licence (“Licence”)

This Licence is a legal agreement between you (“Licensee”) and Arm Limited (“Arm”) for the use of this document
(“Document”). Arm is only willing to license the Document to you on condition that you agree to the terms of this Licence. By
using or copying the Document you indicate that you agree to be bound by the terms of this Licence. If you do not agree to the
terms of this Licence, Arm is unwilling to license this Document to you and you may not use or copy the Document.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee and its Subsidiaries under the intellectual
property rights in the Document owned or controlled by Arm or its affiliates, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide licence to use, and copy the Document for the purpose of developing, having developed, manufacturing,
having manufactured, offering to sell, selling, supplying or otherwise distributing products or derivative works developed using
the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
rights embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, third party patents, copyrights, trade secrets, or other intellectual property rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, IN NO EVENT WILL ARM
BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT
MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT;
AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS
LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.
LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm as set forth below. Without prejudice to any of its
other rights, if Licensee is in material breach of any of the terms and conditions of this Licence then Arm may terminate this
Licence immediately upon giving written notice to Licensee. Upon termination of this Licence by Licensee or by Arm, Licensee
shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this Licence, all
terms shall survive except for the licence grants.

Any material breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach.
Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder
shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

ii

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this
Licence, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: 13203 - Version 1 (February 2022)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is at Beta quality. All major features of the ASL language are described in the manual,
but some details might be subject to change. At this quality level the release will be sufficiently stable for initial product
development.

Web Address

Arm welcomes feedback on this document. To give feedback on this document, please contact the ASL Steering Board, using the
asl-support@arm.com alias, or other contact details that you may have received from Arm.

The latest version of this document can be found at https://developer.arm.com/documentation/DDI0612.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

Contents

Architecture Specification Language

Architecture Specification Language . ii
Proprietary Notice . ii
Confidentiality Status . iii
Product Status . iii
Web Address . iii

Preface
About this book . ix

Abstract . ix
Structure of this document . ix

Conventions . x
Typographical conventions . x
Numbers . x
Rules-based writing . x
Identifiers . xi
Examples . xi

Additional reading . xii
Feedback . xii

Feedback on this book . xii
Inclusive terminology commitment . xii
Open issues . xiii

Issues expected to be addressed in ASL Release 1.0 xiii
Issues likely to be addressed in a future ASL specification xiii

Language versioning . xiv
Major version . xiv
Minor version . xiv
Document version . xiv
Pre-release version . xiv
Revision . xiv
Precedence . xiv

Chapter 1 Introduction
1.1 Specifications . 18

1.1.1 Example specification 1 . 18
1.1.2 Example specification 2 . 18
1.1.3 Example specification 3 . 18
1.1.4 Specification errors . 19

Chapter 2 Lexical structure
2.1 Notational conventions . 21
2.2 Tokens . 22

2.2.1 Comments and other whitespace . 22
2.2.2 Literals . 22
2.2.3 Identifiers . 23
2.2.4 Delimiters . 24

2.3 Pragmas . 25
2.4 Annotations . 26

Chapter 3 Builtin Types

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

3.1 Singular and aggregate types . 29
3.2 Restrictions on anonymous types . 30
3.3 Integer type . 31
3.4 Real type . 32
3.5 String type . 33
3.6 Enumeration types . 34
3.7 Boolean type . 35
3.8 Bitvector type . 36

3.8.1 Bitfields . 36
3.9 Array types . 39
3.10 Tuple types . 40
3.11 Record types . 41
3.12 Exception types . 42
3.13 Named Types . 43

Chapter 4 Declaration syntax
4.1 Scope of global declarations . 45
4.2 Compile-time and execution-time . 46
4.3 Named type declarations . 47

4.3.1 Subtypes . 48
4.4 Global storage elements . 50

4.4.1 Initialization of globals . 50
4.5 Subprogram declarations . 52

4.5.1 Side-effect-free subprograms . 52
4.5.2 Functions and procedures . 53
4.5.3 Getters and Setters . 53

4.6 Pragmas . 56
4.7 Annotations . 57

4.7.1 Recursion limits . 57
4.7.2 Loop limits . 57

Chapter 5 Expression syntax
5.1 Conditional expressions . 59
5.2 Binary and unary operators . 60

5.2.1 Operator precedence . 61
5.3 Pattern matching . 63
5.4 Atomic expressions . 65
5.5 Record Expressions . 66
5.6 Exception Expressions . 67
5.7 Function Invocations . 68
5.8 Literal constants . 69
5.9 Arrays, bitslices and invoking getter functions 70

5.9.1 Bitslices . 71
5.10 Tuples . 73
5.11 Checked type conversions . 74
5.12 The UNKNOWN expression . 75

Chapter 6 Statement syntax
6.1 Statements . 77
6.2 Local storage elements . 78

6.2.1 Scope of local declarations . 79
6.2.2 Initialization of locals . 79

6.3 Procedure invocation statements . 81
6.4 Return statements . 82
6.5 Assignment statements . 83

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

6.5.1 Left hand side rules . 83
6.5.2 Multi-assignment . 84
6.5.3 Setter invocation . 84

6.6 Assertion statements . 85
6.7 Conditional statements . 86
6.8 Case Statements . 87

6.8.1 Case guards . 87
6.9 Repetitive statements . 89

6.9.1 Loop limits . 90
6.10 Exception handling . 91

6.10.1 Try statements . 91
6.10.2 Throw Statements . 91
6.10.3 Catchers . 91
6.10.4 Rethrowing exceptions . 92

6.11 Pragmas . 94

Chapter 7 Type inference and type-checking
7.1 Type nomenclature . 96

7.1.1 Named, Anonymous and Primitive types 96
7.1.2 Structure of a type . 96
7.1.3 Domain of Values for Types . 96

7.2 Execution-time checks . 97
7.3 Constrained types . 98
7.4 Constrained Integers . 100

7.4.1 Domain of integers . 100
7.5 Constraints on bitvector widths . 102

7.5.1 Types of bitvector . 102
7.5.2 Bitvectors of the form bits(-: ty) 102
7.5.3 Bitvectors of the form bits(expr) . 102
7.5.4 Summary of types of bitvector . 103
7.5.5 Domain of a bitvector . 103
7.5.6 Use of bitvectors of undetermined width 104
7.5.7 Use of bitvector storage elements and expressions 104
7.5.8 Examples of constrained width bitvectors 105

7.6 Relations on types . 107
7.6.1 Subtype-satisfaction . 107
7.6.2 Type-Satisfaction . 108
7.6.3 Type-clashing . 108
7.6.4 Subprogram clashing . 109

7.7 Type checking rules . 110
7.7.1 Global type checking . 110
7.7.2 Subprogram type checking . 110
7.7.3 Statement type checking . 110
7.7.4 Assignment and initialization type checking 111
7.7.5 Implicit constraints for compile-time-constant integer expressions 111

7.8 Subprograms and overloading . 112
7.8.1 Dependently typed bit vector formals 112
7.8.2 Subprogram invocations . 114
7.8.3 Primitive Operators . 122
7.8.4 Operator definitions . 122
7.8.5 Primitive operations on integers . 124
7.8.6 Primitive operations on bitvectors . 125

7.9 Conditional expressions . 127
7.9.1 Lowest common ancestor . 127

7.10 Comparison operations . 129

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

7.11 Bitvector concatenation . 130
7.11.1 Determined width of a bitvector concatenation 130
7.11.2 Constraint of a bitvector concatenation 130

7.12 Bitslices . 131
7.13 Checked type conversions . 132

7.13.1 Checked type conversions on expressions 132
7.13.2 Examples of checked type conversions 133

7.14 Bitvector width comparison . 136
7.15 Base values . 138

7.15.1 Base value of integers . 138
7.15.2 Base values of other types . 138

7.16 Type checking examples . 139
7.16.1 Named types example . 139
7.16.2 Anonymous types example . 140
7.16.3 Constrained types examples . 140

Chapter 8 Interpretation
8.1 Mutability . 146

8.1.1 Statically evaluable expressions . 146
8.1.2 Deciding equivalence for statically evaluable expressions 146

8.2 Interpretation of functions and procedures . 147
8.2.1 Execution-time subprograms . 147
8.2.2 Compile-time-constant subprograms 147

8.3 Evaluation of expressions . 149
8.3.1 Execution-time expressions . 149
8.3.2 Compile-time-constant expressions . 149

8.4 Behavior of types . 150
8.4.1 Execution-time types . 150
8.4.2 Compile-time-constant types . 150

8.5 Evaluation of expressions . 151
8.5.1 Evaluation order . 151

8.6 Evaluation of operations . 152
8.6.1 Boolean operations . 152
8.6.2 Real operations . 152
8.6.3 Integer operations . 152
8.6.4 Bitvector operations . 153

Chapter 9 Standard library
9.1 Standard integer functions and procedures . 155
9.2 Standard real functions and procedures . 156
9.3 Standard bitvector functions and procedures 157
9.4 Runtime exception types . 161
9.5 Other standard functions and procedures . 162

Chapter 10 Runtime Environment
10.1 Dynamic errors . 164

Chapter 11 Changes
11.1 Changes in version 1.0 . 166

11.1.1 Local Variables are initialized . 166
11.1.2 Slice notation . 166
11.1.3 Record type . 166
11.1.4 UNPREDICTABLE . 166
11.1.5 IMPLEMENTATION_DEFINED . 167
11.1.6 SEE . 167

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents
Contents

11.1.7 Implicit Variables . 167
11.1.8 Type specifiers . 167
11.1.9 Return types . 167
11.1.10 var keyword . 168
11.1.11 New BNFC grammar . 168
11.1.12 Primitive Boolean . 168
11.1.13 Case statements . 168
11.1.14 Field concatenation . 169
11.1.15 IMPLIES . 169
11.1.16 IFF . 169
11.1.17 Let declarations . 169
11.1.18 Bitvector concatenation . 169
11.1.19 Primitive Operations . 169
11.1.20 Type system changes . 169
11.1.21 Reserved Keywords . 169
11.1.22 Exceptions . 170
11.1.23 Qualified Identifiers . 170
11.1.24 Forward Declarations . 170
11.1.25 Constrained types . 170
11.1.26 Return type width inference . 170
11.1.27 Exclusive-OR operator . 170

11.2 Examples . 171
11.2.1 BigEndianReverse . 171
11.2.2 AlignBits . 172
11.2.3 FPRoundBase . 172

Chapter 12 ASL grammar

Alphabetical index of rules
Declaration Index . 183
Rules Index . 184
Info Index . 189

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Preface

About this book

Abstract

The increasing importance of the Arm architecture coupled with the increasing use of formal verification of both
hardware and software make it important to have a readable, precise way of describing the majority of the Arm
architecture. This specification defines Arm’s Architecture Specification Language (ASL) which is the language
used in Arm’s architecture reference manuals to describe the Arm architecture.

Structure of this document

This document has the following structure.

• Chapter 1 Introduction
• Chapter 2 Lexical structure
• Chapter 3 Builtin Types
• Chapter 4 Declaration syntax
• Chapter 5 Expression syntax
• Chapter 6 Statement syntax
• Chapter 7 Type inference and type-checking
• Chapter 8 Interpretation
• Chapter 9 Standard library
• Chapter 10 Runtime Environment
• Chapter 11 Changes
• Chapter 12 ASL grammar
• Chapter 12 Alphabetical index of rules

ix

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for source code examples.

Also used in the main text for references to other items appearing in source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Rules-based writing

This specification consists of a set of individual Declarations and Rules.

An implementation which is compliant with this specification must conform to all of the Declarations and Rules in
this specification.

Declarations and Rules must not be read in isolation, and where more than one exists relating to a particular feature,
they are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

Declaration
Each Declaration is identified by the letter D.

A Declaration is a statement which either:

• introduces the meaning of a concept or term, or
• describes the structure or encoding of data.

x

http://developer.arm.com

A Declaration does not describe behaviour.

Goal
A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Rule
Each Rule is identified by the letter R.

A Rule is a statement which either:

• describes the behaviour of part of ASL, or
• describes a requirement which must be met by specifications written in ASL.

A Rule does not define concepts or terminology.

Rationale
Some Declarations and Rules are accompanied by Rationale statements which explain why ASL was specified as
it was. Rationale statements are identified by the letter X.

Information
Some sections contain additional information and guidance. This information and guidance is provided purely as
an aid to understanding this specification. Information statements are identified by the letter I.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Declarations, Rules, Rationale statements and Information statements are collectively referred to as content items.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002, . . .).
• Identifiers are volatile: the identifier for a given content item may change between versions of the document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

D This is a declaration statement.

G This is a goal statement.

R This is a rule statement.

RX001 This is a rule statement with the unique identifier X001.

I This is an information statement.

xi

X This is a rationale statement.

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer http://developer.arm.com for access to Arm documentation.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Architecture Specification Language).
• The number (DDI0612 00bet7).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change. To report offensive language in this document, email
terms@arm.com.

xii

http://developer.arm.com

Open issues

Issues expected to be addressed in ASL Release 1.0

• Documentation of semantics of the language (in a mathematical style) is available in a separate document.
This document is at an earlier stage of completeness.

Issues likely to be addressed in a future ASL specification

At this time we can only give an approximate indication of future directions, but some areas are being investigated
for improvement:

• Language features to support composing larger specifications out of smaller components. These features
might support the specification of modules and interfaces.

• Features to allow specification of concurrent execution.

• Features to allow for architectural unknown values, known as Z-Types in previous releases of this document.

xiii

Language versioning

Each iteration of the language has a version number in the form X.Y.Z where X, Y, and Z are non-negative integers.

Symbol Meaning

X is the major version

Y is the minor version

Z is the document version

Major version

Major version X is incremented when backwards incompatible changes are introduced. This may also include minor
and document level changes. Document and minor version are reset to 0 when the major version is incremented.

Minor version

Minor version Y is incremented when new, backwards compatible functionality is introduced. It is incremented if
any functionality is marked as deprecated. This may also include document level changes. Document version is
reset to 0 when the minor version is incremented.

Document version

The document version Z is incremented when clarifications and corrections are introduced.

Pre-release version

A pre-release version is denoted by a hyphen and a predefined label: dev, alpha, beta or rel.

Example: 1.0.0-alpha, 1.0.0-beta

Revision

The revision is denoted by a hyphen and a positive integer immediately after the pre-release version.

Example: 1.0.0-alpha-1, 1.0.0-rel-2

Precedence

Precedence is determined by the first difference when comparing each of these identifiers from left to right as
follows: Major, minor and document versions are always compared numerically.

Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1

Example: 1.2.0 < 1.19.0

Example: 1.1.2 < 1.1.19

When major, minor, and document are equal, a pre-release version has lower precedence than a normal version.

Example: 1.0.0-alpha < 1.0.0

Precedence for two pre-release versions with the same major, minor, and document version is determined by
looking at the pre-release version and revision. For the pre-release version the precedence is dev < alpha < beta <

xiv

Preface
Language versioning

rel. For the revision the precedence is determined numerically. A matching version with a revision has a higher
precedence than one without.

Example: 1.0.0-alpha < 1.0.0-alpha-1 < 1.0.0-beta < 1.0.0-beta-2 < 1.0.0-beta-11 < 1.0.0-rel-1 <
1.0.0

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Chapter 1
Introduction

The Architecture Specification Language (ASL) is designed and used to specify architectures. As a formal
specification language it is designed to be accessible, understandable and unambiguous to programmers, hardware
engineers and hardware verification engineers who collectively have quite a small intersection of languages they
all understand. It can intentionally under specify behaviors in the architecture being described.

ASL is:

• a first-order language with strong static type-checking.
• whitespace-insensitive.
• imperative.

ASL has support for:

• bitvectors:
– as a type.
– as a literal constant.
– bitvector concatenation.
– bitvector constants with wildcards.
– bitslices.
– dependent types to support function overloading using bitvector lengths.
– dependent types to reason about lengths of bitvectors.

• unbounded arithmetic types “integer” and “real”.
• type inference.
• exceptions.
• enumerations.
• arrays.
• records.

ASL does not have support for:

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter 1. Introduction

• references or pointers.

A specification consists of a self-contained collection of ASL code.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter 1. Introduction
1.1. Specifications

1.1 Specifications

DGVBK A specification is the set of declarations written in ASL code which describe an architecture.

INXKD See Chapter 4 Declaration syntax for details about ASL declarations.

1.1.1 Example specification 1

This is a very small example of a specification written in ASL. It consists of the following declarations:

• Global bitvectors R0, R1 and R2 representing the state of the system.
• A function MyOR demonstrating a simple bit-wise OR function of 2 bitvectors.
• Initialization of R0 and R1 bitvectors.
• Assignment of bitvector R2 with the result of a function call.

Listing 1.1: Example specification 1
var R0: bits(4) = '0001';
var R1: bits(4) = '0010';
var R2: bits(4);

func MyOR{M}(x: bits(M), y: bits(M)) => bits(M)
begin

return x OR y;
end

func reset()
begin

R2 = MyOR(R0, R1);
end

1.1.2 Example specification 2

This is a very small example of a specification written in ASL. It consists of the following declarations:

• A global variable COUNT representing the state of the system.
• A procedure ColdReset to initialize the state of the system when power is applied and the system is reset.

This interpretation of the function is a convention used in this particular specification. It is up to each
specification to decide the role of each function.

• A procedure Step to advance the state of the system. That is, it defines the transition relation of the system.
Again, this interpretation is a convention used in this particular specification, not part of the ASL language
itself.

Listing 1.2: Example specification 2
var COUNT: integer;

func ColdReset()
begin

COUNT = 0;
end

func Step()
begin

assert COUNT >= 0;
COUNT = COUNT + 1;
assert COUNT > 0;

end

1.1.3 Example specification 3

This is a very small example of a specification in ASL. It consists of the following declarations:

• A function Dot8 which operates on 2 bitvectors a byte at a time.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter 1. Introduction
1.1. Specifications

• A global variable COUNT to indicate the number of calls to the Fib function.
• A function Fib demonstrating recursion.
• Assignment of a global bitvector X with a call to the Dot8 function.
• Assignment of a variable from the result of a call to the recursive function Fib.
• A function main which complies with the requirements of Chapter 10 Runtime Environment.

Listing 1.3: Example specification 3

func Dot8{N}(a: bits(N), b: bits(N)) => bits(N)
begin

var n: integer = 0;
for i = 0 to (N DIV 8) do

n = n + UInt(a[(i * 8) +: 8]) * UInt(b[(i * 8) +: 8]);
end
return n[0 +: N];

end

var X: bits(16) = '1010 1111 0101 0000';

var COUNT: integer = 0;

func Fib(n: integer) => integer
begin

COUNT = COUNT + 1;
if n < 2 then

return 1;
else

return Fib(n - 1) + Fib(n - 2);
end

end

func main() => integer
begin

X = Dot8(X, X);
var fib10 = Fib(10);
return 0;

end

1.1.4 Specification errors

A number of features of ASL can result in errors either when parsing or type-checking the specification or in
execution or reasoning about the specification. A non-exhaustive list of examples include:

• assertion failure (see 6.6 Assertion statements)
• array index out of bounds (see 5.9 Arrays, bitslices and invoking getter functions)
• bitslice index out of bounds or bitslice width negative (see 5.9.1 Bitslices)
• no matching term in a case statement (see 6.8 Case Statements)
• uncaught specification exceptions (see 6.10 Exception handling)
• unbounded loops
• unbounded recursion
• division by zero (see 8.6.3 Integer operations)

These and other examples are discussed in more detail in the rest of this manual. The existence of an error in the
specification indicates that the specification contains a bug and it is necessary to consult the specification author to
obtain a corrected specification in order to use the specification.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter 2
Lexical structure

This section describes the lexical structure of ASL.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter 2. Lexical structure
2.1. Notational conventions

2.1 Notational conventions

Tokens in the grammar of ASL have rule names which are enclosed in “<” and “>”. The enclosing “<” and “>” are
omitted in Backus-Naur Form (BNF) productions which make use of the tokens.

Token rules are not described using BNF productions. Instead they are described using a simple Regular Expression
syntax whose matching rules are as follows:

Table 2.1: lexical regular expressions

RegExp Matches

'c' the character c

(A) A

A B A followed by B

A | B A or B

A - B A but not B

A * zero or more repetitions of A

A + one or more repetitions of A

["a_string"] Any character in a_string

{"a_string"} The string a_string

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter 2. Lexical structure
2.2. Tokens

2.2 Tokens

RGFSH Files contain printable ASCII characters, carriage return and line feed.

IGFJP Printable ASCII characters have the decimal encoding of 32 through 126 (inclusive). This includes the space
character (dec 32).

2.2.1 Comments and other whitespace

Listing 2.1: Definition of a comment
<comment> ::= {"//"} { <any except newline> }

| {"/*"} { <any including newline> } {"*/"}

IXFKN Comments do not nest and the two styles of comments do not interact with each other.

// Comment example 1.
// In next line, the two strings "/*" and "*/" are regular characters within the comment
// start of comment, /* still in comment */ and still in comment which ends with newline

/* line 1 of example 2, a single comment 4 lines long.
line 2 of the comment

// line 3 of the comment, the "//" at start of this line are just regular characters
// line 4 of the comment, this 4 line comment ends with these two characters -->*/

/* L1 Comment example 3, shows you cannot nest or mix comment styles.
/* L2 Note the declaration of the storage FOO on L6, is outside of the comment.
/* L3 Note the first two characters on L6 do NOT start a nested comment.
/* L4 However, the two chars '*' and '/' following the line number L6, terminate
/* L5 the comment started on L1.
/* L6 */ var FOO : integer = 1; // The declaration of FOO is not within any comment */
/* L7 The last two characters on line L6 have no special meaning, */
/* L8 they are just characters within the comment that started with the "//". */

RSWQD Comments, newlines and space characters are treated as whitespace.

RFRWD It is an error to use a tab character in ASL files.

2.2.2 Literals

Listing 2.2: Definition of a literal
literal_expr ::= int_lit

| hex_lit
| real_lit
| bitvector_lit
| string_lit
| boolean_lit

RHYFH Integers are written either in decimal using one or more of the characters 0-9 and underscore, or in hexadecimal
using 0x at the start followed by the characters 0-9, a-f, A-F and underscore. An integer literal cannot start with
an underscore.

Listing 2.3: Definition of an integer
<int_lit> ::= digit ('_' | digit)*

Listing 2.4: Definition of a hexadecimal
<hex_lit> ::= '0' 'x' (digit | ["abcdefABCDEF"]) ('_' | digit | ["abcdefABCDEF"])*

RQQBB Fixed point real numbers are written in decimal and consist of one or more decimal digits, a decimal point and one
or more decimal digits. Underscores can be added between digits to aid readability.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter 2. Lexical structure
2.2. Tokens

Listing 2.5: Definition of a real
<real_lit> ::= digit ('_' | digit)* '.' digit ('_' | digit)*

IHJCD Underscores in numbers are not significant, and their only purpose is to separate groups of digits to make constants
such as 0xefff_fffe, 1_000_000 or 3.141_592_654 easier to read.

RMXPS Boolean literals are written using TRUE or FALSE.

Listing 2.6: Definition of a boolean
<boolean_lit> ::= ({"TRUE"} | {"FALSE"})

RPBFK Constant bit-vectors are written using 1, 0 and spaces surrounded by single-quotes.

Listing 2.7: Definition of a bitvector
<bitvector_lit> ::= '\'' ["01 "]* '\''

IQCZX The spaces in a bitvector are not significant and are only used to improve readability. For example '1111 1111

↪→1111 1111' is the same as '1111111111111111'.

RRYMD Constant bit-masks are written using 1, 0, x and spaces surrounded by single-quotes. The x represents a don’t care
character.

Listing 2.8: Definition of a mask
<bitmask_lit> ::= '\'' ["01x "]* '\''

IPBPQ The spaces in a constant bit-mask are not significant and are only used to improve readability.

RZRVY A string value is a string of zero or more characters, where a character is a printable ASCII character, tab (ASCII
code 0x09) or newline (ASCII code 0x0A). String values are created by string literals.

String literals consist of printable characters surrounded by double-quotes. Actual tabs and newlines are not
permitted in string literals, meaning that string literals cannot span multiple source lines. The backslash character,
‘\’, is treated as an escape character.

Listing 2.9: Definition of a string
<string_lit> ::= '"' ((char - ["\"\\"]) | ('\\' ["nt\"\\"]))* '"'

Escape sequence Meaning

\n The newline, ASCII code 0x0A

\t The tab, ASCII code 0x09

\\ The backslash character, \

\" The double-quote character, "

IZQSD An enumeration literal is also classed as a literal constant, but is syntactically an identifier.

2.2.3 Identifiers

RHPRD Identifiers start with a letter or underscore and continue with zero or more letters, underscores or digits.

IVQBX Identifiers are case sensitive. To improve readability, it is recommended to avoid the use of identifiers that differ
only by the case of some characters.

RQMDM Reserved identifiers and the elements of boolean_lit cannot be used as identifiers.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter 2. Lexical structure
2.2. Tokens

RJGRK The reserved_id grammar rule defines identifiers which are currently not permitted in ASL.

ISCLY The reserved_id grammar rule includes keywords that are reserved for future use.

IHVLX By convention, identifiers that begin with double-underscore are reserved for use in the implementation and should
not be used in specifications.

Listing 2.10: Definition of a identifier
<identifier> ::= (letter | '_') (letter | '_' | digit)*

Listing 2.11: Reserved identifiers
<reserved_id> ::= "AND" | "DIV" | "DIVRM" | "EOR"

| "IN" | "MOD" | "NOT" | "OR"
| "SAMPLE" | "UNKNOWN" | "UNSTABLE" | "XOR"
| "_" | "access" | "advice" | "after"
| "any" | "array" | "as" | "aspect"
| "assert" | "assume" | "assumes" | "before"
| "begin" | "bit" | "bits" | "boolean"
| "call" | "case" | "cast" | "catch"
| "class" | "config" | "constant" | "dict"
| "do" | "downto" | "else" | "elsif"
| "end" | "endcase" | "endcatch" | "endclass"
| "endevent" | "endfor" | "endfunc" | "endgetter"
| "endif" | "endmodule" | "endnamespace" | "endpackage"
| "endproperty" | "endrule" | "endsetter" | "endtemplate"
| "endtry" | "endwhile" | "entry" | "enumeration"
| "event" | "exception" | "export" | "expression"
| "extends" | "extern" | "feature" | "for"
| "func" | "get" | "getter" | "gives"
| "if" | "iff" | "implies" | "import"
| "in" | "integer" | "intersect" | "intrinsic"
| "invariant" | "is" | "let" | "list"
| "map" | "module" | "namespace" | "newevent"
| "newmap" | "of" | "original" | "otherwise"
| "package" | "parallel" | "pass" | "pattern"
| "pointcut" | "port" | "pragma" | "private"
| "profile" | "property" | "protected" | "public"
| "real" | "record" | "repeat" | "replace"
| "requires" | "rethrow" | "return" | "rule"
| "set" | "setter" | "shared" | "signal"
| "statements" | "string" | "subtypes" | "template"
| "then" | "throw" | "to" | "try"
| "type" | "typeof" | "union" | "until"
| "using" | "var" | "watch" | "when"
| "where" | "while" | "with" | "ztype"

2.2.4 Delimiters

Listing 2.12: Definition of a delimiter
<delimiter> ::= "!" | "!=" | "&&" | "(" | ")" | "*" | "*:" | "+" | "+:"

| "," | "-" | "-->" | "." | ".." | "/" | ":" | ";" | "<"
| "<->" | "<<" | "<=" | "=" | "==" | "=>" | ">" | ">=" | ">>"
| "@" | "[" | "]" | "^" | "{" | "||" | "}"

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter 2. Lexical structure
2.3. Pragmas

2.3 Pragmas

ISNBZ Pragmas are allowed to modify the lexical structure when parsing an ASL specification.

ILRZB See 4.6 Pragmas and 6.11 Pragmas for the definition of pragmas.

IGQWR Any pragmas which modify the lexical structure will be documented here.

RCSQC There are no defined pragmas that change the lexical structure.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter 2. Lexical structure
2.4. Annotations

2.4 Annotations

RBGGC Annotations begin with a @ (at symbol) character.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter 3
Builtin Types

Listing 3.1: Definition of ty declaration
ty ::= identifier

| "boolean"
| "integer" constraint_opt
| "real"
| "string"
| "bit"
| "bits" "(" bitwidth ")" bitfields_opt
| "enumeration" "{" identifier_trailing_list "}"
| "(" ty_list ")"
| "array" "[" expr "]" "of" ty
| "record" fields_opt
| "exception" fields_opt

ty_list ::= ty "," ty_list
|
| ty

bitwidth ::= expr
| "-" ":" ty
| constraint

constraint ::= "{" constraint_range_list "}"

constraint_range ::= expr
| expr ".." expr

constraint_range_list ::= constraint_range "," constraint_range_list
| constraint_range

identifier_trailing_list ::= identifier_trailing "," identifier_trailing_list
| identifier_trailing

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter 3. Builtin Types

| identifier_trailing ","

IBYVL Types describe the allowed values of variables, constants, function arguments, etc.

IJRDL ASL allows the declaration of user named types. See 4.3 Named type declarations

IWYKZ See also 7.1 Type nomenclature for definitions of some of the terminology used in this section.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter 3. Builtin Types
3.1. Singular and aggregate types

3.1 Singular and aggregate types

DPQCK Types are categorized as either singular or aggregate.

DNZWT The builtin singular types are:

• integer

• real

• string

• boolean

• bits

• bit

• enumeration

DKNBD The builtin aggregate types are:

• tuple

• array

• record

• exception

RGVZK A named type is singular if it has the structure of a singular type, otherwise it is aggregate.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter 3. Builtin Types
3.2. Restrictions on anonymous types

3.2 Restrictions on anonymous types

RGRVJ Anonymous enumeration, record and exception type declarations are not permitted except in named type
declarations.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter 3. Builtin Types
3.3. Integer type

3.3 Integer type

The integer type represents mathematical integer values.

IHJBH There is no bound on the minimum and maximum integer value that can be represented.

RGWCP The syntax

integer <constraint>

denotes a constrained integer whose constraint is the set of values in the constraint.

For more details on constrained integers, see 7.4 Constrained Integers.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter 3. Builtin Types
3.4. Real type

3.4 Real type

DCQXL The real type represents a rational number.

RXCJD There is no bound on the minimum and maximum absolute real value that can be represented.

IYFTF There is no mechanism in the language to generate an irrational value of real type.

IJQPK Conversions from integer to real are performed using the function Real

IWJCL Conversions from real to integer are performed using the function RoundDown or RoundUp.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter 3. Builtin Types
3.5. String type

3.5 String type

The string type represents strings of characters.

IDMNL Strings play relatively little role in specifications and the only operations on strings are equality and inequality
tests.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter 3. Builtin Types
3.6. Enumeration types

3.6 Enumeration types

DYZBQ The enumeration type declaration defines a list of enumeration literals which act as global constants that can be
compared for equality and inequality. The type’s domain is the set of enumeration literals.

RDWSP No enumeration literal may explicitly appear in multiple enumeration type declarations.

IQMWT The use of ‘explicitly’ in rule DWSP clarifies that a named enumeration type may be used to specify the structure
of another named enumeration type.

RHJYJ The type of an enumeration literal is the anonymous enumeration type which defined the literal.

IMZXL Note that enumeration literals exist in the same namespace as all other declared objects, including storage elements
and subprograms, so no other declared object may have the same name in the same scope.

IPRPY Unlike many languages, there is no ordering defined for enumeration literals and therefore enumeration types do
not support ordering comparisons such as <=.

Examples:

type SuperEnum of enumeration {LOW, HIGH};
// LOW and HIGH are of type enumeration {LOW, HIGH}

// legal
type SubEnum subtypes SuperEnum;

// legal
type OtherEnum of SuperEnum;

// illegal: no enumeration literal may appear in multiple enumeration type declarations.
type SubEnumIllegal1 of enumeration {LOW, HIGH} subtypes SuperEnum;

// illegal: enumeration {TOP, BOTTOM} does not subtype-satisfy SuperEnum of structure
↪→enumeration {LOW, HIGH}

type SubEnumIllegal2 of enumeration {TOP, BOTTOM} subtypes SuperEnum;

// illegal: no enumeration literal may appear in multiple enumeration type declarations.
type ConflictingEnum of enumeration {LOW, HIGH};

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter 3. Builtin Types
3.7. Boolean type

3.7 Boolean type

The type boolean represents the algebraic boolean type. See also rule MXPS.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter 3. Builtin Types
3.8. Bitvector type

3.8 Bitvector type

DWXQV The bits(N) type represents a bitvector of length N, where N may specify a fixed width or a constrained width.

UXKNL There is no bound on the maximum bitvector length allowed, although an implementation may specify an upper
limit. The minimum bound is zero. It is recognized that zero-length bitvectors might not be supported in systems
to which ASL might be translated (such as SMT solvers), and an implementation might need to lower bitvector
expressions to a form where they do not exist.

Example
func rotate{N}(src: bits(N), amount: integer) => bits(N)
begin

let i = (amount MOD N) as integer {0..N-1};
// upper may be a zero width bitvector
let upper: bits(i) = src[0+:i];
let lower: bits(N-i) = src[i+:N-i];
return [upper, lower];

end

3.8.1 Bitfields

Listing 3.2: Definition of bitfield declaration
bitfield_spec ::= ":" ty

| bitfields_opt

bitfields_opt ::= "{" bitfield_list "}"
|

bitfield_list ::= bitfield "," bitfield_list
|
| bitfield

bitfield ::= "[" slice_list "]" identifier bitfield_spec

slice ::= expr
| expr ":" expr
| expr "+:" expr
| expr "*:" expr

slice_list ::= slice "," slice_list
| slice
| slice ","

IKGMC The syntax for bits has an optional bitfield_list which allows bitslices of bitvectors to be treated as named
fields which can be read or written.

RRMTQ Each field of a bitvector type is defined using the bitfield syntax which specifies the name of the field and one or
more valid bitslices of the bitvector which comprise that field.

RZJSH The type of a bitfield which does not have a type annotation is a bitvector type of the width of the bitfield.

RQCYM The type of a bitfield with a type annotation must subtype-satisfy the bitvector type with size of the width of the
bitfield.

IJDCC Note that the wording “valid bitslice” means that the width and offsets of the slice must be correct under the rules
for bitslices (5.9.1 Bitslices).

RMPMG Bitfield names must be unique with respect to other fields in the same type.

IKPBX Bitfield names are not part of the global or local scope, nor do they clash with other fields in bitvectors, records or
exceptions.

RCGDG The bitvector type may have bits in its bitvector representation which do not correspond to any bitfield.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 3. Builtin Types
3.8. Bitvector type

RCHBW The bit-slices of different bitfields may overlap.

RCNHB The bit-slices of a single bitfield must not overlap.

RGQVZ Fields of a bitvector type variable myBits can be read or written independently using the syntax myBits.f to refer
to field f of myBits.

RMXYQ Reads and writes of a bitvector type variable’s field are treated as though they were of the field’s type The bits of
the field are mapped to the bits of the bitvector as though the slices comprising the field were concatenated in the
order declared in the bitfield.

RBDJK The width of each slice in a bitfield must be a non-negative, statically evaluable integer expression (including zero).

RLGHS The offset of each slice in a bitfield must be a non-negative, statically evaluable integer expression (including zero).

IXPDT Note that rule LGHS applies to bitfields, not bit slice expressions.

RYYPN Two anonymous bitvector types are identical if they have the same width and they have bitfields with the same
names and constituent bits, irrespective of the expressions used in their definition.

IBGHB When statically determining whether two bitvector types have the same width, only statically evaluable expressions
need be considered. See also 7.14 Bitvector width comparison.

IFZMS A corollary of rule YYPN is that a bitvector declared with an empty bitfield_list is identical to a bitvector
declared with no bitfields. E.g. bits(8) and bits(8){} are the same type.

ICVXB Note that a named type whose structure is a bitvector type is not itself a bitvector type and is therefore not identical
to any other bitvector type. See also 7.1.2 Structure of a type.

IQDHP Note that whether or not a bit corresponds to a bitfield, it can be referenced using a bitslice expression.

Example of a bitvector type with bitfields

The following code declares a global variable whose type is a bitvector with bitfields.

var myData: bits(16) {[4] flag,
[3:0, 8:5] data,
[9:0] value};

• The expression myData.flag evaluates to the value myData[4] of type bits(1) (rules GQVZ and MXYQ)
• The expression myData.data evaluates to the value [myData[3:0], myData[8:5]] of type bits(8) (rules

GQVZ and MXYQ)
• There is no bitfield which accesses myData[15:10] (rule CGDG)
• The value field overlaps with the other fields (rule CHBW)
• The slices 3:0 and 8:5 which define data do not overlap (rule CNHB)

Note that in the data bitfield, bits 3:0 come before bits 8:5 which is a different order from their occurrence in
myData.

3.8.1.1 Nested bitfields
Bitfields may have nested bitfields. This can have several uses, one of which being being able to define two
different views of a register.

Example

type CPTR_EL2_Type of bits(64) {
// common across formats
[31] TCPAC,
[30] TAM,

// View when E2H register has value '0'
[29:0] E2H0 {

[20] TTA,
[10] TFP,
[8] TZ

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 3. Builtin Types
3.8. Bitvector type

},

// View when E2H register has value '1'
[29:0] E2H1 {

[28] TTA,
[20+:2] FPEN,
[16+:2] ZEN

}

};

var E2H: bit;
var CPTR_EL2: CPTR_EL2_Type;

// Select TTA depending on the value of E2H
let TTA: bit = if E2H == '0' then CPTR_EL2.E2H0.TTA else CPTR_EL2.E2H1.TTA;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 3. Builtin Types
3.9. Array types

3.9 Array types

DDPXJ The syntax array [expr] of ty declares a single dimensional array of ty with an index type derived from the
expression expr.

RYHNV This expression must be either:

• a non-negative, statically evaluable constrained integer expression expr, in which case the array has that
many indices starting from 0

• the name of a type which has the structure of an enumeration type, in which case the array’s indices are the
enumeration literals of that type

RPXRR If expr is of type ty which has the structure of a well-constrained integer whose domain contains only one value
then the array is a fixed size array with number of indices equal to the value in the domain of ty.

RDGJT If expr is of type ty which has the structure of a well-constrained integer whose domain contains more than one
value then the array is a constrained size array with number of indices equal to expr and constrained as per the
constraint on expr.

RHHCD If expr is of type ty which has the structure of the under-constrained integer then the array is an under-constrained
array with number of indices equal to expr.

Example:
// Declare an array of reals from arr1[0] to arr1[3]
type arr1 of array [4] of real;
// Declare an array with two entries arr2[big] and arr2[little]
type labels of enumeration {big, little};
type arr2 of array [labels] of bits(4);

RJJCJ Array elements can be modified.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 3. Builtin Types
3.10. Tuple types

3.10 Tuple types

RTVPR Types can be combined into tuple types whose values consist of tuples of values of those types.

IMQWB For example, the expression (TRUE, Zeros(32)) has type (boolean, bits(32)).

RCGWR A tuple type must contain at least 2 elements.

RJHKL The value and type of tuple elements cannot be modified.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter 3. Builtin Types
3.11. Record types

3.11 Record types

Listing 3.3: Definition of field declaration
field ::= identifier ":" ty

field_list ::= field "," field_list
|
| field

DWGQS A record is a structured type consisting of a list of field identifiers which denote individual storage elements.

RDXWN A record type is described using the syntax record {field_list} where each element of the field_list specifies
the name and type of the record’s field identifiers.

RWFMF The syntax record (with no field_list) is syntactic sugar for record {}.

RDLXV Fields of a record can be read or written independently using the syntax r.f to refer to field f of a record r.

RMDZD Record field names must be unique with respect to other fields in the same type.

ITFPS Record field names are not part of the global or local scope, nor do they clash with other fields in bitvectors,
records or exceptions.

Record values may be constructed as described in 5.5 Record Expressions.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter 3. Builtin Types
3.12. Exception types

3.12 Exception types

DQXYC An exception is a structured type consisting of a list of field identifiers which denote individual storage elements.

RMGHV An exception type is described using the syntax exception {field_list} where each element of the field_list

specified the name and type of the exception’s field identifiers.

RKGXL The syntax exception (with no field_list) is syntactic sugar for exception {}.

RBWDX Fields of an exception can be read or written independently using the syntax r.f to refer to field f of an exception
r.

Exception values may be constructed as described in 5.6 Exception Expressions.

Example
type BAD_OPCODE of exception;

type UNDEFINED_OPCODE of exception {reason: string, opcode: bits(16)};

func test()
begin

throw UNDEFINED_OPCODE{reason="Undefined", opcode='0111011101110111'};
end

RCHKR Exception field names must be unique with respect to other fields in the same type.

IHLBL Exception field names are not part of the global or local scope, nor do they clash with other fields in bitvectors,
records or exceptions.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter 3. Builtin Types
3.13. Named Types

3.13 Named Types

RMHWM A named type declaration declares an identifier, associated with a new type, with the structure and domain of
values of a given base type. See 4.3 Named type declarations.

Named types allow the use of strong typing since a named type is not considered to be the same as any other type,
including the type it derives its structure and domain from. Unlike some other languages, ASL does not provide a
way to create an alias for an existing type. See also Chapter 7 Type inference and type-checking.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 4
Declaration syntax

DNMFP A declaration introduces a new global object into the specification:

• named types,
• variables, let identifiers, constants and configs,
• functions, procedures, getters and setters.

Listing 4.1: Definition of declaration
decl ::= annotation decl

| type_decl
| storage_decl
| function_decl
| getter_decl
| setter_decl
| "pragma" identifier null_or_expr_list ";"

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter 4. Declaration syntax
4.1. Scope of global declarations

4.1 Scope of global declarations

RDHRC Global identifiers are in scope everywhere.

ILWQQ Since global identifiers are in scope everywhere, the order of declaration of global identifiers is not considered
when determining their scope. Since declarations are also not allowed to be cyclical a valid sequence for declaring
and initializing the objects can be determined by the implementation.

RHYQK There is a single global namespace for all globally declared identifiers apart from setters. This namespace associates
each identifier with the kind of global object to which it may refer.

RSWVP An identifier which may refer to getters may also refer to setters.

IMVNZ The existence of a single namespace means that:

• all global declarations must use unique names.
• local identifiers, including parameters of subprograms, cannot use any identifier that is used for global names.

IHJRD Since the name of a setter must exist in the global namespace as the name of a similar getter (see 4.5.3 Getters
and Setters) it is not possible to declare anything (other than a getter or setter) with the same name as a setter.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter 4. Declaration syntax
4.2. Compile-time and execution-time

4.2 Compile-time and execution-time

IHSWW Declarations in ASL may be described as either

• compile-time-constant or non-compile-time-constant
• execution-time or non-execution-time

See the following sections for usage and definitions: 4.4 Global storage elements, 6.2 Local storage elements,
8.3.1 Execution-time expressions, 8.3.2 Compile-time-constant expressions, 8.2.1 Execution-time subprograms
and 8.2.2 Compile-time-constant subprograms.

config storage elements are both non-compile-time-constant and non-execution-time.

RPDLM A tool may optionally allow the initializer expression of config storage elements to be overridden as if the original
initializer expression in the specification was replaced with the new initializer expression.

RFQLB The initializer of config storage elements may only be overridden before any execution-time initializer expressions
or subprograms are evaluated.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter 4. Declaration syntax
4.3. Named type declarations

4.3 Named type declarations

Listing 4.2: Definition of named type declaration
type_decl ::= "type" identifier "of" ty "subtypes" ty ";"

| "type" identifier "of" ty ";"
| "type" identifier "subtypes" ty with_opt ";"

with_opt ::= "with" fields_opt
|

RKDKS The type declaration type id of ty ; declares a new type id which has the type of ty

RYBWY Named type declarations must not be recursive.

Example
type T1 of integer; // the named type "T1" whose structure is integer
type T2 of (integer, T1); // the named type "T2" whose structure is (integer, integer)

The following code declares two unique types with the same structure. Note that the two types are not related in
any way and are not interchangeable. See also 7.6.2 Type-Satisfaction.
type qualifiedData of bits(16) { [4] flag,

[3:0, 8:5] data,
[9:0] value };

type DatawithFlag of qualifiedData;

In the following code, TypeC.f and TypeD.f have the same type: TypeB (and not integer).
type TypeA of integer;
type TypeB of TypeA;
type TypeC of record { f: TypeB };
type TypeD of TypeC;

func foo(x: TypeA)
begin

pass;
end

func bar(x: TypeB)
begin

pass;
end

func baz(x: integer)
begin

pass;
end

func main() => integer
begin

var x: TypeC;
foo(x.f); // illegal -- x.f is of type TypeB which does not type-satisfy TypeA.
bar(x.f); // legal
baz(x.f); // legal -- TypeB type-satisfies integer
var y: TypeD;
foo(y.f); // illegal -- y.f is of type TypeB which does not type-satisfy TypeA.
bar(y.f); // legal
baz(y.f); // legal -- TypeB type-satisfies integer
return 0;

end

The following type declarations are recursive and therefore illegal.
type base of record {one: other};

type other of base;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter 4. Declaration syntax
4.3. Named type declarations

4.3.1 Subtypes

A named type may be a subtype of other types which allows it to be used in certain contexts where its supertype is
expected in accordance with the rules of Chapter 7 Type inference and type-checking.

RZRKM The type declaration type id1 of ty subtypes id2; declares a new named type id1 which has the same structure
as ty and is also a subtype of the named type id2.

RZWHP The syntax type id1 subtypes id2 ; is syntactic sugar for type id1 of id2 subtypes id2 ;.

RLPDL If type id1 of ty subtypes id2; is declared, it is an error if the named type id2 is not declared.

RHQZY The syntax type id1 subtypes id2 with {new-fields...} declares a new named type id1 which has the
structure of id2, with additional fields. id1 is also a subtype of id2. id2 must be a record or exception type. The
declaration is equivalent to type id1 of record {existing-id2-fields, new-fields...} subtypes id2.

RSRHN A named type id1 may only be a subtype of a named type id2 if id1 subtype-satisfies id2.

RNXRX The subtype relation is a partial order.

IKGKS Since the subtype relation is reflexive, every type is also a subtype and supertype of itself.

IMTML Since the subtype relation is transitive, if A is a subtype of B and B is a subtype of C then A is a subtype of C.

IJVRM Since the subtype relation is antisymmetric it is an error if both id1 is a subtype of id2, and id2 is a subtype of
id1.

ICHMP All subtype relations (other than the transitive relationship) must be explicitly declared.

ILRVN See 7.6.1 Subtype-satisfaction for the definition of subtype-satisfaction.

Examples
// Declare some named types
type superInt of integer;
type subInt of integer subtypes superInt ;
type uniqueInt of superInt;

func assign()
begin

// Integer is subtype-satisfied by all the named types,
// so it can be assigned to them by the assignment and
// initialization type checking rules
var myInt: integer;
var mySuperInt : superInt = myInt;
var mySubInt : subInt = myInt;
var myUniqueInt: uniqueInt = myInt;

// Integer is subtype-satisfied by all the named types,
// so it can be assigned from them by the assignment and
// initialization type checking rules
myInt = mySuperInt;
myInt = mySubInt;
myInt = myUniqueInt;

// superInt is not a subtype of anything (apart from itself)
// so it cannot be assigned to any other named type
// Illegal: mySubInt = mySuperInt;
// Illegal: myUniqueInt = mySuperInt;

// subInt is a subtype of superInt, so the assignment and
// initialization type checking rules permit the following:
mySuperInt = mySubInt;
// But subInt and uniqueInt are not subtype related
// so do not type-satisfy each other.
// Illegal: myUniqueInt = mySubInt;

// uniqueInt has no related subtype or supertype
// so it cannot be assigned to any named type

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter 4. Declaration syntax
4.3. Named type declarations

// Illegal: mySuperInt = myUniqueInt;
// Illegal: mySubInt = myUniqueInt;

end

See 7.7.4 Assignment and initialization type checking for the assignment and initialization type checking rules.

type aNumberOfThings of integer;
type ShapeSides of aNumberOfThings;
type AnimalLegs of aNumberOfThings;
type InsectLegs of integer subtypes AnimalLegs ;

func subtyping()
begin

var myCircleSides: ShapeSides = 1; // legal
var myInt : integer = myCircleSides; // legal
var dogLegs : AnimalLegs = myCircleSides; // illegal: unrelated types
var centipedeLegs: InsectLegs = 100; // legal
var animalLegs : AnimalLegs = centipedeLegs; // legal
var insectLegs : InsectLegs = animalLegs; // illegal: subtype is wrong way

end

type Coord2 of record { x: integer, y: integer };

// Declare a subtype, extended with a new field:
type Coord3 subtypes Coord2 with { z: integer };

// The above declaration is equivalent to:
type Coord3 of record { x: integer, y: integer, z: integer } subtypes Coord2;

// Invalid: field name 'x' is repeated:
type CoordX subtypes Coord2 with { x: real };

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter 4. Declaration syntax
4.4. Global storage elements

4.4 Global storage elements

Listing 4.3: Global variable declaration
storage_decl ::= "var" identifier ":" ty ";"

| "var" identifier ty_opt "=" expr ";"
| "let" identifier ty_opt "=" expr ";"
| "constant" identifier ty_opt "=" expr ";"
| "config" identifier ty_opt "=" expr ";"

This provides a way to define global variable, let, constant and config values.

RTRDJ The var keyword is used to declare global variable identifiers denoting global storage elements which are all of
the following: non-compile-time-constant, execution-time, mutable.

RDBZZ The let keyword is used to declare global let identifiers denoting global storage elements which are all of the
following: non-compile-time-constant, execution-time, immutable.

RBHMY The config keyword is used to declare global config identifiers denoting global storage elements which are all of
the following: non-compile-time-constant, non-execution-time, immutable.

IRBZW Although config declares immutable identifiers, tooling may allow their value to be overridden before any
execution-time initializer expressions or subprograms are evaluated, hence config declares elements which are
both non-compile-time-constant and also non-execution-time.

RSBLX The constant keyword is used to declare global constant identifiers denoting global storage elements which are
all of the following: compile-time-constant, non-execution-time, immutable.

RZNTH Global bitvector storage elements shall have a determined width which is a non-execution-time expression.

RKSQP A global let, constant or config storage element must be initialized with an initializer expression.

RWZJQ If a global storage element is initialized with an initializer expression then the type of the global storage element
may be omitted, in which case the type of the global storage element is the type of the initializer expression.

RTTMQ The declarations, and any associated initialization expressions, for global storage elements must not include cycles.

Examples:
// example 1, invalid declaration of two variables with a cycle via the initialization

↪→expressions
var a = b;
var b = a;

// example 2, and invalid declaration of 'var1' due to a cycle in its type specification
let size1 = Len(var1); // function Len() returns the width of var1
var var1 : bits(size1); // cycle -- the type of var1 depends on size1 which depends on var1

IVQHQ See also 6.2 Local storage elements, 4.4.1 Initialization of globals and 6.2.2 Initialization of locals.

4.4.1 Initialization of globals

RGBNC A global variable identifier is initialized with an arbitrary value of the variable’s type if no initialization expression
is given.

IGLHK When initializing global variables without initializers, different values may be used for different variables, different
values may be used for the same variable in different implementations, and different values may be used for the
same variable in the same implementation in different executions. An implementation may, but is not required to,
generate initial values using a pseudorandom generator whose seed is provided as an input parameter.

RFPMT A global variable identifier is initialized with the value of the initialization expression if an initialization expression
is given. The initialization expression is evaluated when the global variable identifier is initialized.

RFKGP The initialization expression in a global constant declaration must be a compile-time-constant expression.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter 4. Declaration syntax
4.4. Global storage elements

RDLXT A global constant identifier is initialized before any non-compile-time-constant initialization expressions or
subprograms are evaluated.

RPRZN The initialization expression in a global config declaration must be a non-execution-time expression.

RRZLL A global config identifier is initialized after any compile-time-constant initializer expressions are evaluated and
before any execution-time initializer expressions or subprograms are evaluated.

RCKGP A global let or var identifier is initialized after any non-execution-time initializer expressions are evaluated and
before any execution-time subprograms are evaluated.

IQMQX Tools may provide a mechanism to override the initialization expression in a global config declaration.

RDJMC Initialization expressions in global declarations must not be side-effecting.

RPLYX Where the initialization expression in a variable_declaration is a bitvector of determined width, if the
initialization expression type satisfies the declared type, then the declaration creates a storage element whose
determined width is the determined width of the initialization expression.

IVYLK In the following contrived example, the declared type of only is a constrained width bitvector of undetermined
width. However, its initialization expression is a constrained width bitvector of determined width bits(1), so the
resulting storage element is the constrained width bitvector of determined width bits(1) by rule PLYX.

var only: bits(-: integer{1,2}) = Zeros(1);
// Type-checker knows: width of only == 1
// only is of "determined width 1"

Examples:
var PC: bits(32);
constant MaxIrq: integer = 480;
var _R: array [16] of bits(32);

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter 4. Declaration syntax
4.5. Subprogram declarations

4.5 Subprogram declarations

DJWKG Functions, procedures, getters and setters are collectively referred to as subprograms.

IDVSM In this section we provide rules for all four kinds of subprogram, with more specific rules in subsequent sections.

IGKLW Multiple subprograms may be defined with the same name provided that each definition has a different number or
type of arguments to allow disambiguation. See 7.6.4 Subprogram clashing.

RKFGJ The optional parameter_list declares the parameters of the subprogram. ASL permits the declaration of
subprograms with formals which are parameterized such that where a formal or return type is a bitvector, its
width may depend on the value of the subprogram parameters. For details see 7.8.1 Dependently typed bit vector
formals.

RPTDD The formal_list declares the formal arguments of the subprogram. Each element of the formal_list of a
subprogram declaration declares a let identifier of the given name and type in the scope of the subprogram
body, denoting a local storage element which is all of the following: non-compile-time-constant, execution-time,
immutable.

RJBXS If part of the type of any formal argument is a bitvector whose width is not a compile-time-constant, then any
identifiers used in the bitvector’s width expression must be included in exactly one of the formal_list or the
parameter_list and are declared as let identifiers in the scope of the subprogram body, denoting a local storage
element which is all of the following: non-compile-time-constant, execution-time, immutable.

DQMYP The type of a subprogram is its signature and consists of its return type (if any) and the types of its formal
arguments.

DJWXX A control flow path is a path through the control flow graph derived from the syntactic structure of a subprogram.
Where a conditional branch occurs (e.g. in an if or case statement) the condition is ignored; all branches are
added to the control flow graph.

DVFTV An always-throw procedure is one in which all control flow paths terminate with a throw statement or a call to
an always-throw procedure. Members of a set of mutually recursive procedures in which all control flow paths
terminate with a throw statement, a call to a member of the set, or a call to an always-throw procedure outside the
set are always-throw.

RWKHC All control flow paths in a function or getter must terminate with a return statement, a throw statement, a call to
Unreachable() or a call to an always-throw procedure.

RDFWZ It is not an error for execution of a procedure or setter to end without a return statement.

RQCVM When a subprogram invocation is executed, the actual arguments of the invocation are evaluated, and the resulting
actual values are used to initialize the corresponding identifiers declared in the formal argument list. Any bitvector
width parameters which are not also formal arguments take their value from the width of the related formals. The
order of evaluation of arguments is unspecified (see 8.5.1 Evaluation order).

ITWJF Note that all subprogram arguments are passed by value (not by reference) and that bitvector formal arguments
may be dependently typed.

IPFNG It is recommended that definitions sharing the same name are kept contiguous in specifications to further help
humans to disambiguate.

RHDGV It is an error to declare a subprogram formal argument or parameter with the same name as a global variable (see
also 4.1 Scope of global declarations).

RKCMK It is an error to provide multiple definitions with the same argument types for the same function or procedure, even
if those definitions are identical.

4.5.1 Side-effect-free subprograms

DGWWP A side-effect-free subprogram is one that does not mutate global storage elements.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter 4. Declaration syntax
4.5. Subprogram declarations

RSFPM A side-effect-free subprogram must not contain an assignment statement whose left hand side refers to a mutable
global storage element, or a call to a subprogram that is not side-effect-free, or a throw statement.

IBCWW A side-effect-free subprogram may read mutable global storage elements, and may call other side-effect-free
subprograms. It may declare local variables and assign to them.

IFYFN A side-effect-free subprogram may contain assert statements, calls to the Unreachable() subprogram and calls
to the print subprogram.

4.5.2 Functions and procedures

function_decl ::= "func" identifier parameters_opt "(" formal_list ")" return_ty_opt
↪→subprogram_body

formal ::= identifier ":" ty

formal_list ::= formal "," formal_list
|
| formal

parameters_opt ::= "{" parameter_list "}"
|

parameter ::= identifier ty_opt

parameter_list ::= parameter "," parameter_list
|
| parameter

return_ty_opt ::= "=>" ty
|

subprogram_body ::= "begin" stmt_list "end"

RRXHX The func keyword declares a subprogram. If a return type is included it is a function declaration, otherwise it is a
procedure declaration.

RJGVX Functions must only be used in function invocation expressions. See also 7.8.2 Subprogram invocations.

RFRDX Procedures must only be used in procedure call statements.

Example:
// Function 'Add'
func Add{N}(x: bits(N), y: bits(N)) => bits(N)
begin

return x + y;
end

var Counter: integer = 0;

// Procedure 'IncrementCounter'
func IncrementCounter(inc: integer)
begin

Counter = Counter + inc;
return;

end

4.5.3 Getters and Setters

getter_decl ::= "getter" identifier parameters_opt args_opt "=>" ty subprogram_body

setter_decl ::= "setter" identifier parameters_opt args_opt "=" identifier ":" ty
↪→subprogram_body

args_opt ::= "[" formal_list "]"
|

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter 4. Declaration syntax
4.5. Subprogram declarations

RMZJJ The getter keyword introduces a getter declaration.

RMBZP The setter keyword introduces a setter declaration.

IQJNF Getters are function-like subprograms whose invocation syntactically looks like a variable read or array read. See
also rule ZFFV in section 5.9 Arrays, bitslices and invoking getter functions.

IFBVH Setters are procedure-like subprograms whose invocation syntactically looks like a variable write or array write.
See also rule YDFQ in section 6.5.3 Setter invocation.

ITVDT Getters and setters are frequently associated with storage where the storage accessed depends on the current
privilege/security mode of the processor.

RQKXV The optional parameter_list declares the parameters of the getter or setter. ASL permits the declaration of
subprograms with formals which are parameterized such that where a formal or return type is a bitvector, its
width may depend on the value of the subprogram parameters. For details see 7.8.1 Dependently typed bit vector
formals.

RNCTB The optional formal_list declares the formal arguments of the getter or setter. Each element of the formal_list

of a subprogram declaration declares a let identifier of the given name and type in the scope of the subprogram
body, denoting a local storage element which is all of the following: non-compile-time-constant, execution-time,
immutable.

DMRYB The RHS argument of a setter declaration is an argument whose name and type are given in a setter_declaration

following the = symbol.

DBHPJ The formal arguments of a setter are any items in the formal_list of the setter’s declaration followed by the RHS
argument.

IWHLV The formal arguments of a getter or setter are denoted using square brackets [and] rather than parentheses (and
). The square brackets may be omitted if the getter or setter has no formal arguments (beyond the RHS argument
of a setter).

RLCSZ If a setter function is defined, a similar getter function must be declared such that the getter may be invoked with
the same actual arguments as declared in the setter’s formal_list.

Examples:
getter SP[] => bits(64)
begin

return _SP[CurrentEL()];
end

setter SP[] = value: bits(64)
begin

_SP[CurrentEL()] = value;
return;

end

RTJRH If a getter function is defined without an argument list, no other getter functions of the same name are allowed.

Example:
getter Foo => bits(8)
begin

return _foo;
end

// Not allowed, getter of name Foo with no argument list is defined above
getter Foo[n: integer] => bits(8)
begin

return _foo1[n];
end

getter Bar[] => bits(8)
begin

return _bar;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter 4. Declaration syntax
4.5. Subprogram declarations

end

// Allowed, getter of name Bar with argument list is defined
getter Bar[n: integer] => bits(8)
begin

return _bar1[n];
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter 4. Declaration syntax
4.6. Pragmas

4.6 Pragmas

IZGJQ The pragma statement provides information or commands to tools consuming the specification.

Listing 4.4: Definition of pragma
decl:pragma ::= "pragma" identifier null_or_expr_list ";"

DQTJC All pragma identifiers starting with “asl_” are referred to as ASL language pragmas. Others are referred to as tool
specific pragmas.

RGBNH The effect and scope of a pragma is dependent on the pragma identifier.

RPMHS Pragma identifiers are independent of other identifiers.

RGFSD Pragmas can take zero or more parameters.

RBWYF ASL language pragmas are reserved and may be specified in future ASL versions.

Example:
pragma asl_pragma1;
pragma asl_op 1, "start";
func my_function_with_pragma()
begin

pass;
end

RFPPF If the effect of a tool specific pragma is required for the correct operation of the specification then the specification
is not compliant to this standard.

RVXCS For compliant specifications any tool specific pragmas not recognised by a tool which processes ASL must not
stop the operation of the tool.

ISLNQ It is recommended that tools which process ASL should warn users of unrecognised tool specific pragmas.

Example:
pragma my_tool_pragma1;
pragma other_tool_op '0010', 123 ;
func my_function_with_tool_pragmas()
begin

pass;
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter 4. Declaration syntax
4.7. Annotations

4.7 Annotations

annotation ::= "@" identifier "(" null_or_expr_list ")"

Subprograms and statements can be annotated with code annotations. These annotations provide further metadata
about how a declaration or statement should be interpreted or handled by an implementation.

4.7.1 Recursion limits

@recurselimit(<LIMIT>)

The recurselimit annotation annotates that a subprogram can recurse a maximum of <LIMIT> times, directly or
indirectly.

A recursive path is a function call path that repeats.

RBYRT At least one function in a recursive path must a @recurselimit annotation.

RVQRH The recursion limit must be a non-execution-time integer expression.

RTWDQ When the recursion limit is exceeded, an error should occur.

IFXJV These annotations may be used by an implementation to unroll recursive code.

@recurselimit(4)
func foo(a: integer) => integer
begin

return bar(b);
end

@recurselimit(3)
func bar(b: integer) => integer
begin

return foo(b);
end

In the above example and longest possible call path is foo->bar->foo->bar->foo->bar-foo->bar. The final call
to bar results in an error.

4.7.2 Loop limits

See 6.9.1 Loop limits

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter 5
Expression syntax

When reading this section, the definitions of 8.1.1 Statically evaluable expressions and 8.3 Evaluation of
expressions are useful.

DKXWT The term Primitive Operations denotes the set of operations available in the expression syntax.

IHSQL This includes binop, unop and if..then..else expressions.

Expressions calculate values. All expressions have a unique type. The type of an expression can be a tuple.
Expressions can have side effects and can raise exceptions and, therefore, there are constraints on the evaluation
order and on the side-effects/exceptions to avoid surprising or unpredictable behavior (see 8.5.1 Evaluation order).

Expressions contain several levels of precedence. This is expressed in the grammar in the usual way by a set of
mutually recursive definitions.

expr ::= "if" cexpr "then" expr elsif_expr_list "else" expr
| cexpr

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter 5. Expression syntax
5.1. Conditional expressions

5.1 Conditional expressions

expr ::= "if" cexpr "then" expr elsif_expr_list "else" expr
| cexpr

elsif_expr ::= "elsif" expr "then" expr

RYCDB A conditional expression evaluates to its then expression if the condition expression evaluates to TRUE. If the
condition expression evaluates to FALSE each elsif condition expression is evaluated sequentially until an elsif
condition expression evaluates to TRUE; the conditional expression evaluates to the corresponding elsif expression.
If no elsif expression evaluates to TRUE the conditional expression evaluates to the else expression.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter 5. Expression syntax
5.2. Binary and unary operators

5.2 Binary and unary operators

cexpr ::= cexpr binop_boolean cexpr_cmp
| cexpr checked_type_constraint
| cexpr_cmp

cexpr_cmp ::= cexpr_cmp binop_comparison cexpr_add_sub
| cexpr_add_sub

cexpr_add_sub ::= cexpr_add_sub binop_add_sub_logic cexpr_mul_div
| cexpr_mul_div

cexpr_mul_div ::= cexpr_mul_div binop_mul_div_shift cexpr_pow
| cexpr_pow

cexpr_pow ::= cexpr_pow binop_pow bexpr
| bexpr

binop_boolean ::= "&&"
| "||"
| "-->"
| "<->"

binop_comparison ::= "=="
| "!="
| ">"
| ">="
| "<"
| "<="

binop_add_sub_logic ::= "+"
| "-"
| "OR"
| "XOR"
| "AND"

binop_mul_div_shift ::= "*"
| "/"
| "DIV"
| "DIVRM"
| "MOD"
| "<<"
| ">>"

binop_pow ::= "^"

bexpr ::= unop bexpr
| expr_term

unop ::= "-"
| "!"
| "NOT"

binop_in ::= "IN"

expr_term ::= expr_atom binop_in pattern_set
| "UNKNOWN" ":" ty
| expr_atom

ASL provides the usual arithmetic and logical operators as well as tests for set membership and for comparing
values with bitmask_lits. Note that, unlike C, the operator ^ represents exponentiation, not exclusive-or.

The primitive operators are defined in tables Table 7.1, Table 7.2, Table 7.3, Table 7.4, Table 7.5 and Table 7.6
and apply only to the types shown there.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter 5. Expression syntax
5.2. Binary and unary operators

5.2.1 Operator precedence

Operator precedence is used to disambiguate binary expressions. The operator classes and precedence order is
defined by Table 5.1.

Given two binary operators op1 and op2, an expression of the form x op1 y op2 z, is interpreted as (x op1 y) op2 z
if op1 has higher precedence than op2 or as x op1 (y op2 z) if op1 has lower precedence than op2 . If op1 is
associative and op1 = op2 then the expression may be interpreted as either (x op1 y) op2 z or as x op1 (y op2 z)
since there is no difference. Otherwise, an operator precedence error is reported.

The following operators are associative: + * && || AND OR XOR

Table 5.1: Precedence classes

Precedence Class Operators

1 (Highest) Membership IN

2 Unary - ! NOT

3 Power ^

4 Mul-Div-Shift * / DIV DIVRM MOD << >>

5 Add-Sub-Logic + - AND OR XOR

6 Comparison == != > >= < <=

7 (Lowest) Boolean && || --> <->

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter 5. Expression syntax
5.2. Binary and unary operators

Examples:

func operator_precedence(
a: integer,
b: integer,
c: integer,
d: bits(8),
e: bits(8),
f: bits(8),
g: boolean)

begin

let p_m_s = a * b - c;
// '*' has higher precedence than '-' so interpreted as:
let p_m_s_I = (a * b) - c;
assert(p_m_s == p_m_s_I);

let p_s_m = a - b * c;
// '*' has higher precedence than '-' so interpreted as:
let p_s_m_I = a - (b * c);
assert(p_s_m == p_s_m_I);

// let p_a_s = a + b - c;
// '+' has equal precedence to '-' so causes a compile-time error.
// Must be written as either:
let p_a_s_A1 = (a + b) - c;
let p_a_s_A2 = a + (b - c);

// let p_s_a = a - b + c;
// '-' has equal precedence to '+' so causes a compile-time error.
// Must be written as either:
let p_s_a_A1 = (a - b) + c;
let p_s_a_A2 = a - (b + c);

let p_a_e = a + b ^ c;
// '^' has higher precedence than '+' so interpreted as:
let p_a_e_I = a + (b ^ c);
assert(p_a_e == p_a_e_I);

let p_and_and = d AND e AND f;
// 'AND' is associative so can be interpreted as either:
let p_and_and_i1 = (d AND e) AND f;
let p_and_and_i2 = d AND (e AND f);
assert(p_and_and == p_and_and_i1);
assert(p_and_and == p_and_and_i2);

// let p_and_or = d AND e OR f;
// 'AND' and 'OR' have no defined precedence so causes a compile-time error.
// Must be written as either:
let p_and_or_A1 = (d AND e) OR f;
let p_and_or_A2 = d AND (e OR f);

let p_band_eq = g && a == b;
// '&&' is of precedence class 'Boolean'.
// '==' is of precedence class 'Comparison'.
// 'Comparison' has higher precedence than 'Boolean' so interpreted as:
let p_band_eq_I = g && (a == b);
assert(p_band_eq == p_band_eq_I);

// let p_eq_eq = a == b == g;
// '==' is not associative so causes a compile-time error.
// Must be written as:
let p_eq_eq_A1 = (a == b) == g;
// Note: 'a == (b == g)' is not valid as it does not type satisfy.

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter 5. Expression syntax
5.3. Pattern matching

5.3 Pattern matching

The binary operator IN tests whether a value (referred to as the discriminant) matches any item from a pattern_set.
Lists of patterns are also used in case statements (6.8 Case Statements).

pattern ::= "-"
| expr
| expr ".." expr
| "<=" expr
| ">=" expr
| pattern_set

pattern_set ::= "{" pattern_list "}"
| "!" "{" pattern_list "}"
| bitmask_lit

pattern_list ::= pattern "," pattern_list
| pattern

A pattern_set consists of one of:

• a literal bitmask of the same length as the discriminant.

• a list of one or more patterns. These match if any member of the set matches the discriminant.

• a negated list of one or more patterns. These match if no members of the set matches the discriminant.

A pattern consists of one of:

• The ‘-’ pattern, which always matches.

• A compile-time-constant expression of a type that has the structure of any one of the following primitive
types: boolean, integer, real, enumeration or bits(N).

• A literal bitmask of the same length as the discriminant.

• A range of integers or reals, with lower and upper bounds as expr .. expr, or an upper bound as <= expr

or a lower bound as >= expr. Ranges are closed, meaning that they include their endpoints.

• A pattern_set.

Pattern matching also supports the concurrent matching of multiple discriminants.

• Multiple discriminants can be matched at once by forming a tuple of discriminants and a tuple used in the
pattern_set. Both tuples must have the same number of elements. A successful pattern match occurs when
each discriminant term matches the respective term of the pattern tuple.

Any expression which can be used as an initializer for a global constant, can be used in a pattern. This includes
calls to compile-time-constant functions.

It is not permitted to use a function parameter or let or var variable in a pattern.

Individual bits of a bitmask can be specified as x to always match that bit with the associated bit of the discriminant.

IWLNM There is no type for bitmasks (bitmask_lit). Bitmasks cannot be assigned to variables or passed into or out of
functions.

RZNDL The IN operator is equivalent to testing its first operand for equality against each value in the (possibly infinite)
set denoted by the second operand, and taking the logical OR of the result. Values denoted by a set of patterns
comprise the union of the set of values denoted by each pattern. Values denoted by a bitmask_lit comprise all
bitvectors that could match the bit-mask. It is not an error if any or all of the values denoted by the first operand
can be statically determined to never compare equal with the second operand.

Examples:

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter 5. Expression syntax
5.3. Pattern matching

let expr_A = '111' IN {'1xx'}; // TRUE
let expr_Aa = '111' IN '1xx'; // TRUE
let expr_B = '111' IN {'0xx'}; // FALSE
let expr_C = 3 IN {2,3,4}; // TRUE
let expr_D = 1 IN {2,3,4}; // FALSE
let expr_E = 3 IN {1..10}; // TRUE
let expr_F = 3 IN {<= 10}; // TRUE
let expr_G = 3 IN !{1,2,4}; // TRUE
let expr_H = (1,'10') IN {(1,'1x')}; // TRUE
let expr_I = (1,'10') IN {(1,'0x'), (2, '1x')}; // FALSE (see note below)

// The last two expressions are equivalent to:
let expr_H = (1 IN {1}) && ('10' IN {'1x'});
let expr_I = ((1 IN {1}) && ('10' IN {'0x'})) ||

((1 IN {2}) && ('10' IN {'1x'}));

Note that expr_H and expr_I use a tuple to simultaneously pattern match two values, the integer 1 and the bitvector
'10'. For expr_I although these values each match parts of the tuple patterns in the pattern_set, they do not
simultaneously match all elements of either of the tuple patterns (1,'0x') or (2, '1x').

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter 5. Expression syntax
5.4. Atomic expressions

5.4 Atomic expressions

expr_atom ::= identifier
| identifier "(" null_or_expr_list ")"
| identifier "{" field_assignment_list "}"
| literal_expr
| expr_atom "[" null_or_slice_list "]"
| expr_atom "." identifier
| expr_atom "." "[" identifier_list "]"
| "(" pattern_list ")"
| "[" expr_list "]"

field_assignment ::= identifier "=" expr

field_assignment_list ::= field_assignment "," field_assignment_list
|
| field_assignment

Atomic expressions consist of:

• Local and global storage element identifiers. The value of such an expression is the value stored in the storage
element declared with the given identifier, and has the type of the identifier.

• 5.7 Function Invocations.

• 5.5 Record Expressions.

• 5.8 Literal constants.

• An indexed read. See 5.9 Arrays, bitslices and invoking getter functions.

• Field f of a record or bitvector r is extracted using r.f.

• Multiple fields f1, .. fn of a bitvector r or bitvector fields of a record are extracted and concatenated using
r.[f1, .., fn].

RRCSD It is an error if any field used is not of type bitvector.

• 5.10 Tuples.

• A list of slices (i.e., i +: w, j : i, i *: w or i) can be used to mean the concatenation of a list of individual
slices. For example, b[3:0, 7:4] denotes the 8-bit bitvector consisting of the bottom nibbles of b in reverse
order.

Examples:
expr_A = Replicate(x, 4); // function invocation
expr_B = (N - 1); // parenthesised expression
expr_C = (TRUE, Zeros(32)); // 2-tuple

type pair of record {x: integer, y: integer};

func field_assignments() => pair
begin

let p: pair = pair {x = 1, y = 2}; // record creation
return p;

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter 5. Expression syntax
5.5. Record Expressions

5.5 Record Expressions

expr_atom:structured ::= identifier "{" field_assignment_list "}"

RWBCQ The identifier in a record expression must be a named type with the structure of a record type, and whose fields
have the values given in the field_assignment_list.

RDYQZ A record expression shall assign every field of the record.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter 5. Expression syntax
5.6. Exception Expressions

5.6 Exception Expressions

expr_atom:structured ::= identifier "{" field_assignment_list "}"

RZWCH The identifier in an exception expression must be a named type with the structure of an exception type, and
whose fields have the values given in the field_assignment_list.

RKCDS An exception expression shall assign every field of the exception.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter 5. Expression syntax
5.7. Function Invocations

5.7 Function Invocations

expr_atom:invoke ::= identifier "(" null_or_expr_list ")"

A function invocation expression calls a defined function. Several functions may be defined with the same name,
and the types of the arguments are used at compile-time to resolve to a specific function.

IVGSP Overload resolution is based only on the name and argument types, and takes no account of how the result is used.

IQSLR ASL pre-defines some standard functions. For a list, see Chapter 9 Standard library.

For more detail on how function invocations are resolved, see 7.8.2 Subprogram invocations.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter 5. Expression syntax
5.8. Literal constants

5.8 Literal constants

literal_expr ::= int_lit
| hex_lit
| real_lit
| bitvector_lit
| string_lit
| boolean_lit

RTSKH Literal constants consist of literals as defined in the above grammar rule (see (2.2.2 Literals)), and enumeration
literals.

RZDSJ Integer literals (both decimal and hexadecimal) have constrained integer type. The type of an integer literal is the
constrained integer type whose constraint holds only the value of the literal.

RLLJZ Real literals have type real.

RQNQV String literals have type string.

RSPPT The type of a bit-vector literal is bits(N) where N is the number of ‘0’ and ‘1’ characters in the literal.

IWDMD Any spaces included in the literal do not affect the length of the literal so, for example, '11110000' and '1111

↪→0000' are both bit-vectors of type bits(8).

RYTKY Boolean literals have type boolean. See rule MXPS.

Examples:
let expr_H = 1; // integer
let expr_I = 0xffff_ffff; // integer
let expr_J = 2.0; // real
let expr_K = "Hello World"; // string
let expr_L = ''; // bits(0)
let expr_M = '1110 0000'; // bits(8)
let expr_N = TRUE; // boolean
type ET of enumeration{X,Y};
let expr_ET = X; // ET

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter 5. Expression syntax
5.9. Arrays, bitslices and invoking getter functions

5.9 Arrays, bitslices and invoking getter functions

expr_atom ::= identifier
| identifier "(" null_or_expr_list ")"
| identifier "{" field_assignment_list "}"
| literal_expr
| expr_atom "[" null_or_slice_list "]"
| expr_atom "." identifier
| expr_atom "." "[" identifier_list "]"
| "(" pattern_list ")"
| "[" expr_list "]"

slice ::= expr
| expr ":" expr
| expr "+:" expr
| expr "*:" expr

slice_list ::= slice "," slice_list
| slice
| slice ","

null_or_slice ::= slice

null_or_slice_list ::= null_or_slice "," null_or_slice_list
|
| null_or_slice

The same syntax is used in ASL for array indexing, bitslicing and invoking getter functions.

This can be one of:

• The ith element of an array a is extracted using a[i].

RZTRR It is an error to use an index that is out of range.

• A getter function F can be applied to a list of arguments a1, .., an using F [a1, .., an].

RDVVQ If a getter function does not define any arguments but contains an empty argument list in the declaration, the
getter must be invoked with an empty set of square brackets.

RGXQH If a getter function does not contain an argument list in the declaration, the getter must not be invoked with
square brackets.

Example:
getter foo[] => integer;
getter bar => integer;

func baz()
begin

var a = foo[]; // Must provide []
var a = bar; // Must not provide []

end

• A bitslice of length w consisting of bits i up to and including i+w-1 of a bitvector or integer b is extracted
using b[i +: w]. The notation b[j:i] is syntactic sugar for b[i +: j-i+1]. The notation b[i] is syntactic
sugar for b[i +: 1]. The notation b[i *: n] is syntactic sugar for b[i*n +: n] For example, b[16 +: 8],
b[23 : 16] and b[2 *: 8] all denote the 8-bit bitvector obtained by extracting bits from 16 up to and
including 23.

Bitslicing an integer returns a slice of the twos-complement representation of the integer.

It is an error to use a negative slice width or a slice that starts with a negative index or that extends beyond
the length of a bitvector.

A slice may result in a zero-length bitvector. For example, b[0:1] results in a zero-length bitvector.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter 5. Expression syntax
5.9. Arrays, bitslices and invoking getter functions

Distinguishing between array indexing, bitslicing and invoking getter functions is based on whether there is a
global variable or parameterized getter function in scope and on whether the type of the variable is a bitvector or
an array.

RZFFV Where an expr_atom consists of an identifier which is declared as a getter, then the expr_atom is treated in the
same way as a function invocation. In this case, if a sequence of null_or_slice_lists is present, each must
consist of a single expression. The sequence of null_or_slice_lists shall be used as the actual expressions for
the invocation of the getter.

Examples:
let expr_O = Mem[addr, 4]; // Call getter function Mem
let expr_P = _R[i]; // Read element i of array _R
let expr_Q = result[63]; // Extract bit 63 of bitvector result
let expr_R = result[31:0]; // Extract bits 31 down to 0 of bitvector result
let expr_S = EPSR[26:25, 15:10]; // Extract two bitslices and concatenate them
let expr_T = PSTATE.[N,Z,C,V]; // Extract four bitvector fields from PSTATE and

↪→concatenate them

5.9.1 Bitslices

ITFSZ Bit vectors support bitslice operations that extract a number of contiguous or non-contiguous bits from a bit vector.
A bitslice operation may result in a zero-length bitslice.

RNHGP The expressions specifying a bitslice must be such that the width of the resulting bitvector has constrained type.

For example, in b[j:i], both j and i must have constrained type.

RWZCS The width of a bitslice must be any non-negative, statically evaluable integer expression (including zero).

IKLDY Because of the use of statically evaluable expressions (see 8.1.1 Statically evaluable expressions) in bitslices,
the width of the bit vector resulting from the bitslice can be used for checking type-satisfaction (See also 7.6.2
Type-Satisfaction.)

RKTBG It is an error if any bits selected by a bitslice are not in range for the expression being sliced. If the offset of
a bitslice depends on a statically evaluable expression then this shall be checked at compile time. Otherwise a
bounds check will occur at execution-time and an implementation defined exception shall be thrown if it fails.

IJEJD If the offset of a bitslice depends on an expression whose type is a constrained integer, then the compiler may elide
the execution-time bounds check if all possible offsets would be legal at runtime.

RSNQJ An expression or subexpression which may result in a zero-length bitvector must not be side-effecting.

The above rule is intended to allow implementations to transform expressions to a form where zero-length bitvectors
do not exist.

Example of bitslice
func R_sl()
begin

let offset: integer = f();
let k: integer {3, 7} = getWid();
var src: bits(k);
var dst: bits(k-1);

dst = src[offset+k-2:offset]; // legal
// but requires an execution-time check that
// offset+k-2 < k
// offset >= 0

dst = src[offset+:k-1]; // legal
// but requires an execution-time bounds check that
// offset+k-1 <= k
// offset >= 0

dst = src[k:k-offset];

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter 5. Expression syntax
5.9. Arrays, bitslices and invoking getter functions

// illegal (bitslice non-mutable width requirement)
// since width is mutable `offset+1`

let w = offset;
dst = src[w:1];
// illegal (type-satisfaction requirement)
// although width is a statically evaluable expression
// since (w != width of dst)

dst[0+:w] = src[0+:w];
// legal
// but requires an execution-time bounds check that:
// max index of LHS bitslice <= max index of dst
// and
// max index of RHS bitslice <= max index of src

var zw: integer{0,1,2};
var zb = f()[0+:zw];
// legal, as long as f() is side-effect-free

let d = [f()[1+:zw], g()[1 +: 8]];
// f() must not be side-effecting as it is used in a sub-expression
// that may produce a zero-with bitvector.
// g() may be side-effecting as the sub-expression it is in
// produces a non-zero-width bitvector.
// The RHS expression as a whole may be side-effecting.

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter 5. Expression syntax
5.10. Tuples

5.10 Tuples

RJPVL Tuple expressions are supported to allow multiple assignment and functions that return multiple values.

Examples:
// declaration of a tuple type
type MyTupleT of (boolean, integer);

// a function that returns a tuple
func calcEnable() => MyTupleT
begin

return (TRUE, data); // returning a 2-tuple
end

func example1() => (integer, integer)
begin
// declaration let identifier (of type tuple), with initialization
let default_range : (integer, integer) = (0, 31);

// declaration of two var identifiers
// The type information for a and b is taken from the initialization expression
var (a,b) = default_range;

// declare a local identifier using a tuple type
var enable_value : MyTupleT;

// assignment to a tuple
enable_value = calcEnable();

var hi, lo :integer;
// multiple assignment to the list of elements `lo, hi` from
// a conditional expression that has one tuple literal `(0,63)`
// and a variable default_range, of type tuple.
// Note that the expression on the left side of the equals sign is
// not a tuple but instead a list of elements.
(lo, hi) = if sf then (0, 63) else default_range;

return (lo, enable_value.item1);
end

RKVNX Individual elements of a tuple may be accessed read-only. Writing values to an individual element of a tuple is not
supported.

ITSXL An expression to access an individual element of a tuple is a tuple expression followed by a dot (.) and then a
specific identifier. This identifier must be the combination of the exact string item followed by an integer. The
integer must be the digit 0, or a positive number (with no leading zeros).

Example:
(1, 2).item0 // the tuple `(1,2)`, the string `item`, the integer 0

IXFPV Tuple element selection is position-based. The first element is selected with .item0, the second with .item1, the
third with item2 and so on. It is invalid to specify an element beyond the size of the tuple.

Examples:
a = (1, 2).item0; // a = 1;
b = (1, 2).item1; // b = 2;
// the above 2 statements are equivalent to the following multi-assign statement.
(a, b) = (1, 2);

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter 5. Expression syntax
5.11. Checked type conversions

5.11 Checked type conversions

RPBLF The syntax

cexpr as ty

is a checked type conversion indicating that expr_atom shall be treated as the required type ty. See 7.13.1 Checked
type conversions on expressions.

RHDDS The syntax

cexpr as <constraint>

is syntactic sugar for

cexpr as integer <constraint>

ISBFK Note that the checked type conversion operator binds at lowest precedence, so

M+N as K

is equivalent to

(M+N)as K.

Parentheses can be used when necessary, e.g.

M * (N + (S as T))

or to improve readability. It is recommended to use parentheses whenever there is a risk that the meaning might
not be clear to readers of the specification.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter 5. Expression syntax
5.12. The UNKNOWN expression

5.12 The UNKNOWN expression

RXBMN The type of the expression UNKNOWN: ty is ty.

RWLCH The expression UNKNOWN: ty evaluates to an arbitrary value in the domain of ty.

IGJHS There is no UNKNOWN value which can be held in a storage element.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter 6
Statement syntax

Statements consist of:

• simple statements including declarations, assignments, procedure calls and returns.
• conditional and case statements.
• repetitive statements: for, while and repeat loops.
• exception handling statements.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter 6. Statement syntax
6.1. Statements

6.1 Statements

stmt ::= annotation stmt
| decl_stmt
| lexpr "=" expr ";"
| identifier "(" null_or_expr_list ")" ";"
| "return" expr_opt ";"
| "assert" expr ";"
| "throw" expr_opt ";"
| "pass" ";"
| "if" expr "then" stmt_list elsif_list else_opt "end"
| "case" expr "of" alt_list otherwise_opt "end"
| "for" identifier "=" expr direction expr "do" stmt_list "end"
| "while" expr "do" stmt_list "end"
| "repeat" stmt_list "until" expr ";"
| "try" stmt_list "catch" catcher_list otherwise_opt "end"
| "pragma" identifier null_or_expr_list ";"

stmt_list ::= stmt stmt_list
| stmt

RPTNG Statements consist of:

• Declarations of variables, let values and constants. See 6.2 Local storage elements.

• 6.5 Assignment statements.

• 6.3 Procedure invocation statements.

• 6.4 Return statements.

• 6.6 Assertion statements.

• Throw statements which throw exceptions. See 6.10.2 Throw Statements.

• Pass statements which do nothing (nop).

• 6.7 Conditional statements.

• 6.8 Case Statements.

• 6.9 Repetitive statements.

• 6.10 Exception handling.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter 6. Statement syntax
6.2. Local storage elements

6.2 Local storage elements

decl_stmt ::= "var" identifier ":" ty ";"
| "var" identifier "," identifier_list ":" ty ";"
| "var" decl_item "=" expr ";"
| "let" decl_item "=" expr ";"
| "constant" decl_item "=" expr ";"

decl_item ::= identifier ty_opt
| "(" decl_item_list ")" ty_opt
| "[" decl_item_list "]" ty_opt
| "-" ty_opt

decl_item_list ::= decl_item "," decl_item_list
| decl_item

ty_opt ::= ":" ty
|

This provides a way to define local variables, let values and constants.

RXSDC The var keyword is used to declare local variable identifiers denoting local storage elements which are all of the
following: non-compile-time-constant, execution-time, mutable.

RBFWL The let keyword is used to declare local let identifiers denoting local storage elements which are all of the
following: non-compile-time-constant, execution-time, immutable.

RTFJZ The constant keyword is used to declare local constant identifiers denoting local storage elements which are all
of the following: compile-time-constant, non-execution-time, immutable.

RSQJJ The type of a local storage element declared with the constant keyword must be a compile-time-constant type.
See also section 8.4.2 Compile-time-constant types.

RQDQD A single local identifier or a list of local identifiers may be declared along with an initialization expression. Each
identifier may have an optional type annotation.

RCLQJ Where a hyphen (-) is present instead of an identifier, the corresponding initialization value will be discarded after
evaluating it.

RFMLK One or more variables, all of the same type, may be declared simultaneously with no initialization expression. In
this case, a single type annotation must be included after the last variable name in the declaration.

RPNQJ A declaration using a parenthesized list of identifiers (or nested parenthesized lists) requires an initializer expression
with the structure of a tuple. The type for each of the identifiers may be omitted and instead the type for each
local storage element will be the type of the positionally paired element (or nested tuple) of the initializer tuple
expression.

IYPXD The initialization defined in rule PNQJ is similar to the destructuring assignment described in 6.5.2 Multi-
assignment.

RKKDF Multiple variables, all of a determined width bitvector type, may be declared simultaneously using a concatenation
declaration. In a concatenation declaration each variable being declared must have either: a type annotation that
defines the determined width bitvector or have no type annotation. If no annotation is specified then bits(1) is used.
A concatenation declaration requires an initialization expression that is a determined width bitvector that is the
same width as the sum of the widths of variables being declared.

ISRQF Nesting of concatenated variable names in a concatenation declaration is allowed but does not define or imply any
organization of the variables; i.e. nesting of concatenated variable names is not equivalent to Nested bitfields. See
also 3.8.1.1 Nested bitfields.

RNXSF If a locally declared identifier has an associated type in the declaration_stmt, then the identifier has that type.

RXHPB If a locally declared identifier does not have an associated type then it must have an associated initialization
expression and the identifier has the type of that expression.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter 6. Statement syntax
6.2. Local storage elements

6.2.1 Scope of local declarations

IKBXM ASL has static scoping. This means that the local identifiers of a function or procedure are not in scope within any
subprogram which it executes.

See also 4.1 Scope of global declarations.

RJFRD A local identifier declared with var, let or constant is in scope from the point immediately after its declaration
until the end of the immediately enclosing block.

ITTQJ Rule JFRD means that it is not possible for a specification to define a cycle among the declarations and initializations
of locally declared identifiers. See also info LWQQ for how global declarations differ in this respect.

RLCFD A local declaration shall not declare an identifier which is already in scope at the point of declaration.

6.2.2 Initialization of locals

RKSZM A local storage element declared with var is initialized with the base value of its type if no initialization expression
is given.

IFKJC Writing ASL specifications which rely on the implicit initialization of local variables is strongly discouraged. It is
recommended that tools which process ASL attempt to detect code which reads local variables before writing to
them and report this as an error which can be downgraded to a warning by users.

RXYLP Where the initialization expression in a declaration_stmt is a bitvector of determined width, if the initialization
expression type satisfies the declared type, then the declaration creates a storage element whose determined width
is the determined width of the initialization expression.

RZXHP The initialization expression in a let or var declaration is evaluated during execution-time at the point of
declaration, hence any side effects occur at the point of declaration.

RTZRV The initialization expression in a local constant declaration must be a compile-time-constant expression.

RNFKG A local storage element declared with constant is initialized with the value of its initialization expression during
compilation.

Examples

Declaration of a local variable with identifier size of type integer and initial value 256:

var size: integer = 256;

The type may be omitted from the declaration if it can be unambiguously inferred from the initializer expression:

var size = 256;

Multiple variables may be declared in a single declaration:

var x, y, z: integer;

The following declares three local variables which are non-compile-time-constant, execution-time and mutable:

• myF is an integer, initialized with the result of invoking f()

• size is initialized with the integer 256
• myH is initialized with the result of invoking h()

• Since the type of myH is not specified, it is derived from the return type of h()
• The invocation of g() occurs but the result is discarded.

var (myF: integer, -, (size, myH)) = (f(), g(), (256, h()));

The following concatenation declaration defines five local let variables. It uses a concatenation assignment that
requires a bitvector on the right-hand side that has a total width equal to the sum of the declared widths of the
variables being defined.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter 6. Statement syntax
6.2. Local storage elements

let [v1 : bits(4), [v2 : bits(8), v3 : bits(16)], v4, v5 : bits(3)] =
[vec8_a, vec16_a, vec8_b];

// the above single let declaration is equivalent to the combinaton of
// the five declarations:
// let v1 : bits(4) = vec8_a[7:4];
// let v2 : bits(8) = [vec8_a[3:0], vec16_a[15:12]];
// let v3 : bits(16) = [vec16_a[11:0], vec8_b[7:4]];
// let v4 : bits(1) = vec8_b[3]; // v4 has unspecified type -- bits(1) is used.
// let v5 : bits(3) = vec8_b[2:0];

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter 6. Statement syntax
6.3. Procedure invocation statements

6.3 Procedure invocation statements

stmt:invoke ::= identifier "(" null_or_expr_list ")" ";"

DKCYT A procedure invocation statement calls a procedure subprogram using the given actual arguments. The subprogram
must not have a return type.

For more details on how procedure invocations are resolved, see 7.8.2 Subprogram invocations.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter 6. Statement syntax
6.4. Return statements

6.4 Return statements

stmt:return ::= "return" expr_opt ";"

expr_opt ::= expr
|

DHTPL A return statement returns the control flow to the caller of a subprogram.

RPHNZ A return statement appearing in a getter or function requires a return value expression that type-satisfies the return
type of the subprogram.

RNYWH A return statement appearing in a setter or procedure must have no return value expression.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter 6. Statement syntax
6.5. Assignment statements

6.5 Assignment statements

stmt:assign ::= lexpr "=" expr ";"

lexpr ::= "-"
| lexpr_atom
| "(" lexpr_list ")"

lexpr_atom ::= identifier
| lexpr_atom "." identifier
| lexpr_atom "." "[" identifier_list "]"
| "[" lexpr_atom_list "]"
| lexpr_atom "[" null_or_slice_list "]"

DBJNY An assignment statement stores the value of the right-hand side expression in one or more storage elements, as
denoted by the left hand side.

6.5.1 Left hand side rules

The left hand side of an assignment statement can contain simple pattern matches consisting of:

• ‘-’ (hyphen, minus sign) meaning discard the value

• An in-scope, mutable identifier. This can be one of:

– A local variable.

– A global variable.

– A call to an unparameterized setter function.

These are disambiguated based on whether there is a global variable or unparameterized setter function in
scope.

• Field assignment: denoted lexpr_atom.identifier where lexpr_atom is an expression that yields a record,
exception or bitvector value, and identifier is the field identifier. Fields can be fields of records, exceptions,
or bitfields of bitvectors (see 3.8.1 Bitfields).

• Multiple bitfield assignment: each bitfield is assigned the corresponding slice of the right-hand side bitvector
expression. For example, if the bitvector P has a 3-bit field X and a 2-bit field Y, then P.[X,Y] = '101 00';

assigns P.X the value '101' and assigns P.Y the value '00'.

RZHYT It is an error if any field in a multiple field assignment is not of type bitvector.

RYYFR The fields in a multiple field assignment must not overlap.

• An indexed write. This can be one of

– Assignment to an element of an array.

– Assignment to a bitslice.

– A call to a parameterized setter function.

These are disambiguated based on whether there is a global variable or parameterized setter function in
scope and on whether the type of the variable is a bitvector or an array.

• Multiple values can be assigned at once using a multi-assignment statement. See 6.5.2 Multi-assignment.

• Multiple bitvector values can be assigned at once using concatenation. Each bitvector is assigned the
corresponding bitslice of the right-hand side expression.

Examples:
size = 32; // assign to variable

PSTATE.nRW = TRUE; // write to `nRW` field of the `PSTATE` variable

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter 6. Statement syntax
6.5. Assignment statements

PSTATE.[N,Z,C,V] = '0000'; // Using multiple bitfield assignment, write to multiple
↪→fields of the `PSTATE` variable

EPSR[26:25, 15:10] = Zeros(8); // write to bitslice of `EPSR` variable

[n, z, c, v] = '0000'; // Using concatenation assignment, bitslice the literal constant
↪→and assign each slice to individual variables

6.5.2 Multi-assignment

DWSXY Multi-assignment is a destructuring assignment that allows the elements of a tuple on the right-hand side of an
assignment to be stored in different storage elements as denoted by the items in the parenthesized list on the
left-hand side.

RZHVH The number of elements in the tuple on the right-hand side of the assignment must be equal to the number of items
(name or dash) in the parenthesized list on the left-hand side.

ICJVD The items (name or dash) in the parenthesized list on the left-hand side are positionally paired with the elements
from the tuple on the right-hand side. For each pair, an assignment is made from the right-hand side element to the
left-hand side element.

ISSXJ A dash indicates that the element at that position in the tuple on the right-hand side is not assigned to anything, and
is instead discarded.

Examples:
(a, b) = (1, 2); // equivalent to a = 1; b = 2;

// Discard the second element returned by AddWithCarry
(result, -) = AddWithCarry(R[n], R[m], '0');

6.5.3 Setter invocation

RYDFQ Where the left hand side of an assignment is to an identifier which is declared as a setter, the assignment is treated
in the same way as a procedure invocation. In this case, if a sequence of null_or_slice_lists is present, each
must consist of a single expression. The sequence of null_or_slice_lists shall be used as the actual expressions
for the invocation of the setter. (see 7.8.2 Subprogram invocations)

Examples:
DHCSR = Zeros(32); // call unparameterized setter function `DHCSR`

Mem[addr, 32] = Zeros(32); // call parameterized setter function `Mem`

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter 6. Statement syntax
6.6. Assertion statements

6.6 Assertion statements

DQJYV An assertion statement takes an expression that is asserted by the specification to be TRUE when the assertion
statement is executed.

RWZSL If an assertion expression is FALSE when the assertion statement is executed, it indicates an error in the specification.
An implementation may throw an implementation-defined exception in this case, as described in 10.1 Dynamic
errors, but is not required to.

RWQRN The expression in an assertion statement must be side-effect-free.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter 6. Statement syntax
6.7. Conditional statements

6.7 Conditional statements

stmt:if ::= "if" expr "then" stmt_list elsif_list else_opt "end"

else_opt ::= "else" stmt_list
|

elsif ::= "elsif" expr "then" stmt_list

RTMYS Conditional statements select which block to execute by testing condition expressions sequentially until a TRUE

condition is found.

RXSSL If no TRUE condition is found and there is an else block, the else block is executed.

RKZTJ If no TRUE condition is found and there is no else block, no block is executed.

Examples:
if x > y then

return 1;
elsif x < y then

return -1;
else

return 0;
end

if d IN {13,15} || n IN {13,15} then
UNPREDICTABLE();

end

if size == '01' then
esize = 16; elements = 4;

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter 6. Statement syntax
6.8. Case Statements

6.8 Case Statements

stmt:case ::= "case" expr "of" alt_list otherwise_opt "end"

alt_list ::= alt alt_list
|

alt ::= "when" pattern_list where_opt "=>" stmt_list

where_opt ::= "where" expr
|

otherwise_opt ::= "otherwise" "=>" stmt_list
|

ICHGZ The expression following the case keyword is called the discriminant.

RPSZY The discriminant is evaluated once each time the case statement is evaluated.

RJHST Case alternatives are examined in sequential order. If any of the patterns match the discriminant (and the guard
expression is true, if present - see below) then this case alternative is considered selected, its statement list is
executed, and the case statement ends without examining any further case alternatives.

RRXQB Testing the discriminant against a pattern list follows the same procedure described in 5.3 Pattern matching.
It is not an error if it can be statically determined that none of the patterns in a case alternative can match the
discriminant.

RZYVW If no case alternative is selected, and there is an otherwise_opt block, the otherwise_opt block is executed.

RJVTR If no case alternative is selected, and there is no otherwise_opt block, it indicates an error in the specification,
and an implementation defined exception may be thrown.

Examples:
case spreg of

when RNamesSP_Main_Secure => limit = [MSPLIM_S.LIMIT, '000'];
when RNamesSP_Process_Secure => limit = [PSPLIM_S.LIMIT, '000'];
when RNamesSP_Main_NonSecure =>

limit = if HaveMainExt() then [MSPLIM_NS.LIMIT, '000'] else Zeros(32);
when RNamesSP_Process_NonSecure =>

limit = if HaveMainExt() then [PSPLIM_NS.LIMIT, '000'] else Zeros(32);
assert (FALSE);

end

case size of
when '01' => S[d] = [Zeros(16), FPAbs(S[m][15:0])];
when '10' => S[d] = FPAbs(S[m]);
when '11' => D[d] = FPAbs(D[m]);
// note that it would be an error if size == '00'

end

// This example is not valid ASL
case b of

when '10' => // empty statement list is invalid, does not fall through
when '11' =>

X[30] = 0;
end

6.8.1 Case guards

RCWNT A case alternative in a case statement may be optionally guarded with a condition expression, indicated by the
inclusion of the where keyword. Only if the pattern match is successful is the guard expression evaluated. The
guard expression must evaluate to TRUE for the case alternative to be selected.

Example:

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter 6. Statement syntax
6.8. Case Statements

// in the following 'd' is evaluated once,
// if d == '01' and a == 5 then the sub-expression 'a' will be evaluated twice
case d of

when '00' => return 1;

// if d matches '01' then evaluate (a>8), if true then return 9
when '01' where a > 8 => return 9;

// if d matches '01' then evaluate (a<3), if true then return 2
when '01' where a < 3 => return 2;
when '01' => return 3;
when '10' => return 4;
when '11' => return 5;

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter 6. Statement syntax
6.9. Repetitive statements

6.9 Repetitive statements

stmt:for ::= "for" identifier "=" expr direction expr "do" stmt_list "end"

direction ::= "to"
| "downto"

stmt:while ::= "while" expr "do" stmt_list "end"

stmt:repeat ::= "repeat" stmt_list "until" expr ";"

RSSBD For statements introduce a for-loop counter which is in scope for the body of the for statement.

RZSND If either the start or end expression of the for-statement are unconstrained integers then the for-loop counter is an
unconstrained integer. If either the start or end expression of the for-statement are under-constrained integers and
neither the start nor the end expression are unconstrained integers then the for-loop counter is an under-constrained
integer. Otherwise the for-loop counter is a constrained integer whose constraint is:

• min(SC)..max(EC)U SC when the direction is to and min(SC)<= max(EC)

• SC when the direction is to and min(SC)> max(EC)

• max(SC)..min(EC)U SC when the direction is downto and max(SC)>= min(EC).
• SC when the direction is downto and max(SC)< min(EC).

where SC denotes the domain of the type of the start expression, EC denotes the domain of the type of the end
expression, x..y denotes the closed integer interval between x and y inclusive and U denotes the set union operation

RRQNG For-loop counters are immutable, execution-time storage elements.

RYTNR The start expression shall evaluate to a value that remains unchanged if the start expression were to be re-evaluated
at the beginning of each for-loop iteration.

RNZGH The end expression shall evaluate to a value that remains unchanged if the end expression were to be re-evaluated
at the beginning of each for-loop iteration.

RKLDR The start expression and the end expression must not be side-effecting.

RLSVV The for statement is executed by initializing the for-loop counter with the value of the start expression, and then
repeating the following actions until the for statement is completed:

• if the direction is to (downto) and the loop counter value is greater than (less than) the end expression then
the for statement is considered completed

• the body of the for statement (stmt_list) is executed
• the value of the for-loop counter is updated by incrementing (decrementing) it by 1 if the direction is to

(downto)

IKFYG ASL does not provide a break statement. If early termination of a for-loop is required, consider rewriting it using
either the while or until loop construct.

IYDBR If the start expression is greater than (less than) the end expression in a to (downto) for-loop, the stmt_list of the
for-loop is not executed.

Examples:
for i = 0 to 12 do

R[i] = Zeros(32); // this line is executed 13 times to set R[0] ... R[12]
end

for i = 12 to 0 do
S[i] = Zeros(32); // this line is never executed

// the initial value (12) is greater than the end expression (0)
end

RMHPW While statements repeatedly test a condition expression and then execute a block of statements.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter 6. Statement syntax
6.9. Repetitive statements

RJQXC The while loop terminates (without executing the block again) once the condition is FALSE.

Examples:
@looplimit(32)
while mantissa < 1.0 do

mantissa = mantissa * 2.0;
exponent = exponent - 1;

end

RNPWR Repeat statements repeatedly execute a block of statements and then test a condition expression.

RWVQT The repeat loop terminates once the condition is TRUE.

Examples:
@looplimit(20)
repeat

emptySlot = !_InstInfo[i].Valid;
if emptySlot && (isBeatInst || i == 0) then

_InstInfo[i].Valid = TRUE;
_InstInfo[i].Length = len;
_InstInfo[i].Opcode = opcode;

end
i = i + 1;

until emptySlot || (!isBeatInst && i > 0) || (i >= MAX_OVERLAPPING_INSTRS);

6.9.1 Loop limits

RXWRB Repetitive statements must provide a finite upper bound on the maximum number of iterations the statement can
perform. The upper bound of a for-statement can be inferred from the range of its for-loop counter variable if it is a
constrained integer. Otherwise the statement must be annotated with an upper bound via a @looplimit annotation.

RCQSX While and repeat statements always require @looplimit annotations.

RPMKP The loop limit must be a constrained integer expression.

RLPVP When the limit is exceeded, an error should occur.

Examples:
for i = 0 to 12 do

R[i] = Zeros(32); // this line is executed 13 times to set R[0] ... R[12]
end

The upper bound of iterations can be determined by the range of i which is 0..12.

let N: integer{10..20} = ...;
for i = 0 to N do

R[i] = Zeros(32); // this line is executed up to 20 times to set R[0] ... R[19]
end

The upper bound of iterations can be determined by the range of i which is 0..N. Since the range of N is 10..20,
the range of i must therefore be 0..20.

@looplimit(20)
while not_completed() do

i = i + 1;
end

The above loop will perform a maximum of 20 iterations, and on the 21st iteration a runtime error shall occur.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 6. Statement syntax
6.10. Exception handling

6.10 Exception handling

stmt:try ::= "try" stmt_list "catch" catcher_list otherwise_opt "end"

catcher ::= "when" identifier ":" ty "=>" stmt_list
| "when" ty "=>" stmt_list

catcher_list ::= catcher catcher_list
|

6.10.1 Try statements

stmt:try ::= "try" stmt_list "catch" catcher_list otherwise_opt "end"

otherwise_opt ::= "otherwise" "=>" stmt_list
|

RDGRV Execution of a try statement proceeds by executing its stmt_list. If execution reaches the end of the stmt_list

then execution proceeds to the statement following the try statement.

6.10.2 Throw Statements

See 6.1 Statements for syntax.

RTXTC The throw statement causes the exception value obtained by evaluating its expression to be thrown. The thrown
type of the thrown value is the type of the expression.

RGVCC When an exception is thrown, execution proceeds to the catch of the innermost try of the enclosing subprogram
in the call stack. If there is no enclosing try statement when an exception is thrown then execution terminates.

6.10.3 Catchers

catcher ::= "when" identifier ":" ty "=>" stmt_list
| "when" ty "=>" stmt_list

catcher_list ::= catcher catcher_list
|

otherwise_opt ::= "otherwise" "=>" stmt_list
|

RSPNM When the catch of a try statement is executed, then the thrown exception is caught by the first catcher in that
catch which it type-satisfies or the otherwise_opt in that catch if it exists.

RZTLB If a thrown exception is not caught in a catch then the exception is passed to the catch of the closest enclosing
try statement in the current execution.

RYVXF When an exception is caught by a catcher or an otherwise_opt, the stmt_list corresponding to that catcher or
the otherwise_opt is executed respectively.

DGGCQ The catcher syntax includes an optional identifier immediately following the when keyword. That identifier is
called the catcher’s exception.

DJTDG The caught type of a catcher’s exception is the type it is annotated with in the catcher.

RDHKH When a catcher’s stmt_list begins executing, the catcher’s exception is declared (if provided) and denotes a local,
immutable, execution-time storage element which is initialised with the value of the exception which the catcher
caught.

RMKGB A catcher’s exception is only in scope within the stmt_list of the catcher.

IGZVM The catcher’s exception may have a caught type which is not the same as the thrown type of the original exception
which was caught.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter 6. Statement syntax
6.10. Exception handling

RJZST If execution reaches the end of a stmt_list corresponding to a catcher or an otherwise_opt then execution
proceeds to the statement following the try statement which contains the catcher or the otherwise_opt.

IYWKG It is implementation defined whether or not a dynamic error (such as an assertion failure, divide by zero, index out
of bounds etc.) can be caught as an exception. See 10.1 Dynamic errors.

Examples:
try

could_throw_exception();
catch

when Excp =>
handle_excp();
throw; // this will rethrow the handled exception

when exn: Excp2 =>
handle_excp2(exn);
throw exn; // throws exn, this will have the same result with throw;

otherwise =>
unhandled();

end

6.10.4 Rethrowing exceptions

RBRCJ An expressionless throw statement may only be used in the stmt_list of a catcher.

RGVKS An expressionless throw statement causes the exception which the currently executing catcher caught to be
thrown.

IYKLF The exception thrown by an expressionless throw statement has the same thrown type of the original exception
which the current catcher caught and may not be the same as the caught type of the catcher’s exception.

Examples:
type BAD_OPCODE of exception;

func decode_instruction(op: bits(32))
begin

if op[1] == '1' then
throw BAD_OPCODE;

end
end

func top(opcode: bits(32))
begin

try
decode_instruction(opcode);

catch
when e: BAD_OPCODE =>

handle_exception();
end

end

In the above example, the exception BAD_OPCODE thrown in decode_instruction is caught in the calling
subprogram top where the catcher proceeds to call handle_exception.
type IsExceptionTaken of exception;

func HandleException()
begin

try
if HandleExceptionTransitions(commitState) then

SteppingDebug();
VectorCatchDebug();

end
if LockedUp && NextInstrAddr() != 0xEFFFFFFE[31:0] then

LockedUp = FALSE;
end
if !LockedUp then

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter 6. Statement syntax
6.10. Exception handling

InstructionAdvance(commitState);
end

catch
when exn: IsExceptionTaken =>

pass; // ignore exception
end

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter 6. Statement syntax
6.11. Pragmas

6.11 Pragmas

Listing 6.1: Definition of pragma
stmt:pragma ::= "pragma" identifier null_or_expr_list ";"

IFVRF Pragmas can be used at the declarative scope see 4.6 Pragmas and within a subprogram as a statement.

func my_function_with_tool_pragmas()
begin

pragma my_tool_pragma1;
pass;

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter 7
Type inference and type-checking

ASL statically checks that expressions are correctly typed. In this section we describe the rules for type checking.

This section is an informal description of how ASL is interpreted. It is expected to be replaced by a Semantics
Reference Document in due course. If there is a conflict between the behavior described in this document and the
Semantics Reference Document, the Semantics Reference Document will be considered the correct version.

ILDNP See also Chapter 3 Builtin Types for details on type declarations.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter 7. Type inference and type-checking
7.1. Type nomenclature

7.1 Type nomenclature

In this section we define some basic terminology about types.

7.1.1 Named, Anonymous and Primitive types

DVMZX All types are either:

• named types: those which are declared using the type syntax.
• or anonymous types: those which are not declared using the type syntax.

DGWXK All types are either:

• primitive types: those which only uses the builtin types (see rule NZWT)
• or non-primitive types: those which are named types or which make use of named types.

7.1.2 Structure of a type

DFXQV The structure of a type is the primitive type it is equivalent to such that it can hold the same values.

Examples:
type T1 of integer; // the named type `T1` whose structure is integer
type T2 of (integer, T1); // the named type `T2` whose structure is (integer, integer)
// Note that (integer, T1) is non-primitive since it uses T1

var x: T1;
// the type of x is the named (hence non-primitive) type `T1`
// whose structure is `integer`

var y: integer;
// the type of y is the anonymous primitive type `integer`

var z: (integer, T1);
// the type of z is the anonymous non-primitive type `(integer, T1)`
// whose structure is `(integer, integer)`

7.1.3 Domain of Values for Types

DBMGM The domain of a type is the set of values which storage elements of that type may hold.

Examples:

• The domain of integer is the infinite set of all integers.
• The domain of bits(1) is the set {‘1’, ‘0’}
• The domain of integer {2,16} is the set containing the integers 2 and 16.
• The domain of bits({2,16}) is the set containing all two bit and all sixteen bit values.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter 7. Type inference and type-checking
7.2. Execution-time checks

7.2 Execution-time checks

RWZVX An execution-time check is a condition that is evaluated during the evaluation of an execution-time initializer
expression or subprogram. If the condition evaluates to FALSE a dynamic error is generated (see 10.1 Dynamic
errors).

RVBLL Wherever an execution-time check is required, a tool may elide the check if it can be proven at compile time to
always be true.

IKRLL If a compiler can prove that an execution-time check is always false then it may issue a warning. Note that it may
be an error if the compiler can also prove that the execution time check will always be executed.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter 7. Type inference and type-checking
7.3. Constrained types

7.3 Constrained types

ASL allows the use of bitvectors whose width is non-compile-time-constant.

Where a bitvector has variable width, it is desirable to indicate the set of possible widths in the code so that
pseudocode readers are not left guessing which widths are architecturally valid.

To this end we introduce a type of integer whose value is limited to a finite set of integer values. We refer to these
as constrained integers. Note that this is a constraint on the values of the integer typed object, it is not a constraint
on the types which the object may have. The object’s type is still integer, but its domain is restricted.

We also introduce checked type conversions which are an annotation on an expression indicating the type the
expression is believed to be able to have (according to the author of the code. . .)

We then require that bitvector storage element’s widths are constrained integers.

• For compile-time-constant widths, this is trivially satisfied by implicit constraints as described in 7.7.5
Implicit constraints for compile-time-constant integer expressions.

• For execution-time widths, we expect the use of checked type conversions on the width expression to suffice.

Various syntactic sugar is given so as to reduce clutter caused by checked type conversions.

It is also desirable that functions can be understood by readers in isolation which means constraints on bitvector
widths may also be given in the function prototype.

The type checking rules for constrained types are designed to be usable on a function by function basis in order to
allow local reasoning for authors and readers about the type correctness of a function in isolation.

GPFRQ Functions which are defined over arbitrary width bitvectors currently require a separate implementation in some
translations for every width that can be used by the pseudocode. If those widths are enumerated as a constraint
whose domain consists solely of compile-time-constant expressions, then tools may compute the possible widths.

Note that it is not a requirement for subprogram declarations to include checked type conversions, since the set of
widths used by the pseudocode is actually determined from the invocations of the function. For example, the set of
invocations of f in the following complete specification is constrained to the case where N IN {4,8,16}

func f{N}(x: bits(N)) => bits(N+1)
begin

return [x, '0'];
end

func main()
begin

var inputA: bits(4);
var outputA = f(inputA); // an invocation of f: bits(4)=>bits(5)

let widthB: integer {8,16} = if (cond) then 8 else 16;
var inputB: bits(widthB);
var outputB = f(inputB); // an invocation of f: bits({8,16})=>bits({9,17})
// outputB is of type bits({9,17})

end

Note that in the following example, the set of invocations of append can also be determined without evaluating any
non-compile-time-constant expressions. See also 7.8.5 Primitive operations on integers.

func append{N,M}(x: bits(N), y: bits(M)) => bits(N+M)
begin

return [x, y];
end

func main()
begin

var inputA: bits(4);
var outputA = append(inputA, inputA);
// an invocation of append: (bits(4), bits(4))=>bits(8)

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter 7. Type inference and type-checking
7.3. Constrained types

let width1: integer {8,16} = if (cond1) then 8 else 16;
var input1: bits(width1);
let width2: integer {8,16} = if (cond2) then 8 else 16;
var input2: bits(width2);

var output12 = append(input1, input2);
// an invocation of append: (bits({8,16}), bits({8,16}))=>bits({16,24,32}))
// Compiler can enumerate all possible invocations:
// append: (bits(8), bits(8))=>bits(16)
// append: (bits(8), bits(16))=>bits(24)
// append: (bits(16), bits(8))=>bits(24)
// append: (bits(16), bits(16))=>bits(32)
// Hence output12 is bits({16,24,32})

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter 7. Type inference and type-checking
7.4. Constrained Integers

7.4 Constrained Integers

DZXSS Integer types are either unconstrained or constrained.

DZTPP Constrained integer types are either well-constrained or under-constrained.

RWJYH The integer type with no constraint is called the unconstrained integer.

RHJPN An integer type with a constraint is called a constrained integer.

RCZTX An integer type with a non-empty constraint is called a well-constrained integer.

RTPHR The integer type with an empty constraint is called the under-constrained integer.

IZDDJ There is no syntax for an integer with an empty constraint, although parameters of subprograms can declare
under-constrined integers: see 7.8.1 Dependently typed bit vector formals.

IGHGK The under-constrained integer is used as the implicit type of unconstrained integer subprogram parameters.
Intuitively it indicates that the parameter has a single value provided by the subprogram’s invocation but the range
of possible values is not known when the subprogram declaration is type checked. This allows parameters to be
used as bitvector widths in a subprogram when their constraint is not given in the subprogram declaration, without
causing type checking errors. See also 7.8.1 Dependently typed bit vector formals and 7.8.5 Primitive operations
on integers.

RLSNP A constraint is specified as a list of constraint ranges, where each range consists of a single statically evaluable,
constrained integer expression or a lower and upper bound range (inclusive) using the syntax expr .. expr where
the bounds are statically evaluable, constrained integer expressions.

RBSMK The values in a constrained integer’s constraint must all be statically evaluable, constrained integer expressions.

RPHRL A constrained integer’s constraint must be a finite set.

7.4.1 Domain of integers

RTZNR The domain of a constrained integer type with a constraint that contains at least one constraint range that contains
an under-constrained integer expression is the domain of the under-constrained integer

RRLQP The domain of a constrained integer type with a constraint whose constraint ranges contain only well-constrained
integer expressions is the union of the domain of its constraint ranges.

RLYDS The domain D of a constraint range that contains well-constrained integer expressions is recursively defined as
such:

• If the constraint range consists of a single well-constrained integer expression that is a compile time constant
c, D = {c}

• If the constraint range consists of a lower and upper bound range c..d where c and d are well-constrained
integer expressions that are compile time constants then:

– if c <= d then D = [c..d]

– otherwise the constraint range is illegal and should generate a type-checking error
• If the constraint range consists of a single statically evaluable well-constrained integer expression E, D is

equal to the domain of the type of E
• Consider a constraint range that consists of a lower and upper bound range Ec..Ed where both Ec and Ed

are statically evaluable, well-constrained integer expressions. Let LD and UD be the domain of the type of Ec
and Ed respectively, where mLD/MLD denotes the minimum/maximum element of LD and mUD/MUD denotes the
minimum/maximum element of UD.

– if MLD <= mUD then D = [mLD..MUD]

– otherwise the constraint range is illegal and should generate a type-checking error.

RSVDJ The domain of every well-constrained integer type is a proper subset of the domain of the under-constrained integer
type.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter 7. Type inference and type-checking
7.4. Constrained Integers

IWLPJ Hence the domain of the under-constrained integer type is not a subset of the domain of any well-constrained
integer type.

RFWMM The domain of the under-constrained integer type is a proper subset of the domain of the unconstrained integer
type.

IWBWL Hence the domain of the unconstrained integer type is not a subset of the domain of the under-constrained integer
type.

ICDVY It follows from the domain rules that well-constrained integers type satisfy under-constrained integers, so
a well-constrained integer may be used wherever an under-constrained integer is required by uses of the
type-satisfaction rule, for example, a well-constrained integer may be an actual argument when the formal
argument is an under-constrained integer.

IKFCR It follows from the domain rules that under-constrained integers type-satisfy unconstrained integers but not
vice versa so an unconstrained integer may not be used where a constrained integer is required by uses of the
type-satisfaction rule, even if the constrained integer is under-constrained.

IBBQR Domains for integers are related in the following way:

well-constrained integer ⊂ under-constrained integer ⊂ unconstrained integer

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter 7. Type inference and type-checking
7.5. Constraints on bitvector widths

7.5 Constraints on bitvector widths

ISCBX Bitvectors can never have a width which is unconstrained.

7.5.1 Types of bitvector

IMRHK Unlike integers which may be unconstrained and hence have an infinite domain, bitvectors must always have a
finite domain. Hence all bitvectors are “constrained” in the sense that their domain is not infinite. However, we use
the term “constrained width” bitvector to indicate that the type has a range of possible widths and we will refer to
bitvectors which only have one possible width as “fixed width” bitvectors.

DNRWC Bitvectors are either constrained width bitvectors or fixed width bitvectors.

DWSZM Bitvectors are either of undetermined width or have a determined width.

DBVGK A constrained width bitvector whose width is given by an expression of type ty that has the structure of an
under-constrained integer is an under-constrained width bitvector. Under-constrained width bitvectors have a
determined width.

DCBQK Fixed width bitvectors have a determined width.

7.5.2 Bitvectors of the form bits(-: ty)

RQYZD If ty has the structure of the unconstrained integer then bits(-: ty) is illegal.

RNFBN If ty has the structure of a well-constrained integer whose domain contains only one value then bits(-: ty)

denotes a fixed width bitvector whose determined width is equal to the value in the domain of ty.

RLJBG If ty has the structure of a well-constrained integer whose domain contains more than one value then bits(-: ty)

denotes a constrained width bitvector of undetermined width.

IYBHF Note that the under-constrained width bitvector of undetermined width cannot be represented since there is no
concrete syntax ty with the structure of the under-constrained integer.

RFZSD The syntax

bits(<constraint>)

is syntactic sugar for

bits(-: integer <constraint>)

Note

We could instead add ty : = constraint as sugar for integer constraint?

7.5.3 Bitvectors of the form bits(expr)

RGHRP If the type of expr has the structure of the unconstrained integer then bits(expr) is illegal.

RQZJS If expr is of type ty which has the structure of a well-constrained integer whose domain contains only one value
then bits(expr) denotes a fixed width bitvector whose determined width is equal to the value in the domain of ty.

IJSKW Note that type checking rules mean that if expr is of type ty which has the structure of a well-constrained integer
whose domain contains only one value, then expr evaluates to that value.

RSKRK If expr is of type ty which has the structure of a well-constrained integer whose domain contains more than one
value then bits(expr) denotes a constrained width bitvector whose determined width is expr and whose width is
constrained as per the constraint on expr.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter 7. Type inference and type-checking
7.5. Constraints on bitvector widths

RNCNQ If expr is of type ty which has the structure of the under-constrained integer then bits(expr) is an under-
constrained width bitvector and its determined width is expr.

IGQMV If expr is a compile-time-constant expression whose type is a well-constrained integer whose domain contains
multiple values, then even though the width of the bitvector is a known integer value, the type of the bitvector is
still a constrained width bitvector and not a fixed-width bitvector. For example, bits(4 as integer {4,8}) is a
constrained width bitvector whose determined width is 4. (It is not clear that there is any practical use for this, but
it is a corollary of other rules.)

7.5.4 Summary of types of bitvector

• Summary of valid types of bitvectors
– constrained width bitvectors

* of undetermined width
· bits({32,64})

* of determined width
· bits(expr) (where expr is a statically evaluable expression of type integer {32,64}) is of

determined width expr and its width is constrained to be IN {32,64}

* under-constrained width bitvectors of undetermined width: not possible
* under-constrained width bitvectors of determined width

· bits(N) where N is an under-constrained integer parameter
– fixed width bitvectors

* of undetermined width: not possible
* of determined width:

· bits({8})

· bits(k) where k is of type integer{8}

• Summary of invalid types of bitvectors
– unconstrained width bitvectors

* bits(-: integer)

* bits(i) where i is an unconstrained integer

7.5.5 Domain of a bitvector

RZRWH Each bit within a bitvector has value ‘0’ or ‘1’.

IVMKF A bitvector can be compared for inclusion against a bitmask_lit as described in 5.3 Pattern matching.

RQXGW The type bit is identical to the type bits(1)

IRXLG As well as supporting bitwise logical operators and equality tests, bitvectors also support addition and subtraction,
but are treated as not having a sign and therefore do not support ordering comparisons such as <=.

RZWGH The domain of a fixed width bitvector is the set of values which can be represented by bitvector literals which are
of the same length as the fixed width bitvector and which consist of the characters ‘0’ and ‘1’.

ISQVV For example, the bitvector '1101' has type bits(4). The bitvector '' has type bits(0).

RPMQB The domain of a constrained width bitvector is the union of the domains of all bitvectors whose width is equal to a
member of the bitvector’s width constraint.

RDKGQ The domain of every bitvector type other than the under-constrained width bitvector, is not a subset of the domain
of the under-constrained width bitvector.

IMPSW In practice, this forbids the assignment of anything other than an under-constrained width bitvector of matching
width to an under-constrained width bitvector. However, values which are not under-constrained width bitvectors
may be used as actual arguments for an under-constrained width bitvector formal argument in an invocation, since
type satisfaction is performed against the invocation type which is always an under-constrained width bitvector of
determined width.

RDHZT The domain of the under-constrained width bitvector is not a subset of the domain of any other bitvector type

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter 7. Type inference and type-checking
7.5. Constraints on bitvector widths

IVPST In practice, this forbids the assignment of an under-constrained bitvector to anything other than an under-constrained
bitvector of the same determined width.

7.5.6 Use of bitvectors of undetermined width

RVCZX A constrained width bitvector of undetermined width may only be used in the following places:

• As part of a checked type conversion.
• As part of the type of a storage element’s declaration where an initialization expression is given.
• As part of the type of a formal argument in a subprogram declaration.

ITZVJ Note that a constrained width bitvector of undetermined width (e.g. bits(-: integer{4, 8}), bits(integer{4,
↪→ 8})) may not be used as part of a return type. However, a constrained width bitvector of determined width
(e.g. an under-constrained width bitvector bits(N) where N is an under-constrained integer, a constrained width
bitvector bits(expr) where expr is a statically evaluable expression of type integer {4, 8}) may be used as
part of a return type, so return types may be bitvectors which are not fixed width.

See rule LJBG for why bits(-: integer{4, 8}) and bits(integer{4, 8}) have an undetermined width.

See rule NCNQ for why bits(N), where N is an under-constrained integer, is an under-constrained width bitvector
that has a determined width.

See rule SKRK for why bits(expr) where expr is a statically evaluable expression of type integer {4, 8} is a
constrained width bitvector of determined width.

Examples of valid return types:

func declare{N}(b: bits(N)) => bits(2 * N)
begin

var b1: bits(2 * N);

return b1;
end

let exp: integer{4, 8} = 4;

func decl() => bits(exp)
begin

var b: bits(exp);

return b;
end

IGLWM When used as part of the type of a storage element’s declaration, a constrained width bitvector of undetermined
width allows that part of the storage element’s width to be implicitly determined by the initialization expression.

IMTWL When a constrained width bitvector is used as part of a formal argument, the combination of the domain rule for
constrained width bitvectors and the type satisfaction rule are used to determine whether invocations have legal
actual arguments.

7.5.7 Use of bitvector storage elements and expressions

IEOAX A checked type conversion on the width expression of a bitvector type is sufficient to ensure the width is a
constrained integer.

INHXT In many common cases, integer expressions will cause suitable constrained type to be implicitly used. See also
7.8.5 Primitive operations on integers. For example, the width configWid+gExtra has an acceptable constraint in
the following code:

// The initializer of config storage elements may be overridden before
// execution-time initializer expressions are evaluated.
config configWid: integer {32, 64} = 32;
config gExtra : integer {0, 8} = 0;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter 7. Type inference and type-checking
7.5. Constraints on bitvector widths

// Since configWid is a constrained integer we can declare:
var gReg: bits(configWid); // i.e. bits({32,64})

var gRegF: bits(configWid+gExtra); // i.e. bits({32,40,64,72})
// The expression (configWid+gExtra) is an integer {32,40,64,72}

IBTCY Note that compile-time-constant integers are implicitly constrained, hence the addition of a constraint to a bitvector
width is unnecessary for compile-time-constant widths. See also 7.7.5 Implicit constraints for compile-time-
constant integer expressions.

7.5.8 Examples of constrained width bitvectors

ICGYH The following shows some declarations of bitvectors:

var gWid: integer {8,16,32};

// Note that a and b are "formal arguments" but are not "parameters"!
func prod(a: integer, b: integer) => integer
begin

return (a*b);
end

func declarations()
begin

let N = gWid;
// N is an execution-time immutable constrained integer
// The implicit type of N is integer {8,16,32}

var A: bits(N);
// A is a constrained width bitvector of determined width N
// whose width is constrained to be IN {8,16,32}

var B: bits(N * 2);
// B is a constrained width bitvector of determined width N*2
// whose width is constrained to be IN {16,32,64}

// The following contrived example shows that even if
// prod is a trivial function, the result is unconstrained
let prodWid = prod(N,2); // implicitly an integer
var C: bits(prodWid);
// Illegal since prod(N,2) is an unconstrained integer

var D: bits(prodWid as {16,32,64});
// Legal but requires an execution-time check that (prod(N,2) IN {16,32,64})
// This check may be elided by the compiler
// D is a constrained width bitvector of determined width prodWid
// whose width is constrained to be IN {16,32,64}

var E: bits(N as {64,128}); // Illegal - fails type-check
// Requires (N IN {64,128})
// This can be determined as false at compile time since
// the type of N is integer {8,16,32}.

end

Note

We allow:

func bitProd(a: integer, b: integer)=> bits(a*b)

so it has been suggested that we could allow:

func prod(a: integer, b: integer)=> integer {a*b}

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter 7. Type inference and type-checking
7.5. Constraints on bitvector widths

such that if the actuals for a and b are well-constrained integers in the invocation then the constraint on the result
type follows the rules for constraint calculations with primitive operators.

This may be helpful for type checking at the invocation location. For example, it would make the declaration of
var C above legal.

IQNSD The following shows the use of some constrained width bitvectors:

type widTy of integer {4,8};

func callCB {N: widTy} (arg1: bits(N)) => bits(N)
begin

// The formal argument is a constrained width bitvector
// whose determined width N is IN {4,8}
// For checking actual arguments, the domain of arg1 is
// domain(bits(4)) union domain(bits(8))
return arg1;

end

func bitvector(N: widTy)
begin

var CB1: (bits(-: widTy), integer) = (Zeros(N), 0);
// CB1 is a tuple whose first element is a constrained width bitvector
// whose width is implicitly determined by the width of the bitvector
// returned by the call to Zeros, i.e. N.

end

IFPVZ Note that the rules of 7.5.6 Use of bitvectors of undetermined width mean that there is a potentially confusing
asymmetry in the use of bits(-: ty) as illustrated by the following example:

var none: bits(-: integer {1});
// legal since this is a fixed width bitvector whose determined width is 1
// not a constrained width bitvector of undetermined width

var many: bits(-: integer {1,2});
// illegal since this is a constrained width bitvector of undetermined width
// and there is no initialization expression

config configValue: integer {1,2} = 1;
var many: bits(-: integer {1,2}) = Zeros(configValue);
// legal since this is a constrained width bitvector of undetermined width
// and this is a declaration where an initialization expression is given

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter 7. Type inference and type-checking
7.6. Relations on types

7.6 Relations on types

In this section we describe the main relations used in determining whether a type is suitable at its point of use.

7.6.1 Subtype-satisfaction

We define the subtype-satisfaction relation as follows:

DTRVR A type T subtype-satisfies type S if and only if all of the following conditions hold:

• If S has the structure of an integer type then T must have the structure of an integer type.
• If S has the structure of a real type then T must have the structure of a real type.
• If S has the structure of a string type then T must have the structure of a string type.
• If S has the structure of a boolean type then T must have the structure of a boolean type.
• If S has the structure of an enumeration type then T must have the structure of an enumeration type with

exactly the same enumeration literals.
• If S has the structure of a bitvector type with determined width then either T must have the structure of a

bitvector type of the same determined width or T must have the structure of a bitvector type with undetermined
width.

• If S has the structure of a bitvector type with undetermined width then T must have the structure of a bitvector
type.

• If S has the structure of a bitvector type which has bitfields then T must have the structure of a bitvector type
of the same width and for every bitfield in S there must be a bitfield in T of the same name, width and offset,
whose type type-satisfies the bitfield in S.

• If S has the structure of an array type with elements of type E then T must have the structure of an array type
with elements of type E, and T must have the same element indices as S.

• If S has the structure of a tuple type then T must have the structure of a tuple type with same number of
elements as S, and each element in T must type-satisfy the corresponding element in S.

• If S has the structure of a record type then T must have the structure of a record type with at least the same
fields (each with the same type) as S.

• If S has the structure of an exception type then T must have the structure of an exception type with at least the
same fields (each with the same type) as S.

• If S does not have the structure of an aggregate type or bitvector type then the domain of T must be a subset
of the domain of S.

• If either S or T have the structure of a bitvector type with undetermined width then the domain of T must be a
subset of the domain of S.

ISJDC Note that the condition on bitvector widths applies to bitvectors with or without bitfields.

IMHYB Note that subtype-satisfaction alone does not make named type T a subtype of named type S. T must also be
declared to be a subtype of S or one of the subtypes of S - see also 4.3.1 Subtypes.

7.6.1.1 Subtype-satisfaction and bitvectors

ITWTZ If both S and T are bitvectors with determined width then we require their width to match. For example you cannot
use bits(2) where a bits(4) is required.

IGYSK Where S is a bitvector with determined width and T has undetermined width, the domain requirement will stop
T from being used where S is expected. For example, bits({2,4}) does not subtype-satisfy bits(4) since the
domain of bits({2,4}) is not a subset of the domain of bits(4).

However, since the checked type conversion bits({2,4})as bits(4) only fails the subtype-satisfaction because
of the domain rule, but the domains do intersect, a runtime check will be inserted. See also 7.13.1 Checked type
conversions on expressions.

IKXSD The rules of subtype-satisfaction permit a bitvector of undetermined width to subtype-satisfy a bitvector of
determined width if its domain is a subset of the determined width bitvector’s. We will refer to this as undetermined
width satisfaction.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter 7. Type inference and type-checking
7.6. Relations on types

Note that the only legal undetermined width bitvector is bits(constraint) (see 7.5.4 Summary of types of
bitvector). This can only arise in three ways (see 7.5.6 Use of bitvectors of undetermined width)

1) As part of the type of a formal argument of a subprogram declaration.

Since formal arguments are immutable we will never have an assignment to them, so undetermined width
satisfaction is not applicable. Note that bits(constraint) allows concise declarations of subprograms by
removing the need for a parameter declaration where the width is not required in the subprogram body.

2) As the type of a storage element with an initialization expression.

The initialization expression must have the type of a determined width bitvector. The type checker will know the
storage element’s width from the initialization expression, hence undetermined width satisfaction will not apply to
assignments to it. The notation bits(constraint) simply allows concise declarations.

3) As part of a Checked Type Conversion

Undetermined width satisfaction allowing bits(constraint) to subtype-satisfy bits(wid) is intended to allow
the Checked Type Conversion rules to work, see bullet 2 of Rule PZZJ.

Checked Type Conversions of this kind are required to allow assignment of a undetermined width bitvector formal
arguments to storage elements (which have determined width). For example:

func ctcOfFormal(arg: bits({2,4}), cond: boolean)
begin

var dst: bits(4);
if (cond) then

dst = arg as bits(4);
// bits({2,4}) does not subtype-satisfy bits(4)
// but only because of the domains
// so an execution time check is inserted

end
end

IKNXJ For the case where S is a bitvector type with undetermined width, S will have some constraints which define its
domain. Any bitvector whose domain is a subset of the domain of S will type satisfy S.

For example bits(2) subtype-satisfies bits({2,4,8}) due to the domain rule, but bits(1) does not
subtype-satisfy bits({2,4,8}). Similarly, bits({2,4}) subtype-satisfies bits({2,4,8}) due to the domain rule,
but bits({1,2}) does not subtype-satisfy bits({2,4,8}).

However, since the checked type conversion bits({1,2})as bits({2,4,8}) only fails the subtype-satisfaction
because of the domain rule, but the domains do intersect, a runtime check will be inserted. See also 7.13.1 Checked
type conversions on expressions.

IHSWR Where both S and T are bitvectors of determined width, since their widths must match, we do not need to compare
their domains.

7.6.2 Type-Satisfaction

We define the type-satisfaction relation as follows:

RFMXK Type T type-satisfies type S if and only if at least one of the following conditions holds:

• T is a subtype of S
• T subtype-satisfies S and at least one of S or T is an anonymous type
• T is an anonymous bitvector with no bitfields and S has the structure of a bitvector (with or without bitfields)

of the same width as T.

INLFD Note that every type T is a subtype of itself - see rule NXRX.

7.6.3 Type-clashing

We define the type-clashing equivalence relation as follows:

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter 7. Type inference and type-checking
7.6. Relations on types

DVPZZ A type T type-clashes with S if any of the following hold:

• they both have the structure of integers
• they both have the structure of reals
• they both have the structure of strings
• they both have the structure of enumeration types with the same enumeration literals
• they both have the structure of bit vectors
• they both have the structure of arrays whose element types type-clash
• they both have the structure of tuples of the same length whose corresponding element types type-clash
• S is either a subtype or a supertype of T

IPQCT Note that T subtype-satisfies S implies that T and S type-clash.

IWZKM Note that type-clashing is an equivalence relation. In particular note that if T type-clashes with A and B then A and
B type-clash.

7.6.4 Subprogram clashing

DBTBR Two subprograms clash if all of the following hold:

• they have the same name
• they are the same kind of subprogram
• they have the same number of formal arguments
• every formal argument in one type-clashes with the corresponding formal argument in the other

IFSFQ Whether or not the return types of the subprograms type clash is ignored when determining clashing.

ISCTB Note that the formal arguments of a setter include the RHS argument. See 4.5.3 Getters and Setters.

IPFGQ In most cases, if two subprograms have the same name they must be of the same kind due to the rules of 4.1 Scope
of global declarations, except where one is a getter and the other is a setter.

Hence, although a procedure named f does not clash with a function named f since they are different kinds, their
declaration is illegal due to global scope rules.

A getter named s does not clash with a setter named s, even if they have similar formal arguments, since they are
not of the same kind. Hence their declaration is legal.

RPGFC It is illegal to declare a subprogram if it clashes with any other declared subprogram.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter 7. Type inference and type-checking
7.7. Type checking rules

7.7 Type checking rules

We now provide the rules for checking that various uses of typed expressions are suitable at their point of use.

DJRXM A type environment is a mapping from identifiers to their types.

IZTMQ This includes identifiers which denote types, subprograms, storage elements etc.

7.7.1 Global type checking

DHBCP The global type environment is a type environment which maps every globally declared identifier to its type.

ISMMH Since named type identifiers are globally declared, and since they may depend non-recursively on other named
types, it should be possible to add named types to the global type environment using a simple recursive algorithm.

IDFML Note that determining the type of a global identifier may require the type of its initialization expression to be
determined first. That type may not depend recursively on itself.

RFWQM When determining types of global declarations which are not subprogram declarations, only the identifiers mapped
by the global type environment shall be used.

7.7.2 Subprogram type checking

RHWTV When type-checking a subprogram declaration begins, the current type environment is initialized with the contents
of the global type environment and also all identifiers introduced into the subprogram’s local scope by rules PTDD
and JBXS.

RSCHV When determining types within a subprogram declaration, only the identifiers mapped by the current type
environment shall be used.

RVDPC A subprogram declaration is type checked by type checking each statement in its declaration in the order they
appear in the declaration.

RYSPM Local declarations of variable, let or constant identifiers introduce a new identifier into the current type
environment which maps to the type of the identifier.

RJBXQ where a new stmt_list is encountered, a new type environment is created which is initialized with the contents of
the current type environment. This new type environment becomes the current type environment. When the end
of the stmt_list is encountered, the current type environment is discarded and the type environment which was
current at the start of the stmt_list becomes the current type environment again.

7.7.3 Statement type checking

RFTPK A value of type T may be used in a return statement if and only if T type-satisfies the enclosing function’s return
type.

RJQYF The expression in an assert statement must have the structure of boolean.

RNXRC The expression in a throw statement must have the structure of exception.

RNBDJ All condition expressions in conditional statements must have the structure of boolean.

RWGSY The case guard of a case statement’s when clause must have the structure of boolean.

RVTJW The start and end expressions in a for statement must have the structure of integer.

RFTVN The condition expression in a while or repeat statement must have the structure of boolean.

RSDJK The type given in a when clause of a try..catch statement must have the structure of exception.

RWVXS The identifier given in a when clause of a try..catch statement is introduced into the new type environment which
is created by rule JBXQ when the body of the when clause is encountered. The identifier maps to the type it is
annotated with in the when clause.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter 7. Type inference and type-checking
7.7. Type checking rules

IFCGK Note that the identifier given in the when clause does not map to the type of the matched exception.

7.7.4 Assignment and initialization type checking

The following rules apply to all storage elements, whether global or local.

RWMFV The type of a storage element is the same as the type of the identifier which denotes the storage element.

RGNTS It is illegal for a storage element whose type has the structure of the under-constrained integer to be assigned a
value whose type has the structure of the under-constrained integer.

RZCVD It is illegal for a storage element whose type has the structure of the under-constrained integer to be initialized
with a value whose type has the structure of the under-constrained integer, unless the type is omitted from the
declaration (and therefore the type can be unambiguously inferred) or the initialization expression is omitted (and
therefore the type is not omitted from the declaration).

RLXQZ A storage element of type S, where S is any type that does not have the structure of the under-constrained integer
type, may only be assigned or initialized with a value of type T if T type-satisfies S

IMMKF The puprpose of rules ZCVD and GNTS is to disallow examples like the following:

func foo{N, M}(bv1 : bits(N), bv2 : bits(M))
begin

var a : integer{0..N};
var b : integer{0..M};
a = b; // illegal

end

In the example above, it is not evident whether the type integer{0..N} should type-satisfy integer{0..M} or
vice versa.

Also consider the following example:

func foo{N}(bv : bits(N))
begin

let a = N; // legal, type is inferred
var b : integer{N}; // legal, type is explicit and initialization value is omitted
b = a; // illegal

end

In the declaration statements of the example above, the types of the storage element and the initializing values are
identical by definition. The assignment however is still illegal due to GNTS.

IYYQX Due to rules YDFQ and ZFFV the use of a setter or getter is type checked according to the rules for subprogram
invocation.

IDGWJ Note that we maintain strong typing of named types since FMXK only allows named types to be assigned to each
other if T subtypes S which requires explicit declaration. See also information statement MHYB.

IKKCC Note that type-satisfaction allows assignment between a type and many anonymous types including constrained
types.

7.7.5 Implicit constraints for compile-time-constant integer expressions

RZJKY The type of an integer compile-time-constant expression is the constrained integer type whose constraint holds
only the value of the expression.

IRYRP Implicit constraints allow assignment of compile-time-constant integer expressions to constrained integers at
compile-time without an explicit checked type conversion.

EXAMPLE
var intWid: integer {32,64} = 32;
// legal since the type of 32 is integer {32}

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

7.8 Subprograms and overloading

7.8.1 Dependently typed bit vector formals

IPDKT ASL permits the declaration of subprograms with formals which are parameterized such that where a formal or
return type is a bitvector, its width may depend on the value of the subprogram parameters.

IBLVP As required by rule JBXS, a parameter of a subprogram shall not be declared both in the parameter list and in the
formal list.

RLVTH Checked type conversions shall not be used on bitwidth expressions in subprogram formals or subprogram return
types.

ITBHH It is illegal to provide a constraint on a parameter anywhere other than as part of its declaration. Any practical
case where a constraint is required for a formal or a return type are covered by specifying a constrained integer
parameter.

IZLZC All the constraints in the formals in following subprogram declaration are illegal:

func illegal_constraints {N: integer {8,16,32}} (
arg0: bits(N as {8,16,32}),
arg1: bits((N+1) as {9,17})
)

begin
return;

end

RTJKQ Any parameter of a subprogram which is declared as the unconstrained integer type shall be treated as though it
was declared as the under-constrained integer.

ILFJZ This is safe to do since every invocation must provide a constrained width bitvector (see also 7.8.6 Primitive
operations on bitvectors.)

IRKBV Unconstrained integer parameters are treated as under-constrained integer parameters both within the subprogram
and at invocations.

ITQGH Every parameter is a constrained integer as far as type-checking is concerned.

RRHTN The width of any part of a formal argument or return type which is a bitvector type must be a constrained integer.

IBZVB The rules in 7.8.5 Primitive operations on integers mean that for most expressions, the width of a bitvector in a
formal argument or return type will be at least the under-constrained integer. For example, a width which is given
the sum of two parameters is an under-constrained integer.

IRQQB A formal argument is not a parameter unless it is declared as a parameter of the subprogram or is declared as a
formal and is also used in the type of a bitvector formal argument or the return type.

func testParams{K}(N: integer, M: integer, L: integer, lbv: bits(L), kbv: bits(K)) => bits(N
↪→)

begin
var kBits: bits(K); // legal
// K is a parameter, so it is an under-constrained integer

var nBits: bits(N); // legal
// N is a parameter because it is a formal argument and is used in the type of the

↪→bitvector of a return type, so it is an under-constrained integer

var lBits: bits(L); // legal
// L is a parameter because it is a formal argument and is used in the type of the

↪→bitvector of a formal argument, so it is an under-constrained integer

var mBits: bits(M); // ILLEGAL
// M is not a parameter so it is an unconstrained integer

return nBits;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

end

7.8.1.1 Examples
Consider this declaration of a function called ones:
func ones(N: integer) => bits(N)
begin

// N is a parameter so it is declared as an under-constrained integer.
// The return type is therefore the
// under-constrained width bitvector of undetermined width.
// If N were left as `integer` instead of being declared as an
// under-constrained integer then the following would fail since it is
// illegal to declare `bits(expr)` if expr is an unconstrained integer.
var ans: bits(N) = Zeros(N);
// for any invocation, the returned bitvector's width has the same
// constraint as the actual argument which provides the parameter value.
// For example:
// If N is 1 in the invocation,
// then the returned value is bits(1: integer{1}).
// If N is an `integer {4,8}` in the invocation
// then the returned value is bits({4,8})
return (NOT ans);

end

The rules for domains of constrained integers in 7.4 Constrained Integers mean that an invocation with an
unconstrained integer actual argument will not satisfy the formal argument N which is actually declared as the
under-constrained integer.

For example, consider the following:
config myWid: integer = 5;
// myWid is an unconstrained integer

func test()
begin

var arg = ones(myWid);

// Fails type satisfaction test since the domain of an
// unconstrained integer is not a subset of the
// under-constrained integer.

end

The following examples relate to the use of parameters in return types.

Note that in general, a bitvector return type must have a width which can be determined at the invocation.

Example 1:

Parameters must have values:
func getDefault {N}() => bits(N) // illegal
begin

// There is no parameter-defining type in the formals
// so return width cannot be determined at invocation
return ones(Zeros(N));

end

Example 2:

Parameters must have values, even if they are not used in the subprogram:
config configWid: integer {8,16} = 8;

func getDefault {N}() => bits(N)
begin

// There is no parameter-defining type in the formals
// so return width cannot be determined at invocation
return ones(configWid);

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

Example 3:

A more specific example, where the return width is not a parameter.

config configWid: integer {8,16} = 8;

func getDefault () => bits(configWid)
begin

// return type is well-constrained width bitvector
// of determined width configWid
return ones(configWid); // Legal

end

In summary:

• a parameter N must occur as a formal argument or in a width expression in a formal argument, otherwise it
would not be a “parameter”

• If N is in a formal argument’s bit width then the invocation will involve a bitvector whose width must be a
constrained integer, so N will be constrained at point of invocation.

• If the only type in the subprogram signature involving N is the return type, then N must be an argument as
well as a parameter. As noted above, no invocation can provide an unconstrained integer actual for N, since N

is treated as the under-constrained integer.

7.8.2 Subprogram invocations

DCFYP A function invocation consists of an identifier which denotes the name of the invoked function, followed by a
parenthesised list of zero or more expressions which denote the actual arguments of the invocation. See syntax in
5.4 Atomic expressions.

DVXKM A procedure call consists of an identifier which denotes the name of the called procedure, followed by a
parenthesised list of zero or more expressions which denote the actual arguments of the call. See syntax in 6.1
Statements

DLJLW A getter invocation consists of an identifier which denotes the name of the invoked getter, either on its own, or
followed by a bracketed list of zero or more expressions which denote the actual arguments of the call. See syntax
in 5.4 Atomic expressions and related rules in 5.9 Arrays, bitslices and invoking getter functions.

DMFBC A setter invocation consists of an assignment where:

• part of the LHS consists of an identifier which denotes the name of the invoked setter, either on its own, or
followed by a bracketed list of zero or more expressions which denote the actual arguments of the call.

• the corresponding part of the RHS consists of an expression which denotes the actual argument corresponding
to the setter’s RHS argument (see 4.5.3 Getters and Setters)

RWHRS If the declared type of a setter’s RHS argument has the structure of a bitvector or a type with fields, then if a bitslice
or field selection is applied to a setter invocation, then the assignment to that bitslice is implemented using the
following Read-Modify-Write (RMW) behavior:

• invoking the getter of the same name as the setter, with the same actual arguments as the setter invocation
• performing the assignment to the bitslice or field of the result of the getter invocation
• invoking the setter to assign the resulting value

RTCDL Where a parameter is also a formal argument, the parameter’s value and constraints for an invocation of the
subprogram are the same as the corresponding actual in the invocation.

IVFDP When type checking actual arguments in an invocation which correspond to a formal argument which is also a
parameter, the constraints in the subprogram declaration for the formal argument are used, as is the case for any
formal argument.

DTRFW A bitvector type in a formal argument may be parameter-defining for a parameter.

RKMBD A bitvector type in a formal argument is parameter-defining for a parameter if its bitwidth is the value of that
parameter.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

IYMHX For example, bits(M) is parameter-defining for M but bits(M+1) is not.

RCCVD Where a parameter is not a formal argument, the subprogram must have at least one formal argument which is
parameter-defining for that parameter.

Example

var global: integer {4,8};

func foo {parm} (
arg0: bits(global),
arg1: bits(parm+global),
arg2: (integer, bits(parm))
)

begin
// The type of the second part of the tuple `arg2` is
// parameter-defining for `parm`, without which the
// declaration would be illegal.
// None of the other formals are parameter-defining.

return;
end

RQYBH Where a parameter is not a formal argument, its value and constraints are taken from the actuals which correspond
to the parameter’s parameter-defining formals.

RPFWQ An invocation is illegal if it provides different values or constraints for a particular parameter’s parameter-defining
formals.

RZLWD Where a parameter is not a formal argument, the declared type of the parameter must be type-satisfied by an integer
type with the constraints taken from the invocation’s actuals.

IFLKF When a parameter takes its value from one of the actual argument’s bitwidths, type satisfaction of all other formals
by the actuals will ensure that occurrences of the parameter in all other formal bitwidth expressions comply with
that value.

DPMBL The formal arguments and return type of a subprogram have an invocation type for each invocation.

RMWBN The invocation type of a formal argument or return type is its declared type after the values and constraints of
parameters have been applied.

RTZSP A subprogram invocation matches a subprogram declaration if all of the following hold:

• the name of the invoked subprogram matches the name of the declared subprogram
• every formal argument’s declared type is type-satisfied by its invocation type (Ed: now redundant?)
• every formal argument’s invocation type is type-satisfied by the corresponding actual argument
• if the subprogram has a return type then it is type satisfied by its invocation type

ISBWR When determining whether a formal bitvector argument’s declared type is type-satisfied by its invocation type,
parameter values are known, so the declared type, the invocation type and the actual’s type will all be bitvectors of
determined width, hence subtype-satisfaction will not compare their domains.

ICMLP Note that integer formal arguments which are also parameters of the subprogram are treated as the under-constrained
integer and therefore cannot be type-satisfied by an unconstrained integer actual.

RBQJG The type of a function of getter invocation is the invocation type of its return type.

IBTMT In general, clashing subprograms cannot be usefully declared since one of the subprogram’s formals type-satisfies
the other subprogram’s formal, hence an actual of that type will type-satisfy both subprograms.

RRTCF It is a type-checking error if a subprogram invocation does not match exactly one subprogram declaration.

See also 4.5.2 Functions and procedures.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

7.8.2.1 Example of overloading
type shape of integer;
type square of integer subtypes shape;

var myShape: shape;
var mySquare: square;

// following declarations of f are illegal since
// both have the structure of an integer so their argument type-clashes
func f(x: shape)
begin

pass;
end

func f(y: square)
begin

pass;
end

func f_test()
begin

// if the declarations were legal, the which f would be invoked?
f(mySquare);

end

func g(x: shape, y: integer)
begin

pass;
end

func g(x: square, y: real)
begin

pass;
end

func g_test()
begin

g(mySquare, 0); // legal
// because since the first declaration of g has
// a first formal of type shape with is type-satisfied by the subtype square
// and a second formal which is type satisfied by an integer.

g(myShape, 0.1); // illegal
// because no declaration of g has
// a first formal which is type-satisfied by a shape
// and a second formal which is type-satisfied by a real.

end

// following declarations of h are illegal
// since all arguments type-clash with corresponding arguments in the other declaration
func h(x: shape, y: square)
begin

pass;
end

func h(x: square, y: shape) // Illegal
begin

pass;
end

func h_test()
begin

// if the declarations were legal, the which h would be invoked?
h(mySquare, mySquare); // either h may apply!!

end

7.8.2.2 Example: Actual parameter type-satisfaction

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

func f (N: integer {2,4}, arg0: bits(N), arg1: bits(N))
begin

// the parameter N is also a formal argument so it will take its value
// and constraints from the corresponding actual parameter
return;

end

func test {wid: integer {2,4,8}} (bus: bits(wid))
begin

f (wid, bus, bus); // illegal
// wid does not type satisfy the invocation type of N which is integer {2,4}

end

7.8.2.3 Example: Parameter from actual width type-satisfaction
func f {N: integer {2,4}} (arg0: bits(N), arg1: bits(N*2))
begin

// N is not a formal argument so it takes its value from the actual
// corresponding to arg0 since the type of arg0 is a
// parameter-defining bitvector
return;

end

func test {wid: integer {2,4,8}} (bus: bits(wid))
begin

f (bus, [bus,bus]); // illegal
// N takes the value `wid` which is an integer {2,4,8}
// the declared type of the parameter 'N' is not type-satisfied by that type

let littleBus = bus as bits({2,4}); // type checker knows width of littleBus == wid
f(littleBus, [littleBus, bus]); // legal
// N takes the value equal to the width of littleBus which is an integer {2,4}
// the declared type of the parameter 'N' is type-satisfied by that type
// The declared type of arg0 is bits(N as {2,4}) which is type satisfied by
// its invocation type bits(width of littleBus as {2,4})
// since the type checker knows that N == width of littleBus as {2,4}
// The two actuals type satisfy the formal's invocation types which are
// arg0: bits(width of littleBus)
// arg1: bits(width of littleBus *2)

end

7.8.2.4 Example: Parameter-defining types
Parameter N is not a formal argument in the following functions, so it must appear alone as a bitwidth in at least
one formal argument.

func f1 {N} (arg: bits(N)) => bits(N+1) // legal
begin

return [arg, '0'];
end

func f2 {N} (arg: bits(N+1)) => bits(N) // illegal
begin

// No parameter-defining type for N in the formals
// This could be handled with more complex rules, but is currently illegal
return arg[N-1:0];

end

func f3 {N, M} (arg: bits(N+M)) => bits(M) // illegal
begin

// Clearly impossible to handle
// For 'f3(Zeros(8))' what is N? How wide is the result??
return arg[M-1:0];

end

func f4 {N, M} (arg1: bits(M+N), arg2: bits(N)) => bits(N) // illegal
begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

// No parameter-defining type for M in the formals
// This could be handled with more complex rules, but is currently illegal
return (arg1[N-1:0] + arg2);

end

func f5 (N: integer, M: integer, arg1: bits(N+M), arg2: bits(N)) => bits(N) // legal
begin

// parameters are formal arguments
return (arg1[N-1:0] + arg2);

end

7.8.2.5 Example: Invocation constraints on parameters

IKTJN The result of a subprogram invocation may be more constrained than the declaration indicates. For example:

func sameWid {N: integer {2,4,8,16}} (A: bits(N), B: bits(N)) => bits(N)
begin

return A;
end

func test1()
begin

var A1, B1: bits(8);
var C1 = sameWid(A1, B1);
// The invocation type of sameWid's return type is bits(8)
// so `C1` has type `bits(8)`

end

func test2(N: integer{4,8})
begin

let wid: integer {2,4,8} = N; // A little unusual...
var A2: bits(N); // bits(N as {4,8})
var D2: bits(wid); // bits(wid as {2,4,8})
A2 = D2; // legal - matching determined widths
D2 = A2; // legal - matching determined widths
// Although A2 and D2 have the same width, they have different
// constraints so the following is illegal
var result = sameWid(A2, D2);
// If it were not illegal then the return type could not be determined
// and is either bits(N as {4,8}) or bits(wid as {2,4,8})

end

7.8.2.6 Example: Invocation constraints on parameters:

func f(P: integer {2,4,8}, M: integer {4,8,16})
begin

// P==>(P as {2,4,8})
// M==>(M as {4,8,16})

// Note the invocations of Zeros here:
var opA: bits(P) = [Zeros(P-1), '1']; // opA is bits(P from {2,4,8})
var opB: bits(M) = [Zeros(M-1), '1']; // opB is bits(M from {4,8,16})

if (P==M) then
// var dst = opA+opB; // ILLEGAL
// operation `+` is (bits(N), bits(N)) => bits(N)
// but opA and opB are bitvectors of
// potentially different widths P and M
// so they do not agree on the value of N

var dst = opA+(opB as bits(P));
// The operands now agree that N is `P`
// an execution-time check that opB is `bits(N)` is required
// The guard above allows a tool to elide this check.

end
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

Note that (P-1) is of type integer {1,3,7} so the invocation of Zeros(P-1) returns a constrained width bitvector
bits({1,3,7}) of width P-1. This is concatenated with a bitvector of width 1 resulting in a bitvector of width
(P-1)+1 which is an integer {2,4,8}.

That means the resulting bitvector is a constrained width bitvector bits({2,4,8}).

The assignment is also acceptable since the widths of the LHS and RHS are equal. Hence no checked type
conversion is required, just as we would not expect one for the following:

var opC: bits(M) = Zeros(M);

7.8.2.7 Example: Function with under-constrained integer formal

func underconstrained_formal(wid: integer) => bits(wid)
begin

// wid is a parameter so it is treated as an underconstrained
// integer. The return type is therefore the underconstrained width
// bitvector of determined width `wid`.

// If wid were left as `integer` instead of being treated as an
// underconstrained integer then the following would fail since it is
// illegal to declare `bits(expr)` if expr is an unconstrained
// integer.

var ans: bits(wid);

// The following works because the argument of Zeros is also an
// under-constrained integer so the formal and actual have the
// same domains

ans = Zeros(wid);

// For any invocation of underconstrained_formal, the returned
// bitvector's width has the same constraint as the actual argument
// due to the rules about invocation widths

// For example:
// If wid is 1 in the invocation,
// then the returned value is bits(1: integer{1}).
// If wid is an `integer {4,8}` in the invocation
// then the returned value is bits({4,8})
return (NOT ans);

end

// Three cases for invocation of function `underconstrained_formal`
// which has an under-constrained integer formal

func legal_fun_constrained_actual (N: integer {1,2}) => bits(N)
begin

// This invocation is OK because {1,2} is a subset of the domain of the underconstrained
↪→integer

// The result of the invocation is a constrained width bitvector,
// of determined width `N` with constraint {1,2}
// since the invocation width of the return type of `underconstrained_formal` is `N`
return underconstrained_formal(N);

end

func legal_fun_underconstrained_actual (N: integer) => bits(N)
begin

// The following invocation is OK because the domain of the
// underconstrained integer `N` in the invoking function is the
// same as the domain of the under-constrained integer parameter
// `wid` in the invoked function.
// The result of this invocation of `underconstrained_formal` is an
// under-constrained width bitvector of determined width `N`

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

// since the invocation width of the return type of `underconstrained_formal` is `N`
return underconstrained_formal(N);

end

func illegal_fun_unconstrained_actual (arg: integer)
begin

// Illegal invocation of `underconstrained_formal` since the domain of the unconstrained
// integer (arg) is not a subset of the domain of the under-constrained integer (wid)
let - = underconstrained_formal(arg);

// Note that if the formal was *only* treated as an under-constrained
// integer *within* the subprogram then it would be an integer at the
// invocation and this would be legal since the domain of the actual
// integer is equal to the domain of the formal integer

end

7.8.2.8 Example: Function with well-constrained integer formal

func constrained_formal (N: integer {1,2,3}) => bits(N)
begin

return Zeros(N);
end

// Cases for invocation of function
// which has a well-constrained integer formal

func legal_fun_constrained_actual (N: integer {1,2}) => bits(N)
begin

// This invocation is OK because {1,2} is a subset of {1,2,3}
// The result of the invocation is a constrained width bitvector,
// of determined width `N` with constraint {1,2}
// since the invocation width of the return type of constrained_formal is `N`
return constrained_formal(N);

end

func illegal_fun_constrained_actual (N: integer {2,3,4}) => bits(N)
begin

// Illegal because {2,3,4} is NOT a subset of {1,2,3}
// See Rule TZSP clause 2
// The invocation width of the return type of constrained_formal is `N`
return constrained_formal(N); // requires a checked type conversion

end

func illegal_fun_underconstrained_actual (N: integer) => bits(N)
begin

// Illegal since the domain of the under-constrained integer is
// NOT a subset of {1,2,3}
return constrained_formal(N); // requires a checked type conversion

end

func illegal_fun_unconstrained_actual (arg: integer)
begin

// Illegal since the domain of the unconstrained integer is NOT a
// subset of {1,2,3}
let illegal = constrained_formal(arg); // requires a checked type conversion

end

7.8.2.9 Example: Assignments with under-constrained integers

// Cannot assign to an under-constrained integer
// since it is always an immutable parameter!
// Two cases for assignments from an under-constrained integer

func assign(N: integer) => bits(N) // N is an under-constrained integer
begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

let legal1 = N; // legal1 is an under-constrained integer equal to N

// legal since the domain of the under-constrained integer is a
// subset of Domain(integer)
let legal : integer = N;

// illegal since the domain of the under-constrained integer is
// NOT a subset of Domain(integer{32, 64})
let illegal : integer {32, 64} = N;

return Zeros(N);
end

7.8.2.10 Example: Precise checked type conversions on actuals
In the following examples, it is not enough to provide a constrained width bitvector for the checked type conversions
on actuals. Instead, we must provide a checked type conversion which ensures the actuals are the same type,
i.e. they have the same width.

func unforcedBits {N} (x: bits(N), y: bits(N))
begin

return;
end

func testUnforcedBits {M: integer {16,32,64}, L: integer {8,16,32}} (
x: bits(M), y: bits(L)
)

begin
unforcedBits(x,y); // ILLEGAL
// Both formals are of width N
// But the widths of the actuals are M and L
// Which are not necessarily equal to each other.
// So one or other actual will not type satisfy the formal
// after invocation width is applied

unforcedBits(x as bits({16,32}), y); // ILLEGAL
// This still does not make the widths of the actuals equal

unforcedBits(x as bits({16,32}), y as bits({16,32})); // ILLEGAL
// Nor does this

unforcedBits(x, y as bits(M)); // Legal
// The arguments now have the same width, but an execution-time check is
// required to ensure that y meets the checked type conversion

// The same applies to primitive operations:
var z = x+(y as bits(M)); // Legal

end

The following example illustrates a more complex relationship between the formal arguments and the parameter N.

func unforcedBits {N} (x: bits(N*2), y: bits(N))
begin

return;
end

func testUnforcedBits {L: integer{8,16,32}, M: integer {16,32,64}} (
x: bits(M), y: bits(L)
)

begin
unforcedBits(x,y); // ILLEGAL
// Formals are of width N*2 and N
// But the widths of the actuals are M and L
// and (M == L*2) is not necessarily true

unforcedBits(x as bits(L*2), y); // Legal

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

// The arguments now have the correct widths,
// but an execution-time check is
// required to ensure that x meets the checked type conversion

// The same applies to primitive operations:
var z = x as bits(L*2) + y; // Legal

end

7.8.3 Primitive Operators

ASL follows mathematical and programming language tradition of allowing operators such as + to be overloaded
to refer to one of several different operations. In the same way that subprograms are matched to the appropriate
subprogram declarations (see 7.8.2 Subprogram invocations), primitive operators in expressions are matched to
the appropriate operation.

For ease of reference within this manual, we give each such combination of operator and base types a unique name
in Tables Table 7.1, Table 7.2, Table 7.3, Table 7.4, Table 7.5 and Table 7.6.

RBKNT An operation implements an operator if it appears in the same row as the operator in one the tables in section 7.8.4
Operator definitions.

RJGWF An expression which invokes a primitive operator matches an operation if the operation implements the operator
and the operands of the expression type-satisfy the corresponding operands of the operation as shown in the tables
in section 7.8.4 Operator definitions.

RTTGQ It is a type-checking error if an expression which invokes a primitive operator does not match exactly one primitive
operation.

7.8.4 Operator definitions

Table 7.1: Boolean operators

Operator Operand 1 Operand 2 Result
Operation
Name

! boolean - boolean not_bool

&& boolean boolean boolean and_bool

|| boolean boolean boolean or_bool

== boolean boolean boolean eq_bool

!= boolean boolean boolean ne_bool

--> boolean boolean boolean implies_bool

<-> boolean boolean boolean equiv_bool

Table 7.2: Bitvector operators

Operator Operand 1 Operand 2 Result
Operation
Name

+ bits(N) bits(N) bits(N) add_bits

+ bits(N) integer bits(N) add_bits_int

- bits(N) bits(N) bits(N) sub_bits

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

Operator Operand 1 Operand 2 Result
Operation
Name

- bits(N) integer bits(N) sub_bits_int

NOT bits(N) - bits(N) not_bits

AND bits(N) bits(N) bits(N) and_bits

OR bits(N) bits(N) bits(N) or_bits

XOR bits(N) bits(N) bits(N) xor_bits

== bits(N) bits(N) boolean eq_bits

!= bits(N) bits(N) boolean ne_bits

Table 7.3: Integer operators

Operator Operand 1 Operand 2 Result
Operation
Name

- integer - integer negate_int

+ integer integer integer add_int

- integer integer integer sub_int

* integer integer integer mul_int

^ integer integer integer exp_int

<< integer integer integer shiftleft_int

>> integer integer integer shiftright_int

DIV integer integer integer div_int

DIVRM integer integer integer fdiv_int

MOD integer integer integer frem_int

== integer integer boolean eq_int

!= integer integer boolean ne_int

<= integer integer boolean le_int

< integer integer boolean lt_int

> integer integer boolean gt_int

>= integer integer boolean ge_int

Table 7.4: Real operators

Operator Operand 1 Operand 2 Result
Operation
Name

- real - real negate_real

+ real real real add_real

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

Operator Operand 1 Operand 2 Result
Operation
Name

- real real real sub_real

* real real real mul_real

^ real integer real exp_real

/ real real real div_real

== real real boolean eq_real

!= real real boolean ne_real

<= real real boolean le_real

< real real boolean lt_real

> real real boolean gt_real

>= real real boolean ge_real

Table 7.5: String operators

Operator Operand 1 Operand 2 Result
Operation
Name

== string string boolean eq_string

!= string string boolean ne_string

Table 7.6: Enumeration operators

Operator Operand 1 Operand 2 Result
Operation
Name

== enumeration enumeration boolean eq_enum

!= enumeration enumeration boolean ne_enum

7.8.5 Primitive operations on integers

See also 7.9 Conditional expressions.

RZYWY If both operands of an integer binary primitive operator are integers and at least one of them is an unconstrained
integer then the result shall be an unconstrained integer.

RBZKW If both operands of an integer binary primitive operator are constrained integers and at least one of them is the
under-constrained integer then the result shall be an under-constrained integer.

RKFYS If both operands of an integer binary primitive operation are well-constrained integers, then it shall return a
constrained integer whose constraint is calculated by applying the operation to all possible value pairs.

IYHRP The calculation of constraints shall cause an error if necessary, for example where a division by zero occurs, etc.

func f(x: integer {2, 4}, y: integer {-1..1})
begin

let z = x DIV y; // Illegal

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

// type of z involves constraints with division by zero
let ok = x DIV (y as {-1,1});
// legal but incurs runtime check

end

IYHML The constraint on the result of an integer binary primitive operation ‘a OP b’ where a is of type ‘integer {ka}’ and
b is of type ‘integer {kb0, .., kbn}’ is ‘integer {ka OP kb0, .., ka OP kbn}’.

IVMZF Note that implicit constraints allow compile-time-constant results of primitive operations to be well-constrained
integers. See also 7.7.5 Implicit constraints for compile-time-constant integer expressions.

IYXSY If the result of a primitive operation which returns an unconstrained integer is used as a bitwidth then it will require
a checked type conversion.

Example:
func primitiveConstraint(value: integer {8,16})
begin

let j = value*(1+1);
// (1+1) is a compile-time-constant expression
// hence the type of (1+1) is integer {2}
// and j is of type integer {16,32}

var factor: integer = 2; // factor is of type integer
// Note that without the explicit type, factor would be integer {2}

let k = value * factor; // k is of type integer
// since factor is unconstrained

let c = if (factor==2) then value * 2 else value;
// The 'then' subexpression is integer {16,32}
// The 'else' subexpression is integer {8,16}
// The conditional expression (and hence c)
// is of type integer {8,16,32}

end

Note

Where a declaration has an implicit type, and the initialization expression is an implicitly constrained integer
(see 7.7.5 Implicit constraints for compile-time-constant integer expressions), the implicit type would previously
have been integer but is now a well-constrained integer. This change may prove inconvenient for some code.
For example, the declaration of factor in a later example below requires the : integer to avoid it being a
constrained integer variable!

func implicitTypes()
begin

var factor = 2;
// *Mutable* storage elements of type integer {2} are not very useful...
var c = if (factor==2) then i*2 else i;
// but this might be an acceptable implicit type for c of integer {8,16,32}..

end

When declaring a mutable object, it is recommended to use an explicit type if there is any doubt over whether
the initializing expressions’s type will have the correct domain of values that the object should have over its
lifetime. A declaration of a mutable object without an initializer always requires an explicit type.

7.8.6 Primitive operations on bitvectors

RKXMR If the operands of a primitive operation are bitvectors, the widths of the operands must be equivalent statically
evaluable expressions.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter 7. Type inference and type-checking
7.8. Subprograms and overloading

ILGHJ This rule means that when operating on two bitvectors of different types (e.g. a bits(M) and a bits(N)), a checked
type conversion should be used to indicate that they are known to be of the same width. The intention is that,
instead of silently inserting an execution-time check, an ASL processor will error by default without an explicit
checked type conversion from the author.

Example

func check{M: integer{4,8}}(flag: boolean, x: bits(M), y: bits(8)) ==> boolean
begin

if flag then
return x == y; // invalid; cannot determine x is bits(8)
return (x AS bits(8)) == y; // valid

end
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter 7. Type inference and type-checking
7.9. Conditional expressions

7.9 Conditional expressions

RXZVT The type of a conditional expression is the lowest common ancestor (see 7.9.1 Lowest common ancestor below) of
the types of the then and else expressions.

Note

It has been suggested that the type of a conditional expression whose then and else branches are different sized
bitvectors could be a constrained type whose constraint is the union of the widths.

Note however that we have been trying to exclude such cases since they are a potential source of errors. For
example, the following declaration of conditionalFun requires checked type conversions on the branches to
ensure the return type is satisfied:

func conditionalFun(N: integer {1,2}, argT: bits(1), argF: bits(2)) => bits(N)
begin

if (N==1) then
return argT as bits(N);

else
return argF as bits(N);

end
end

By the same principle of excluding unintentional errors, this example with a conditional expression in place of
the conditional statement should also have checked type conversions:

func conditionalFun(N: integer {1,2}, argT: bits(1), argF: bits(2)) => bits(N)
begin

return (if (N==1) then argT as bits(N) else argF as bits(N));
end

For constrained integers the situation is different:

func conditionalFun(N: integer {1,2}, argT: integer{1}, argF: integer{2}) => integer {1,2}
begin

if (N==1) then
return argT;

else
return argF;

end
// The return expression integer {1,2} satisfies the return type
// No checked type conversion is required.

end

Hence we reject the suggestion of allowing conditional expressions to have different bitvector widths in true and
false branches.

7.9.1 Lowest common ancestor

RYZHM The lowest common ancestor of types S and T is:

• If S and T are the same type: S (or T).
• If S and T are both named types: the (unique) common supertype of S and T that is a subtype of all other

common supertypes of S and T.
• If S and T both have the structure of array types with the same index type and the same element types:

– If S is a named type and T is an anonymous type: S
– If S is an anonymous type and T is a named type: T

• If S and T both have the structure of tuple types with the same number of elements and the types of elements
of S type-satisfy the types of the elements of T and vice-versa:

– If S is a named type and T is an anonymous type: S

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter 7. Type inference and type-checking
7.9. Conditional expressions

– If S is an anonymous type and T is a named type: T
– If S and T are both anonymous types: the tuple type with the type of each element the lowest common

ancestor of the types of the corresponding elements of S and T.
• If S and T both have the structure of well-constrained integer types:

– If S is a named type and T is an anonymous type: S
– If T is an anonymous type and S is a named type: T
– If S and T are both anonymous types: the well-constrained integer type with domain the union of the

domains of S and T.
• If either S or T have the structure of an unconstrained integer type:

– If S is a named type with the structure of an unconstrained integer type and T is an anonymous type: S
– If T is an anonymous type and S is a named type with the structure of an unconstrained integer type: T
– If S and T are both anonymous types: the unconstrained integer type.

• If either S or T have the structure of an under-constrained integer type: the under-constrained integer type.
• Else: undefined.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter 7. Type inference and type-checking
7.10. Comparison operations

7.10 Comparison operations

RSQXN If an argument of a comparison operation is a constrained integer then it is treated as an unconstrained integer.

RMRHT If the arguments of a comparison operation are bitvectors then they must have the same determined width.

EXAMPLE
func compare(int1: integer {1,2},

int2: integer {4,5},
bit1: bits(int1),
bit2: bits(int2),
int3: integer {1,2},
bit3: bits(int3)
)

begin
var cond: boolean;
cond = int1 == int2; // Legal
cond = bit1 == bit2; // Illegal
cond = bit1 == bit3; // Illegal
// Type check failure since type checker knows
// int1 ==> int1
// int3 ==> int3
// and cannot prove they are always the same

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter 7. Type inference and type-checking
7.11. Bitvector concatenation

7.11 Bitvector concatenation

7.11.1 Determined width of a bitvector concatenation

RNYNK If any argument of a bitvector concatenation has undetermined width then the result of the bitvector concatenation
has undetermined width.

RKCZS If all arguments of a bitvector concatenation have determined width then the result of the bitvector concatenation
is a determined width bitvector whose width is the sum of the arguments’ widths.

Example
func f {N} (a: bits(N), i: integer {1..N-1})
begin

// a is an under-constrained bitvector of determined width `N`

let b: bits(N) = [a[i-1:0], // constrained of determined width (i)
a[N-1:i] // constrained of determined width (N-i)
]; // result is constrained of determined width N

end

7.11.2 Constraint of a bitvector concatenation

RFHYZ If at least one argument is an under-constrained width bitvector then the result of the bitvector concatenation is an
under-constrained width bitvector.

RVBMX If all arguments of bitvector concatenation are fixed width bitvectors then the result of the bitvector concatenation
is a fixed width bitvector.

RXVWK If no arguments of a bitvector concatenation with n arguments are under-constrained width bitvectors and at least
one argument is a constrained width bitvector then the result of the concatenation is a constrained width bitvector
whose constraint is C which is calculated as follows:

• if the i’th argument is a constrained width bitvector, then the set Ci is the constraint of the argument’s width
• if the i’th argument is a fixed width bitvector, then Ci is the set containing only the argument’s width
• the set C is {x|y1 ∈ C1 ∧ · · · ∧ yn ∈ Cn ∧ x =

∑n
i=1 yi}

Examples
func f(P: integer {2,4,8})
begin

var opA = [Zeros(P-1), '1'];
// First element of concatenation is a constrained width bitvector of determined width
// with constraint {1,3,7} and width (P-1)
// Second element of concatenation is a fixed width bitvector of width 1
// For the purpose of calculating the resulting type, it has constraint {1}
// The result is a constrained width bitvector of determined width
// with constraint {1+1,3+1,7+1} and width ((P-1)+1)

// Hence the type of opA is bits(P as {2,4,8})
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter 7. Type inference and type-checking
7.12. Bitslices

7.12 Bitslices

IMJWM The result of a bitslice operation is a bitvector of determined width. This follows from the requirement that the
width of a bitslice must be any non-negative, statically evaluable integer expression.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter 7. Type inference and type-checking
7.13. Checked type conversions

7.13 Checked type conversions

IXVBG Due to the dynamic structure of a specification it may be that, during execution, the value of an expression is
within a specific domain. However, the static type checker may not be able to infer this since it does not perform
detailed analysis of dynamic behavior. In these situations, an execution-time check can be explicitly indicated by
the author using a checked type conversion.

For example, a check that a bitvector expression has the correct width may be inserted as in the following example:

func widCheck {M} (N: integer, b: bits(M)) => bits(N)
begin

if (N==M) then
return b as bits(N); // Inserts execution-time check

else
return Zeros(N);

end
end

Without that checked type conversion, the return statement would fail type checking since it is not known to the
type checker that the bits(M) type of b satisfies the return type bits(N).

The check may be elided if the compiler can determine that it will always be true. In the above example, a smart
compiler will see that the immutable values N and M are equal when the return b is executed.

RGYJZ A checked type conversion which is applied to a bitvector has the same width as the bitvector.

ISZVF By definition, a checked type conversion where the required type is a bitvector of determined width must have
the same width as the bitvector it is applied to. Additionally, in the case of a checked type conversion where the
required type is a bitvector of undetermined width, the result of the checked type conversion will have the width of
the bitvector it is applied to.

7.13.1 Checked type conversions on expressions

RPZZJ • If type-checking determines that the expression type-satisfies the required type, then no further check is
required.

• If the expression only fails to type-satisfy the required type because the domain of its type is not a subset
of the domain of the required type, an execution-time check that the expression evaluates to a value in the
domain of the required type is required.

IVQLX The checked type conversion rule permits an expression to be used if is subtype compatible with the required type
at execution-time.

RYCPX An execution-time check for a checked type conversion should not be failed before the expression is evaluated. For
example, the check on y below should not cause an execution-time error if the invocation of f1 returns FALSE at
execution time:

func checkY (y: integer)
begin

if (f1() && f2(y as {2,4,8})) then pass; end
end

IZLBW The use of a checked type conversion allows uses of values which would normally be forbidden by the type system.
As such it may result in an execution-time check being inserted. Since tools may elide unnecessary execution-time
checks, it may be useful for tools to offer an optional mode where non-elided execution-time checks cause a
warning to be issued so that authors may review complex checked type conversions manually.

7.13.1.1 Checked type conversions on integer expressions

ITCST The rule about domains in the definitions of subtype-satisfaction and type-satisfaction means that it is illegal to
use the unconstrained integer where a constrained integer is expected. A checked type conversion can be used to
overcome this.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter 7. Type inference and type-checking
7.13. Checked type conversions

ICGRH A checked type conversion allows code to explicitly mark places where uses of constrained types would otherwise
cause a type-check error. The intent is to reduce the incidence of unintended errors by making such uses fail
type-checking unless the checked type conversion is provided.

IYJBB Primitive operations may return unconstrained integers, so a checked type conversion may be required on primitive
operation expressions. See also 7.8.5 Primitive operations on integers.

Examples
func CTCs(x: integer)
begin

var A: bit;

let B: integer = A as integer; // ILLEGAL
// bit cannot be an integer

let C: integer {8,16} = x as {8,16};
// The execution-time check is `x IN {8,16}`

let D: integer {8,16} = C as {8,16};
// Type checker can determine that C is already an integer {8,16}
// so no further check is required

end

7.13.2 Examples of checked type conversions

7.13.2.1 Checked type conversion with configs

IGQRD The following example shows the declaration of a function getDefault whose return type is a bitvector of
undetermined width which is not dependent on a parameter. Since it is dependent on a config value, the
declaration is legal - there is no overloading of the result type.

config systemWid: integer {8,16} = 8;
// systemWid==>systemWid

func getDefault() => bits(systemWid)
begin

var ret: bits(systemWid) = Zeros(systemWid);
return ret;

end

func systemOp(x: bits(systemWid)) => bits(systemWid)
begin

return (NOT x);
end

func getWidth {N} (x: bits(N)) => integer
begin

return N;
end

func test()
begin

var addr = getDefault();
// Type of addr is bits(systemWid)
// which is a constrained width bitvector bits({8,16})

addr = systemOp(addr); // Legal
// Both LHS and RHS are bits(systemWid)

let N = getWidth(addr) as {8,16};
// Invokes execution-time check that RHS is IN {8,16}
// Type of N is integer {8,16}
// N==>N

var newAddr: bits(N) = [Zeros(N-1), '1'];

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter 7. Type inference and type-checking
7.13. Checked type conversions

newAddr = systemOp(addr); // ILLEGAL
// LHS is bits(N) but RHS is bits(systemWid)

newAddr = systemOp(addr) as bits(N);
// Incurs an execution-time check that (N==systemWid)

- = newAddr + addr; // ILLEGAL
// Type checker cannot demonstrate (systemWid==N)

newAddr = newAddr + (addr as bits(N)); // Legal
// Incurs an execution-time check that (N==systemWid)

addr = newAddr; // ILLEGAL
addr = newAddr as bits(systemWid); // Legal

end

IGJZQ The following example illustrates a simple use of constrained types with configs.

// a global which may only hold the values 8, 16 or 32
var gWid: integer {8,16,32};

// a global constant which holds the value 64 and has type integer {64}
constant constantValue = 64;

// The initializer for the following config is a compile-time-constant
// whose value is 32 hence its type is integer {32} which type checks
// against the type of configWid
config configWid: integer {8,16,32} = constantValue DIV 2;
// Although constantValue is of type integer, it is compile-time-constant
// so the initializer of configWid is `32: integer{32}`
config halfWid: integer {4,8,16} = configWid DIV 2;

7.13.2.2 Checked type conversion on literal

IMKPR The following example shows that even literals may require a checked type conversion to ensure they meet
type-satisfaction requirements.

func invokedN {N: integer {8,16,32}} (x: bits(N)) => bits(N)
begin

var myBits: bits(N);
// The type of myBits is bits(N as {8,16,32})
if N == 8 then // "GUARD"

myBits = '10101010'; // ILLEGAL
// since the type of myBits is not of width 8

myBits = '10101010' as bits(N); // Legal (line AS01)
// type checker inserts execution-time check `N==8`

else
myBits = Zeros(N);

end
return myBits;

end

func test(M: integer)
begin

var myVal: bits(M as {16,32});
// Incurs execution-time check that (M IN {16,32})
var myResult: bits(M as {8,16});
// Incurs execution-time check that (M IN {8,16})

myResult = invokedN(myVal); // ILLEGAL
// The return type of invokedN(myVal) is bits(M as {16,32})
// which does not type satisfy myResult

myResult = invokedN(myVal as bits({8,16})); // returns a bits({8,16})

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter 7. Type inference and type-checking
7.13. Checked type conversions

// Execution-time check that M IN {8,16}
// Note that the only value of M which can cause this invocation is `16`
// so the execution-time check `N==8` in invokedN at "AS01" is not executed
// due to its `if N==8` above failing

myVal = invokedN(myResult) as bits({16, 32});
// Execution-time check that the returned value is IN {16,32}
// Invocation matches signature so it type-checks
// Note that myResult may be a bits(8),
// so the check at line AS01 may be executed

end

7.13.2.3 Checked type conversion with bits({...})

IBHLN In the following example, the actual argument of the invocation of myFunc on the last line has a checked type
conversion which does not supply a width. This results in the actual argument being treated as a bitvector of
determined width equal to the determined width of myVal, but with a different constraint from that of myVal,
namely {8,16,32} instead of {8,16,32,64}. See 7.13 Checked type conversions for details of the width of a
checked type conversion which is applied to a bitvector.

The type checker knows that the invocation of myFunc returns a value whose width is the same as the width of the
actual argument. However, the constraint {8,16,32,64} on myVal alone would not satisfy the constraint 8,16,32
on the formal argument myInput hence the checked type conversion is required.

func myFunc {N: integer{8,16,32}} (myInput: bits(N)) => bits(N)
begin

return Zeros(N);
end

func MyVectorInstruction()
begin

let myWid: integer {8,16,32,64} = f();
var myVal: bits(myWid) = g();
if myWid == 64 then

myVal[31:0] = myFunc(myVal[31:0]);
myVal[63:32] = myFunc(myVal[63:32]);

else // author knows myVal is not bits(64)
myVal = myFunc(myVal as bits({8,16,32}));

end
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter 7. Type inference and type-checking
7.14. Bitvector width comparison

7.14 Bitvector width comparison

In order to ensure that type checking can compare the widths of bitvector expressions during compilation, bitvector
widths are always statically evaluable expressions. See rules YTGH, BDJK, WZCS and RMTQ.

RXNBN When determining the widths of bitvectors, the type checker shall make use of statically evaluable expressions.

IGQYG This means that constant and let identifiers can be used to demonstrate that a bitvector’s width is acceptable.

Comparing bitvector widths involves maintaining a mapping from immutable identifiers to their values. Where the
value of an immutable identifier is not given as a statically evaluable expression, the mapping should simply map
the identifier to itself.

Comparisons of bitvector width requires the ability to use these mappings to reduce immutable terms in an
expression using arithmetic rewrites and normalization.

Examples:

The following example code is annotated with comments describing the progress of a type checker, using <x>--><e>

to indicate that an occurrence of <x> can be rewritten to <e>.

var gInt: integer {1,2,3}; // a constrained mutable global

func mutables(wid: integer)
begin

// type checker knows wid-->wid

constant mod = 1;
// RHS is immutable so mod-->1

let size01 = wid + gInt;
// RHS is mutable so size01-->size01

var data01: bits(size01+1);
// size01 reduces to size01 so
// type checker knows data01 is (size01+1) wide

let size02 = wid + gInt + mod;
// RHS is mutable so size02-->size02

var data02: bits(size02);
// size02-->size02 so
// type checker knows data02 is (size02) wide

data01=data02;
// type checker emits an error "Widths do not match"
// since it cannot tell that (size01+1)==(size02)

end

func immutables(wid: integer)
begin

// type checker knows wid-->wid

constant mod = 1;
// RHS is immutable so mod-->1

let size01 = wid;
// RHS is immutable so size01-->wid

var data01: bits(size01+1);
// size01-->wid so
// type checker knows data01 is (wid+1) wide

let size02 = wid + mod;
// RHS is statically evaluable
// and mod-->1 so
// type checker knows size02-->(wid+1)

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter 7. Type inference and type-checking
7.14. Bitvector width comparison

var data02: bits(size02);
// size02-->(wid+1) so
// type checker knows data02 is (wid+1) wide

data01=data02;
// type checker knows that (wid+1)==(wid+1)
// Widths match

end

Since the type-checker uses statically evaluable expressions when determining bitvector widths, immutable values
of type integer are treated as width constraints by the type-checker and used during width inference.

For example, the declaration let F: integer = (N - E)- 1; in the following function is used as a width
constraint

This is a minor, but important, extension to allow the floating point functions to be written in a more natural style.
Consider the following function and how we can type-check the final return statement.

func FPZero(sign: bit, N: integer {16,32,64}) => bits(N)
begin

// type checker knows N-->N
let E: integer = if N == 16 then 5 elsif N == 32 then 8 else 11;
// type checker knows E-->if N == 16 then 5 elsif N == 32 then 8 else 11
let F: integer = (N - E) - 1;
// type checker knows F-->N-(if N == 16 then 5 elsif N == 32 then 8 else 11) - 1
// which is F-->(if N == 16 then (N -5) elsif N == 32 then (N-8) else (N-11)) - 1
// which is F-->(if N == 16 then (16-5) elsif N == 32 then (32-8) else (N-11)) - 1
// which is F-->(if N == 16 then (11) elsif N == 32 then (24) else (N-11)) - 1
// which is F-->(if N == 16 then (10) elsif N == 32 then (23) else (N-12)) - 1
var exp = Zeros(E);
var frac = Zeros(F);
return [sign, exp, frac];
// type checker knows width of return expression is 1 + E + F
// which is 1
// + (if N == 16 then 5 elsif N == 32 then 8 else 11)
// + (if N == 16 then 10 elsif N == 32 then 23 else (N-12))
// which is 1
// + (if N == 16 then 15 elsif N == 32 then 31 else (N- 1))
// which is
// (if N == 16 then 16 elsif N == 32 then 32 else N)
// which is N

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter 7. Type inference and type-checking
7.15. Base values

7.15 Base values

Each type has a base value, used in 6.2.2 Initialization of locals if an initializer is not supplied.

7.15.1 Base value of integers

RNJDZ The base value of the unconstrained integer is 0.

RCFTD The base value of a well-constrained integer is the closest value to zero in its domain. If the closest positive and
negative value are equally close, the positive value is used.

RQGGH There is no base value for the under-constrained integer.

IWVQZ Since only subprogram parameters can be under-constrained integers, and since they will be initialized by their
invocation, there is no need to have a base value for them.

7.15.2 Base values of other types

RGYCG The base value of the real type is 0.0.

RWKCY The base value of the string type is the empty string.

RLCCN The base value of an enumeration type is the first (i.e. leftmost) enumeration literal in the declaration of that
enumeration type.

type SigEnum of enumeration {LOW, HIGH}; // SigEnum has base value LOW

RCPCK The base value of a boolean is FALSE.

RZVPT The base value of bits(N) is the N-bit bitvector containing only zeros.

IQFZH For example the base value of bits(2) is '00'.

RWGVR The base value of an array type is an array with the same element indices as the array type, whose elements have
the base value of the array’s element type.

IPGSS For example the base value of an array [2] of integer is an array [2] of integer in which both elements
have the value 0.

RQWSQ The base value of a tuple type is a tuple whose elements have the base values of their types.

IHMRK For example, the base value of a tuple (integer, boolean) is the tuple (0, FALSE).

RMBRM The base value of a record type is a record whose elements have the base values of their types.

Example:

Given the following declaration of a record type a_record_ty:

type a_record_ty of record {
flag : boolean,
count: integer,
data : bit

};

declaring a local variable a_record of that type, with no initializer, is equivalent to the following where a_record

is initialized with the base value of a_record_ty:

var a_record = a_record_ty {
flag = FALSE,
count = 0,
data = '0'

};

RSVJB The base value* of an exception type is an exception whose elements have the base values of their types.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter 7. Type inference and type-checking
7.16. Type checking examples

7.16 Type checking examples

7.16.1 Named types example

XXSWL The intent is that, by default, any named type should not be assignable to or from any other named type, even
if they coincidentally have the same structure. Where assignment between named types is desired it is usually
achieved by grouping related types via a common supertype. For example, given the following code:

// Neither ADDR nor PHYSICAL_ADDR is a subtype of the other.
type ADDR of bits (32) {};
type PHYSICAL_ADDR of ADDR;

var addr : ADDR;
var physical: PHYSICAL_ADDR;

// For the function "raw_addr",

func raw_addr(x: ADDR) => bits(32)
begin

// x may be used as the expression in the return statement
// since the return type is type satisfied by the type of x
return x;

end

func raw_physical_addr(x: PHYSICAL_ADDR) => bits(32)
begin

return x;
end

• The assignments addr = physical; and physical = addr; are illegal.
• The following assignments are legal:

func addresses()
begin

var tmp: bits(32);
// primitive type bits(32) is type-satisfied by both ADDR and PHYSICAL_ADDR

tmp = addr;
physical = tmp;
tmp = ['0', tmp[30:0]];
addr = tmp;

physical = raw_addr(addr);
addr = raw_physical_addr(physical);

physical = addr[31:0]; // a bitslice is of type bits(N)
addr = physical[31:0];

end

• This example demonstrates how a constant can be given a named type.

type Char of integer{0..255};
type Byte of integer{0..255};

constant K: Char = 210;

var c: Char;
var b: Byte;

function f()
begin

c = 210; // legal: c has the structure of integer and can be assigned an integer
c = K; // legal: K has type Char and can be assigned to a Char
b = K; // illegal: a Char cannot be directly assigned to a Byte

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter 7. Type inference and type-checking
7.16. Type checking examples

7.16.2 Anonymous types example

ISBCK This example illustrates the use of anonymous types as permitted by the type-satisfaction rule.
type T1 of integer; // the named type `T1` whose structure is integer
type T2 of integer; // the named type `T2` whose structure is integer
type pairT of (integer, T1); // the named type `pairT` whose structure is (integer, integer)

func tsub01()
begin

var dataT1: T1;

var pair: pairT = (1,dataT1);
// legal since right hand side has anonymous, non-primitive type (integer, T1)

let dataAsInt: integer = dataT1;
pair = (1, dataAsInt);
// legal since right hand side has anonymous, primitive type (integer, integer)

let dataT2: T2 = 10;
pair = (1, dataT2);
// illegal since right hand side has anonymous, non-primitive type (integer, T2)
// which does not subtype-satisfy named type pairT

end

7.16.3 Constrained types examples

GMTXX It shall be an error to use a value of type <T> where a value of constrained type <S> is required if <T> can hold a
value which <S> cannot.

IKJDR Due to the various type-checking rules, we allow <T> to be used where an <S> is expected if <T> type satisfies
<S>. This includes in assignments, function arguments and constraints. We already know that if <T> type satisfies
<S> then the domain of <T> must be a subset of the domain of <S>, which corresponds to the requirement MTXX
above.

Note that although it may seem desirable for the rules for legal assignments to be the same as those for matching
actuals to formals in invocations, there is a fundamental difference in the use of these two features.

• An assignment is to a storage element which must have a specific width during execution, so the compiler
must be satisfied that the RHS value is of the correct width.

• An invocation matches against formal arguments which have no specific width but may match multiple
widths.

For example:

func invokeMe {N: integer {8,16,32}} (x: bits(N))
begin

return;
end

func test(M: integer {8,16,32}, L: integer {8,16})
begin

var myM: bits(M);
var myL: bits(L);

if (M != L) then
return;

end
// Note the type-checker does not do full program analysis
// So it does not know that M==L after this statement

myM = myL; // ILLEGAL
// myM and myL are constrained width bitvectors of determined widths
// M and L respectively.
// The type-checker does not know (M==L), so subtype-satisfaction
// disallows this use of myL.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter 7. Type inference and type-checking
7.16. Type checking examples

myM = myL as bits(M); // Legal
// The author explicitly claimed that myL has the width of myM
// An execution-time check of (M==L) is required

invokeMe(myL); // Legal
// The parameter N is taken to be the value which corresponds
// with the width of myL and the width of myL is an integer {8,16}
// which complies with the declaration of parameter 'N'
// The rules for subtype-satisfaction are satisfied since
// the formal 'x' and the actual 'myL' are of the same determined width.

end

7.16.3.1 Example: constrained integer types

type Ity of integer {2,4,8};

func tsub02()
begin

var A: integer {2,4,8};
var B: integer {2,4};
// A and B have anonymous types

A = B; // legal: FMXK clause 2
B = A; // illegal: domain of A's type is not a subset of domain of B's type

var I: Ity;
I = A; // legal: FMXK clause 2
I = B; // legal: FMXK clause 2

B = I; // illegal: subtype-satisfaction fails due to domains
A = I; // legal: FMXK clause 2

end

var gInt: integer; // unconstrained global integer

func f1()
begin

var myInt : integer = gInt; // Legal

var myIntA: integer {1..10} = myInt as integer {1..10};
// Legal: incurs execution-time check that (myInt IN {1..10})

var myIntB: integer {0..20} = myIntA;
// Legal: type satisfaction due to domains (no execution-time check required)

myIntA = myIntB;
// Type check fail even if smart compiler believes myIntB holds
// a value from myInt_A since
// `integer {0..20}` does not type satisfy
// `integer {1..10}` due to domains

end

func wid1() => integer {8,16}
begin

return someWid1;
end

func wid2() => integer {4,8}
begin

return someWid2;
end

func f2()
begin

let w1: integer {2,4,8,16} = wid1();
// RHS is not statically evaluable so the only thing the type

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter 7. Type inference and type-checking
7.16. Type checking examples

// checker can deduce is that w1==>w1
// We do not constrain w1 based on the return type of wid1
// since this may be intentional to avoid checked type conversions later
// e.g. to ensure b1 has the correct type.

let w2: integer {4,8,16} = wid2();
// RHS is not statically evaluable so w2==>w2

// The set of possible widths of a bitvector must be statically evaluable.
// All of the following are:
var b1: bits(w1); // type is bits(w1 as {2,4,8,16})
var b2: bits(w2); // type is bits(w2 as {4,8,16})

b1 = b2; // Type check fail
// Type checker cannot determine w1==w2
//so we require a Checked Type Conversion:
b1 = b2 as bits(w1); // Type check PASS
// but requires an execution-time width check that (w2==w1)

end

Note

The example above shows a let w1 declaration which is not constrained by its RHS initializer. For var

declarations this is required since the var may later be assigned a value outside the initializers domain:

func varConstraint()
begin

var a: integer {1..100} = 1;
a = 2;

end

It has been proposed that for let bindings we might constrain the type (i.e. w1 would be integer {8,16}) since
the value cannot change and the type checker might flag more problems with subsequent code.

However, for now it seems that it is better to leave let as the same as var for easier readability and to help with
code maintenance, for example, given the code:

func bar() => integer {8,16,32}
begin

return 8;
end

func foo()
begin

let myVal: integer {8,16,32} = bar();
end

future changes which expand the constraint of bar would be noticed since the declaration of myVal would
become illegal.

Also, although it is not clear why you would write code like w1 above, it may be that there is some documentation
related reason for a specification to make such a statement about a let type. (Note that these types may be
named types which carry configured constraint information. . .)

See also 4.4 Global storage elements for the contrasting behavior of bitvector initialization expressions.

7.16.3.2 More Invocation Examples

func bus {wid} (arg0: bits(wid), arg1: bits(wid*2)) => bits(wid)
begin

// When type-checking the declaration of func bus
// arg0 and arg1 are under-constrained width bitvectors
// of determined width `wid`

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter 7. Type inference and type-checking
7.16. Type checking examples

// Since wid is not a formal, it takes its value in an invocation from
// the width of one of the the corresponding actuals

return arg0;
end

// --
// Cases for invocation of function `bus`
// which has an under-constrained width bitvector formal

func legal_fun_fixed_width_actual () => bits(8)
begin

let x: bits(8) = Zeros(8);
let y: bits(16) = Zeros(16);
// bus's wid parameter takes its value as `8`
// The invocation width of bus's arg0 is therefore `8`
// x type satisfies arg0: bits(8)
// The invocation width of bus's arg1 is therefore `8*2`
// y type satisfies arg0: bits(16)
return bus(x, y);

end

func legal_fun_underconstrained_actual (N: integer) => bits(N)
begin

// N is a parameter, therefore it is an under-constrained integer
var x: bits(N);
var y: bits(N*2);
// bus's wid parameter takes its value from the width of x
// which is `N` which is an under-constrained integer
// Therefore the type of arg0 with the invocation width `N` is
// the under-constrained width bitvector of determined width `N`
// which is type satisfied by x
return bus(x, y);

end

func legal_fun_constrained_actual (arg: bits({32,64})) => bits(32)
begin

// This invocation is OK because the actual has undetermined width
// so the formal is treated as having undetermined width
// and the domain of bits({32,64}) is a subset of the domain of the
// undetermined width bitvector
return bus(arg, [arg,arg])[31:0];

end

func illegal_fun_parameter_mismatch (N: integer{32,64}, M: integer{64,128})
begin

var argN: bits(N);
var argM: bits(M);
// Illegal invocation:
// Either bus's wid takes its value from argN
// in which case argM does not type satisfy arg1
// OR bus's wid takes its value from argM
// in which case argN does not type satisfy arg0
let illegal = bus(argN, argM);
// A checked type conversion might be useful...
let legal = bus(argN, argM as bits(N*2));

end

7.16.3.3 More assignment examples

func assignBits {
N:integer, M: integer
} (
someWid: integer {32,64},
argN: bits(N), argM: bits(M)
)

begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter 7. Type inference and type-checking
7.16. Type checking examples

// argN and argM are immutable under-constrained width bitvectors
// assignments to them are illegal

// legal since widths and domains match
var eightBits: bits(8) = Zeros(8);

// legal: someBits has undetermined width so we require RHS to be a
// bitvector whose domain is a subset of {32,64} which it is by the
// declaration of someWid
var someBits: bits({32,64}) = Zeros(someWid);

// underconstrainedBits is a mutable under-constrained width bitvector
// it can be assigned to
var underconstrainedBits: bits(N);

// underconstrainedBits has determined width `N`, so RHS must have same width
underconstrainedBits = argN; // legal since widths match

// and domains are identical

underconstrainedBits = argM; // illegal since widths do not match
underconstrainedBits = eightBits; // illegal since widths do not match
underconstrainedBits = someBits; // illegal since widths do not match

// (someWid==N may be false)

eightBits = underconstrainedBits; // illegal since widths do not match
someBits = underconstrainedBits; // illegal since widths do not match

// (someWid==N may be false)
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter 8
Interpretation

This section is an informal description of how ASL is interpreted. It is expected to be replaced by a Semantics
Reference Document in due course. If there is a conflict between the behavior described in this document and the
Semantics Reference Document, the Semantics Reference Document will be considered the correct version.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter 8. Interpretation
8.1. Mutability

8.1 Mutability

DFXST Storage elements and identifiers which denote storage elements are either mutable or immutable.

See 4.4 Global storage elements and 6.2 Local storage elements for rules about which declarations create mutable
and immutable storage elements.

RWDGQ Immutable values may not be assigned to or otherwise have their values modified after initialization.

RZDKC The type of a mutable storage element shall not be an under-constrained integer.

Note

In order to maintain simple rules for a compiler to determine the range of values which an under-constrained
integer may hold, we forbid mutable under-constrained integers since these would require the compiler to
interpret every assignment to that storage element.

8.1.1 Statically evaluable expressions

IPKXK We extend the concept of mutability to expressions such that we describe an expression as statically evaluable if
its evaluation only involves the use of immutable values.

DYYDW Any expression consisting solely of an immutable storage element or a [literal constant]{ 5.8 Literal constants} is
a statically evaluable expression.

DCWVH A compile-time-constant expression is a statically evaluable expression.

DHLQC Any expression consisting of a primitive operation on statically evaluable operands is a statically evaluable
expression

ILZCX Note that this means a statically evaluable expression must not contain non-compile-time-constant getter or
function invocations.

8.1.2 Deciding equivalence for statically evaluable expressions

ILHLR The interpretation of ASL requires checking statically evaluable integer expressions for equivalence.

RRFQP Two statically evaluable expressions being checked for equivalence are both reduced to canonical form, and then
the two canonical forms are compared structurally.

RVNKT A statically evaluable expression that must be checked for equivalence may contain an integer divide operation
(DIV, but not DIVRM) only if the divisor is a product of non-zero compile-time-constant integer expressions and
immutable integer variables.

Informally, reduction to canonical form involves:

• Recursively substituting immutable variable identifiers with their initialization expression, provided the
initialization expression is a statically evaluable expression.

• Applying addition, subtraction, unary negation and exact division (DIV).
• Distributing addends across multiplication.
• Removing terms with a zero factor.
• Cancelling common factors.
• Sorting addends and factors by the immutable variable identifiers they contain, according to some common

total order.

See 7.14 Bitvector width comparison.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter 8. Interpretation
8.2. Interpretation of functions and procedures

8.2 Interpretation of functions and procedures

An ASL specification describes behavior in terms of the execution of a single thread of control. Executing a
function or procedure may modify global state and can result in one of the following situations:

• The function/procedure returns successfully (i.e., without throwing an ASL exception or detecting a dynamic
error). In this case, the result is a possibly modified global state and, for functions, a return value.

• The function/procedure throws an ASL exception. In this case, the result is a possibly modified global state
and an exception object (that could be caught by the caller in a try-catch block, if desired).

• The function/procedure detects a dynamic error condition. This indicates an error in the specification and the
global state and any other behavior is meaningless.

• The function/procedure enters an infinite loop. This indicates an error in the specification and the global state
and any other behavior is meaningless.

Note

• Arm’s implementation of ASL also supports some builtin functions for printing to the console, etc.
These internal extensions are not used in Arm’s published specifications but could be added to the above
description in the usual manner.

• We note that, even in the simple case that a procedure returns successfully, the behavior is not a
pure mathematical function from input states to output states. ASL provides explicit mechanisms for
underspecification (e.g., UNKNOWN) and so the behavior of this simple case is better modeled as a relation
between states.

• An alternative, more flexible, way of defining the meaning of ASL would be in terms of traces of
interactions with external components such as the memory system or interrupt controllers and of reads and
writes of the global state of the specification. In such a definition, the meaning of a function would be
defined as a set of possible traces.

8.2.1 Execution-time subprograms

INXJR Subprogram declarations in ASL are either execution-time subprogram declarations or non-execution-time
subprogram declarations.

DCSFT A subprogram declaration is an execution-time declaration if it makes use of any of the following:

• an execution-time storage element
• an execution-time expression
• an execution-time subprogram invocation

IHYBT Subprogram invocations are also either execution-time or non-execution-time invocations.

DCCTY A subprogram invocation is an execution-time invocation if the invoked subprogram has an execution-time
declaration or if the invocation contains any of the following:

• an execution-time storage element
• an execution-time expression
• a bitvector whose width is an execution-time expression

ILYKD Declaration CCTY means that an execution-time subprogram declaration shall only have execution-time
invocations.

8.2.2 Compile-time-constant subprograms

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter 8. Interpretation
8.2. Interpretation of functions and procedures

IZPWM Subprogram declarations in ASL are either compile-time-constant subprogram declarations or non-compile-time-
constant subprogram declarations.

DKCKX A subprogram declaration is a compile-time-constant declaration if all of the following are true:

• the subprogram is side-effect-free
• all assignments in the subprogram are to the subprogram’s local variables
• all expressions in the subprogram are compile-time-constant expressions
• any subprogram invocations made in the subprogram are compile-time-constant subprogram invocations

INTYZ Standard (built-in) functions, as defined in Chapter 9 Standard library, are generally compile-time-constant, unless
otherwise stated.

IMSZT Subprogram invocations are also either compile-time-constant subprogram invocations or non-compile-time-
constant subprogram invocations.

DQNHM A subprogram invocation is a compile-time-constant invocation if all the following hold:

• the invoked subprogram is a compile-time-constant subprogram
• all of the actual arguments are compile-time-constant expressions
• all actual arguments which are bitvectors were declared with a constant expression width

Note

Subprogram declarations or invocations may be both non-compile-time-constant and non-execution-time.

For example, storage elements declared with config are non-execution-time and non-compile-time-constant so
any use of them in a function or procedure declaration or invocation renders it non-compile-time-constant, but
does not cause it to be execution-time.

Subprogram declarations or invocations may not be both compile-time-constant and execution-time since if the
conditions for “execution-time” are met then the conditions for “compile-time-constant” cannot be met, and
vice versa.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter 8. Interpretation
8.3. Evaluation of expressions

8.3 Evaluation of expressions

8.3.1 Execution-time expressions

IXYKC Expressions in ASL are either execution-time expressions or non-execution-time expressions.

DZPMF An expression is an execution-time expression if either:

• it contains an execution-time storage element identifier
• it contains an execution-time function or getter invocation

8.3.2 Compile-time-constant expressions

IXSFY Expressions in ASL are either compile-time-constant expressions or non-compile-time-constant expressions.

DXRBT An expression is a compile-time-constant expression if each one of its atomic expressions is one of:

• a literal constant
• a compile-time-constant storage element identifier
• an immutable storage element identifier with a compile-time-constant initializer expression.
• compile-time-constant function or getter invocations

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter 8. Interpretation
8.4. Behavior of types

8.4 Behavior of types

8.4.1 Execution-time types

IWVGG Types in ASL are either execution-time types or non-execution-time types.

DJLJD A type is an execution-time type if its structure depends on either:

• an execution-time type
• an execution-time expression

Example

func execType(wid: integer)
begin

// structure of R's type depends on execution time value `wid`
var R: bits(wid);

end

8.4.2 Compile-time-constant types

IKKQY Types in ASL are either compile-time-constant types or non-compile-time-constant types.

DMTQJ A type is a compile-time-constant type if its structure depends only on:

• compile-time-constant types
• compile-time-constant expressions

Example

// All of the following are compile-time types

constant wid = 32;

type busTy of bits(wid);
type recTy of record {bus: busTy, valid: bit};

func constType()
begin

var I: integer;
var R: bits(wid);

end

IYBGL Note that a type may be neither an execution-time nor a compile-time-constant, For example bits(wid) where
wid is a global config identifier.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter 8. Interpretation
8.5. Evaluation of expressions

8.5 Evaluation of expressions

8.5.1 Evaluation order

RXKGC It is an error for an expression’s meaning to rely on evaluation order except that conditional expressions, and uses
of the boolean operators &&, ||, -->, are guaranteed to evaluate from left to right.

IYMRT An implementation could enforce this rule by performing a global analysis of all functions to determine whether a
function can throw an exception and the set of global variables read and written by a function.

IQJTN For any function call F (e1, ...em), tuple (e1, ...em), or operation e1 op e2 (with the exception of &&, || and -->),
it is an error if the subexpressions conflict with each other by:

• both writing to the same variable.
• one writing to a variable and the other reading from that same variable
• one writing to a variable and the other throwing an exception
• both throwing exceptions

IGFZT These conditions are sufficient but not necessary to ensure that evaluation order does not affect the result of an
expression, including any side-effects.

IQRXP Conditional expressions and the operations &&, ||, --> have short-circuit evaluation described in more detail in
8.6.1 Boolean operations.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter 8. Interpretation
8.6. Evaluation of operations

8.6 Evaluation of operations

Most of the operations have their usual mathematical meanings. For example, add_int performs the usual
(unbounded) integer addition. Some exceptions to this are listed below.

In this section, we use the operation names from tables Table 7.1, Table 7.2, Table 7.3, Table 7.4 and Table 7.5
to avoid ambiguity.

8.6.1 Boolean operations

RGQNL The operator --> represents the boolean implies operator.

RLRHD The operator <-> represents the boolean if and only if operator.

Conditional expressions and the operations and_bool or_bool and implies_bool provide the familiar short-circuit
evaluation from the C programming language. That is, the first operand of if is always evaluated but only one
of the remaining operands is evaluated; if the first operand of and_bool is FALSE, then the second operand is not
evaluated; if the first operand of or_bool is TRUE, then the second operand is not evaluated; and, if the first operand
of implies_bool is FALSE, then the second operand is not evaluated. We note that relying on this short-circuit
evaluation can be confusing for readers and it is recommended that an if-statement is used to achieve the same
effect.

8.6.2 Real operations

RBNCY The exponentiation operation exp_real(x,y) raises x to the power of y.

Note

Since the real type represents the real numbers, operators such as add_real, mul_real, etc. obey the usual
mathematical laws such as associativity, distributivity, commutativity, etc.

8.6.3 Integer operations

RNCWM The exponentiation operation exp_int(x,y) raises x to the power of y.

Note

Since the integer type represents the mathematical integers, operators such as add_int, mul_int, etc. obey the
usual mathematical laws such as associativity, distributivity, commutativity, etc.

RVGZF The shift operations are defined as follows:

shiftleft_int(x, n) = RoundDown(Real(x) ∗ 2.0n)
shiftright_int(x, n) = RoundDown(Real(x) ∗ 2.0−n)

where the RoundDown library function rounds down to negative infinity.

RTHSV It is an error to shift values by negative shift amounts.

RCRQJ There are division operations div_int and fdiv_int and a remainder operation frem_int.

RZTJN The operation div_int performs exact division. The divisor (the second operand) must be a positive integer that
exactly divides the first operand.

RSVMM The operation fdiv_int performs division rounding towards negative infinity.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter 8. Interpretation
8.6. Evaluation of operations

RWWTV It is an error to divide by zero, or by a negative integer.

RGHXR The remainder operation frem_int is defined as the remainder of division rounding towards negative infinity. The
second operand must be a positive integer.

INBCT For example, the following table shows the results of the operations:

x y div_int fdiv_int frem_int

6 3 2 2 0

-6 3 -2 -2 0

5 3 (error) 1 2

-5 3 (error) -2 1

6 -3 (error) (error) (error)

Note

Since the integer type represents the mathematical integers, operators such as +, ∗, etc. obey the usual
mathematical laws such as associativity, distributivity, commutativity, etc.

8.6.4 Bitvector operations

RBRCM Concatenation of multiple bitvectors is done using a comma separated list surrounded with square brackets.

Example:
var T: boolean = ['1111', '0000'] == '11110000';

RRXYN Conversion from bitvector to integer using the UInt and SInt functions, and from integer to bitvectors using
slicing, behaves as if the integers had 2’s complement representation.

Examples:
func UInt{N}(x: bits(N)) => integer {0..2^N-1}
begin

var result: integer {0..2^N-1} = 0;
for i = 0 to N-1 do

if x[i] == '1' then
result = result + 2^i;

end
end
return result;

end

func SInt{N}(x: bits(N)) => integer
begin

var result = 0;
for i = 0 to N-1 do

if x[i] == '1' then
result = result + 2^i;

end
end
if x[N-1] == '1' then

result = result - 2^N;
end
return result;

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter 9
Standard library

In addition to the operations, ASL provides the following standard functions and procedures.

RDGBM All value-returning standard functions behave as compile-time-constant, as defined in 8.2.2 Compile-time-constant
subprograms, unless otherwise stated.

RQSVS Unreachable() is considered a compile-time-constant subprogram.

ITRPS Unreachable() behaves like assert FALSE and calling it is a dynamic error.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter 9. Standard library
9.1. Standard integer functions and procedures

9.1 Standard integer functions and procedures

// Convert a bitvector to an unsigned integer, where bit 0 is LSB.
// This is the recommended way to convert a bit vector to an integer.
func UInt{N}(x: bits(N)) => integer {0 .. 2^N-1};

// Convert a 2s complement bitvector to a signed integer.
func SInt{N}(x: bits(N)) => integer {-(2^(N-1)) .. 2^(N-1)-1};

// Absolute value of an integer.
func Abs(x: integer) => integer
begin

return if x>=0 then x else -x;
end

// Maximum of two integers.
func Max(a: integer, b: integer) => integer
begin

return if a>b then a else b;
end

// Minimum of two integers.
func Min(a: integer, b: integer) => integer
begin

return if a<b then a else b;
end

// Calculate the logarithm base 2 of the input. Input must be a power of 2.
func Log2(a: integer) => integer;

// Return true if integer is even (0 modulo 2).
func IsEven(a: integer) => boolean
begin

return (a MOD 2) == 0;
end

// Return true if integer is odd (1 modulo 2).
func IsOdd(a: integer) => boolean
begin

return (a MOD 2) == 1;
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter 9. Standard library
9.2. Standard real functions and procedures

9.2 Standard real functions and procedures

// Convert integer to rational value.
func Real(x: integer) => real;

// Nearest integer, rounding towards negative infinity.
func RoundDown(x: real) => integer;

// Nearest integer, rounding towards positive infinity.
func RoundUp(x: real) => integer;

// Nearest integer, rounding towards zero.
func RoundTowardsZero(x: real) => integer;

// Absolute value.
func Abs(x: real) => real
begin

return if x>=0.0 then x else -x;
end

// Maximum of reals.
func Max(a: real, b: real) => real
begin

return if a>b then a else b;
end

// Minimum of reals.
func Min(a: real, b: real) => real
begin

return if a<b then a else b;
end

// Calculate the square root of x to sf binary digits.
// The second tuple element of the return value is TRUE if the result is
// inexact, else FALSE.
func SqrtRoundDown(x: real, sf: integer) => (real, boolean);

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter 9. Standard library
9.3. Standard bitvector functions and procedures

9.3 Standard bitvector functions and procedures

// Return the concatenation of 1 or more copies of a bitvector.
func Replicate{M}(x: bits(M), N: integer) => bits(M*N)
begin

var r: bits(M*N) = Zeros(M*N);
for i = 0 to N-1 do

var t: bits(M*N) = [Zeros((((N-1)-i)*M), x, Zeros(i*M)];
r = r OR t;

end
return r;

end

// Return a bitvector consisting entirely of N '0' bits.
func Zeros(N: integer) => bits(N)
begin

return 0[N-1:0];
end

// Return a bitvector consisting entirely of '1' bits.
func Ones(N: integer) => bits(N)
begin

return NOT Zeros(N);
end

// Return true if bitvector consists entirely of '0' bits.
func IsZero{N}(x: bits(N)) => boolean
begin

return x == Zeros(N);
end

// Return true if bitvector consists entirely of '1' bits.
func IsOnes{N}(x: bits(N)) => boolean
begin

return x == Ones(N);
end

// Zero-extend a bitvector to the same or a wider width.
func ZeroExtend{M}(x: bits(M), N: integer) => bits(N)
begin

assert N >= M;
return if N > M then [Zeros(N-M), x] else x;

end

// Sign-extend a bitvector (treated as 2s complement) to the same or a wider width.
func SignExtend{M}(x: bits(M), N: integer) => bits(N)
begin

assert N >= M;
return [Replicate(x[M-1], N-M+1), x[M-2:0]];

end

// Extend a bitvector to a specified width, treating as signed or unsigned.
// The output width might be narrower than the input, in which case the
// function is equivalent to a bit slice.
func Extend{M}(x: bits(M), N: integer, is_unsigned: boolean) => bits(N)
begin

return if is_unsigned then ZeroExtend(x,N) else SignExtend(x,N);
end

// Return the width of a bitvector argument, without regard to its value.
func Len{N}(x: bits(N)) => integer{N}
begin

return N;
end

// Count the number of 1 bits in a bitvector.
func BitCount{N}(x: bits(N)) => integer{0..N}
begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter 9. Standard library
9.3. Standard bitvector functions and procedures

var result: integer = 0;
for i = 0 to N-1 do

if x[i] == '1' then
result = result + 1;

end
end
return result;

end

// Position of the lowest 1 bit in a bitvector.
// If the bitvector is entirely zero, return the width.
func LowestSetBit{N}(x: bits(N)) => integer{0..N}
begin

for i = 0 to N-1 do
if x[i] == '1' then

return i;
end

end
return N;

end

// Position of the highest 1 bit in a bitvector.
// If the bitvector is entirely zero, return -1.
func HighestSetBit{N}(x: bits(N)) => integer{-1..N-1}
begin

for i = N-1 downto 0 do
if x[i] == '1' then

return i;
end

end
return -1;

end

// Leading zero bits in a bitvector.
func CountLeadingZeroBits{N}(x: bits(N)) => integer{0..N}
begin

return (N - 1) - HighestSetBit(x);
end

// Leading sign bits in a bitvector. Count the number of consecutive
// bits following the leading bit, that are equal to it.
func CountLeadingSignBits{N}(x: bits(N)) => integer{0..N}
begin

return CountLeadingZeroBits(x[N-1:1] XOR x[N-2:0]);
end

// Treating input as an integer, align down to nearest multiple of 2^y.
func AlignDown{N}(x: bits(N), y: integer{1..N}) => bits(N)
begin

return [x[N-1,N-y], Zeros(y)];
end

// Treating input as an integer, align up to nearest multiple of 2^y.
// Returns zero if the result is not representable in N bits.
func AlignUp{N}(x: bits(N), y: integer{1..N}) => bits(N)
begin

if IsZero(x[y-1:0]) then
return x;

else
return [x[N-1:y]+1, Zeros(y)];

end
end

// The shift functions LSL, LSR, ASR and ROR accept a non-negative shift amount.
// The shift functions LSL_C, LSR_C, ASR_C and ROR_C accept a non-zero positive shift amount.

// Logical left shift
func LSL{N}(x: bits(N), shift: integer) => bits(N)
begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter 9. Standard library
9.3. Standard bitvector functions and procedures

assert shift >= 0;
if shift < N then

let bshift = shift as integer{0..N-1};
return [x[(N-bshift)-1:0], Zeros(bshift)];

else
return Zeros(N);

end
end

// Logical left shift with carry out.
func LSL_C{N}(x: bits(N), shift: integer) => (bits(N), bit)
begin

assert shift > 0;
if shift <= N then

return (LSL(x, shift), x[N-shift]);
else

return (Zeros(N), '0');
end

end

// Logical right shift, shifting zeroes into higher bits.
func LSR{N}(x: bits(N), shift: integer) => bits(N)
begin

assert shift >= 0;
if shift < N then

let bshift = shift as integer{0..N-1};
return ZeroExtend(x[N-1:bshift], N);

else
return Zeros(N);

end
end

// Logical right shift with carry out.
func LSR_C{N}(x: bits(N), shift: integer) => (bits(N), bit)
begin

assert shift > 0;
if shift <= N then

return (LSR(x, shift), x[shift-1]);
else

return (Zeros(N), '0');
end

end

// Arithmetic right shift, shifting sign bits into higher bits.
func ASR{N}(x: bits(N), shift: integer) => bits(N)
begin

assert shift >= 0;
let bshift = Min(shift, N-1) as integer{0..N-1};
return SignExtend(x[N-1:bshift], N);

end

// Arithmetic right shift with carry out.
func ASR_C{N}(x: bits(N), shift: integer) => (bits(N), bit)
begin

assert shift > 0;
return (ASR(x, shift), x[Min(shift-1, N-1)]);

end

// Rotate right.
func ROR{N}(x: bits(N), shift: integer) => bits(N)
begin

assert shift >= 0;
let cshift = (shift MOD N) as integer{0..N-1};
return [x[0+:cshift], x[N-1:cshift]];

end

// Rotate right with carry out.
func ROR_C{N}(x: bits(N), shift: integer) => (bits(N), bit)
begin

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter 9. Standard library
9.3. Standard bitvector functions and procedures

assert shift > 0;
let cpos = ((shift-1) MOD N) as integer{0..N-1};
return (ROR(x, shift), x[cpos]);

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter 9. Standard library
9.4. Runtime exception types

9.4 Runtime exception types

type runtime_exception of exception;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter 9. Standard library
9.5. Other standard functions and procedures

9.5 Other standard functions and procedures

// Print one or more arguments, to an implementation defined output channel.
// This function is provided for diagnostics and does not form part of an architectural

↪→specification.
func print(...);

// Unreachable() is used to indicate parts of a subprogram that cannot be reached,
// as a more readable alternative to `assert FALSE`.
func Unreachable();

// Convert an integer to a decimal string, prefixing with '-' if negative.
func DecStr(x: integer) => string;

// Convert an integer to a hexadecimal string, prefixing with '-' if negative.
// The exact format of the string is implementation defined.
func HexStr(x: integer) => string;

// Convert an integer to an ASCII character.
func AsciiStr(x: integer) => string
begin

case x of
when {0..31, 127} => // Non-printable ASCII char, implementation defined.

when 32 => return " "; when 33 => return "!"; when 34 => return "\"";
when 35 => return "#"; when 36 => return "$"; when 37 => return "%";
when 38 => return "&"; when 39 => return "'"; when 40 => return "(";
when 41 => return ")"; when 42 => return "*"; when 43 => return "+";
when 44 => return ","; when 45 => return "-"; when 46 => return ".";
when 47 => return "/"; when 48 => return "0"; when 49 => return "1";
when 50 => return "2"; when 51 => return "3"; when 52 => return "4";
when 53 => return "5"; when 54 => return "6"; when 55 => return "7";
when 56 => return "8"; when 57 => return "9"; when 58 => return ":";
when 59 => return ";"; when 60 => return "<"; when 61 => return "=";
when 62 => return ">"; when 63 => return "?"; when 64 => return "@";
when 65 => return "A"; when 66 => return "B"; when 67 => return "C";
when 68 => return "D"; when 69 => return "E"; when 70 => return "F";
when 71 => return "G"; when 72 => return "H"; when 73 => return "I";
when 74 => return "J"; when 75 => return "K"; when 76 => return "L";
when 77 => return "M"; when 78 => return "N"; when 79 => return "O";
when 80 => return "P"; when 81 => return "Q"; when 82 => return "R";
when 83 => return "S"; when 84 => return "T"; when 85 => return "U";
when 86 => return "V"; when 87 => return "W"; when 88 => return "X";
when 89 => return "Y"; when 90 => return "Z"; when 91 => return "[";
when 92 => return "\\"; when 93 => return "]"; when 94 => return "^";
when 95 => return "_"; when 96 => return "`"; when 97 => return "a";
when 98 => return "b"; when 99 => return "c"; when 100 => return "d";
when 101 => return "e"; when 102 => return "f"; when 103 => return "g";
when 104 => return "h"; when 105 => return "i"; when 106 => return "j";
when 107 => return "k"; when 108 => return "l"; when 109 => return "m";
when 110 => return "n"; when 111 => return "o"; when 112 => return "p";
when 113 => return "q"; when 114 => return "r"; when 115 => return "s";
when 116 => return "t"; when 117 => return "u"; when 118 => return "v";
when 119 => return "w"; when 120 => return "x"; when 121 => return "y";
when 122 => return "z"; when 123 => return "{"; when 124 => return "|";
when 125 => return "}"; when 126 => return "~";

otherwise => assert FALSE; // Integer does not map to an ASCII character

// These functions names are reserved for future use. They have no official definition.
func FileOpen(...) => ...;
func FileWrite(...) => ...;
func FileGetC(...) => ...;
func FileRead(...) => ...;
func FileClose(...) => ...;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter 10
Runtime Environment

An ASL runtime provides run time support within a hosting environment.

Examples of a hosting environment include an interactive interpreter, an interpreter running in batch mode, a
Verilog simulator or a Linux process (native executable).

RCTMN The runtime should provide a mechanism to set configuration (config) variables before the entry point (default:
main).

RBSQR Configuration variables are read only once the entry point is called. The runtime may enforce this.

RJWPH The default entry point is the main function.

func main() => integer
begin

RCHTH When main returns (without throwing an exception) the runtime should pass the return value to the hosting
environment.

For example: an ASL runtime for native executables may use the return value of main as the exit status of the
process.

IBKLJ By convention a return value of zero indicates success and a return value of one indicates failure.

IJLGK An alternative (non-default) entry point may be specified by the user if supported by the runtime. Not all runtimes
may support alternative entry points.

RXNSK Uncaught exceptions cause termination of the application by the runtime. If an exception is thrown from main it is
an uncaught exception. The runtime should signal an error to the hosting environment.

ICXPS Output may be generated using the print procedure. This takes any number of arguments, of any type, and makes
best efforts to print them to diagnostic output. The format of the output is not defined.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter 10. Runtime Environment
10.1. Dynamic errors

10.1 Dynamic errors

RMHFW An assertion failure arising from the assert keyword is a dynamic error.

IWXGP Whether or not an assertion is tested is implementation-defined: see 6.6 Assertion statements.

RVDDG A call to the standard library Unreachable() function is a dynamic error.

RQYKH It is illegal for the evaluation of a non-execution-time expression or subprogram to cause a dynamic error (e.g. an
assertion failure). A tool may treat such errors as non-dynamic errors.

RDPZK The behaviour of the runtime environment when a dynamic error occurs is implementation defined.

IMHYS An implementation might immediately terminate execution in response to a dynamic error. It might also perform
optimizations, or determine possible execution states, on the basis that a dynamic error cannot occur.

RIRNQ If the runtime environment raises an exception in response to a dynamic error the exception must have the supertype
runtime_exception.

IBLDK A non-exhaustive list of dynamic specification errors can be found in 1.1.4 Specification errors.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter 11
Changes

This chapter describes the changes in this version of the ASL specification.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter 11. Changes
11.1. Changes in version 1.0

11.1 Changes in version 1.0

11.1.1 Local Variables are initialized

ICVDB Local variables now have a defined initialization. Specifications that read local variables before the variables’ first
assignment may have different behaviors.

11.1.2 Slice notation

IMVBT The notation for extracting a slice from a bitvector uses square brackets. The use of angle brackets is no longer
permitted.

The notation [i*:n] is introduced, to refer to a slice at an offset scaled by its width. This replaces the Elem

construct.

Example
var v: bits(128);
var d: bits(16);
v[n*:8] = d[7:0]; // old syntax: Elem[v,n,8] = d<7:0>

11.1.3 Record type

IPZGZ The notation for defining a record type uses the record keyword.

Example
type flags of record {valid :: boolean, data :: bit};

IFWTW The use of the type ... is construct for defining a record type is removed.

Example
type flags is (

B: boolean,
Z: boolean,
C: boolean,
V: boolean

)

IJDSX The syntax for initializing a record.

Example
var a = MyRecord { field1 = value1, field2 = value2 };

11.1.4 UNPREDICTABLE

IQSXM UNPREDICTABLE is a function.

Example
UNPREDICTABLE();

IQJSV The use of UNPREDICTABLE as a keyword is deprecated.

Example
UNPREDICTABLE;

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter 11. Changes
11.1. Changes in version 1.0

11.1.5 IMPLEMENTATION_DEFINED

IGBMH IMPLEMENTATION_DEFINED is a function.

Example
IMPLEMENTATION_DEFINED();

INDWK The use of IMPLEMENTATION_DEFINED as a keyword is deprecated.

Example
IMPLEMENTATION_DEFINED;

11.1.6 SEE

ILWMD SEE is a function, which takes one argument that is either a string or an identifier.

Example
SEE("POP r1");

state: SomeType;
SEE(state);

IHBFS The use of SEE as a keyword is deprecated.

Example
SEE "POP r1";

state: SomeType;
SEE state;

11.1.7 Implicit Variables

IXKWM Local variables are no longer implicitly declared. All local variables must be explicitly declared.

11.1.8 Type specifiers

IMJMQ Type specifiers now follow identifiers rather than precede them. Type specifiers are separated from an identifier by
a colon token.

var myvar: bits(64);

func integer somefunc(a: integer, b: integer)
begin

return a + b;
end

11.1.9 Return types

IZQVM Return type specifiers for functions and getters now follow rather than precede them. Return type specifiers are
separated from a function’s formal arguments by a => token.

Example
func somefunc(a: integer, b: integer) => integer
begin

return a + b;
end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter 11. Changes
11.1. Changes in version 1.0

11.1.10 var keyword

IPPXZ Variable declarations must be prefixed with the var keyword.

Example
var myvar: bits(64);

11.1.11 New BNFC grammar

INWMX The following parts of this document are now auto generated from BNFC grammar:

• BNF grammar in appendix and main body
• Token rules
• List of reserved Ids
• List of delimiters

The following changes have been applied, although these do not necessarily fulfill remaining requirements for
closing the related tickets.

• Removed syntax for qualid (ASL-131)
• Removed unecessary lexical grammar description
• Removed dependence of layout on NEWLINE
• Removed non-terminal procedure_declaration (ASL-95)
• Removed non-terminal instruction_definition
• Removed non-terminal internal_definition
• Removed IMPLEMENTATION_DEFINED and other hardwired exceptions (ASL-76)
• Removed various cosmetic statement syntaxes
• Removed Inout parameter syntax (ASL-52)
• New type syntax with subtype etc. (ASL-80)
• Simplified conditional_stmt

• Replaced __register with bits with bitfields (ASL-147)
• New exception type (ASL-76)
• boolean no longer an Enumeration (ASL-130)
• signal is no longer a built-in type (ASL-182)
• Replaced __config with config (ASL-42 but maybe not approved?)
• New pattern syntax (ASL-31)
• New pass statement (ASL-16)
• New throw syntax (ASL-76)
• New syntax for alt in case_stmt (ASL-34)
• New catch_stmt non-terminal rule (ASL-76)
• New syntax for array types (ASL-169)
• Forbid empty getter (ASL-72)
• Allow trailing commas in enums etc. (ASL-11)
• All bits of grammar specifying lists are explicitly given as BNF rules instead of using the “..”, “. . . ”, etc.

syntax

11.1.12 Primitive Boolean

IBHTH boolean is now a primitive type and no longer an enumeration.

11.1.13 Case statements

IPQJD Patterns and statements in case alternatives must be delimited using =>.

IKMVJ The optional condition token for case alternatives has been changed from && to where.

Example

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter 11. Changes
11.1. Changes in version 1.0

case a of
when flag where a > 10 => return 10;

end
return a;

11.1.14 Field concatenation

ITBWS Square braces are now used instead of angle brackets for multiple field selection. E.g:

myreg.<n, c, v> = '000';

Is now:

myreg.[n, c, v] = '000';

Additionally, this syntax can only be used on records if each field is of type bitvector.

11.1.15 IMPLIES

IZWHZ The binary operator IMPLIES has been replaced by the operator -->

11.1.16 IFF

IYMFM The binary operator IFF has been replaced by the operator <->

11.1.17 Let declarations

IYZBT Local, immutable, runtime values can now be declared with the let keyword.

11.1.18 Bitvector concatenation

IRDBH Removed the colon operator for bitvector concatenation and replaced with square bracket comma delimited list.

var a = c : b : d;

Is now written as:

var a = [c, b, d];

11.1.19 Primitive Operations

Bitslices are no longer a primitive operation.

11.1.20 Type system changes

• Strongly typed named types with subtypes are now defined along with type checking rules for when these
may be used.

• Global, immutable, runtime values can now be declared with the let keyword.
• Mutable objects and statically evaluable expressions are now defined.
• Shadowing rules subsumed by 4.1 Scope of global declarations and 6.2.1 Scope of local declarations.
• Width inference removed (ASL-??)
• Rules about declaring subprograms etc. (ASL-75)
• Execution-time and compile-time-constant types

11.1.21 Reserved Keywords

Added reserved keywords as grammar rule reserved_id.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter 11. Changes
11.1. Changes in version 1.0

11.1.22 Exceptions

The predefined exceptions have been replaced by exceptions.

Example

The old keyword UNDEFINED (which is no longer a keyword) does not throw an ASL exception.

This behavior can be reproduced by defining an exception called UNDEFINED

type UNDEFINED of exception;

throw UNDEFINED;

11.1.23 Qualified Identifiers

Previous versions of ASL had a “qualid” a.k.a “qualified identifier” This has been removed. (ASL-131)

Migration can be to rename functions of the form:

AArch32.TakeException(...)
AArch64.TakeException(...)

to:

AArch32_TakeException(...)
AArch64_TakeException(...)

11.1.24 Forward Declarations

Forward declarations of subprograms are no longer required in ASL.

11.1.25 Constrained types

Added rules and descriptions for constrained integers and constrained width bitvectors.

11.1.26 Return type width inference

In older ASL, bitvector-returning functions can no longer infer the result width from the calling context. This
affects some standard library functions. for example:

var a: bits(16) = Zeros(16); // Zeros() not permitted
var b: bits(32) = ZeroExtend(a,32); // ZeroExtend(a) not permitted

11.1.27 Exclusive-OR operator

The name of the exclusive-OR operator is now XOR. The token EOR is reserved.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter 11. Changes
11.2. Examples

11.2 Examples

This section contains examples of ASL code changes from ASL v0 to ASL v1.

11.2.1 BigEndianReverse

Current ASL v0 code:

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then

return value;
end
return BigEndianReverse(value<half-1:0>):BigEndianReverse(value<width-1:half>);

end

Changed to ASL v1:

func BigEndianReverse {
width: integer {8,16,32,64,128}
} (
value: bits(width)
) => bits(width)

begin
if width == 8 then

return value;
end

let half = (width DIV 2) as integer {8,16,32,64};

// Type checker knows half ==> width DIV 2
// The checked type conversion is required because otherwise the
// implicit type would be integer {4,8,16,32,64}.

return [BigEndianReverse(value[0+:half]),
BigEndianReverse(value[half+:half])] as bits(width);

// Note that the actuals in these invocations are both of width "half"
// which is integer {8,16,32,64}
// so the invocations satisfy the constraint on the signature
// of BigEndianReverse.

// If the type of "half" was {4,8,16,32,64} then the invocations
// of BigEndianReverse would not have satisfied the formal
// argument constraint of {8,16,32,64,128} on "N".

// Note that the type checker knows that the width of the concatenation is
// of type bits({16,24,32,40,64,72,80,96,128})
// and also has the value (width DIV 2) + (width DIV 2)
// which is not necessarily equal to width, hence the checked type
// conversion is required although a smart compiler has enough
// information to elide it.

end

func test()
begin

// Call site example:
// ...
var ttd: bits(64);
// ...
if tt_attr.EE == '1' then

ttd = BigEndianReverse(ttd); // returns a bits(64)
end

end

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter 11. Changes
11.2. Examples

11.2.2 AlignBits

Current ASL v0 code:

type L1STD_t is (
bits(5) Span,
bits(46) L2Ptr

)

bits(N) AlignBits(bits(N) value, integer alignment)
integer mask = (1<<alignment)-1;
bits(N) bit_mask = mask<N-1:0>;
return value AND (NOT bit_mask);

test()
L1STD_t l1std = fetch_l1std();
integer l2_align = 5 + UInt(l1std.Span);
bits(52) l2_base = AlignBits(l1std.L2Ptr : Zeros(6), l2_align);

end

Changed to ASL v1:

type L1STD_t of record {
Span : bits(5),
L2Ptr : bits(46)
};

func AlignBits {N} (value: bits(N), alignment: integer) => bits(N)
begin

// N is treated as the under-constrained integer
let mask: integer = (1<<alignment)-1;
let bit_mask: bits(N) = mask[0+:N]; // Legal since width matches
return value AND (NOT bit_mask); // Legal since width matches return type

end

func test()
begin

var l1std : L1STD_t = fetch_l1std();
var l2_align : integer = 5 + UInt(l1std.Span);
var l2_base : bits(52) = AlignBits([l1std.L2Ptr, Zeros(6)], l2_align);

end

11.2.3 FPRoundBase

Current ASL v0 code:

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding,
boolean isbfloat16, boolean fpexc)

assert N IN {16,32,64}; // effectively N is constrained
bits(N) result;

// Obtain format parameters
// - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

minimum_exp = -14; E = 5; F = 10;
elsif N == 32 && isbfloat16 then

minimum_exp = -126; E = 8; F = 7;
elsif N == 32 then

minimum_exp = -126; E = 8; F = 23;
else // N == 64

minimum_exp = -1022; E = 11; F = 52;
end

// ...lots of stuff...

result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter 11. Changes
11.2. Examples

return result;
end

Changed to ASL v1:

func FPRoundBase (
N : integer {16,32,64},
op : real,
fpcr : FPCRType,
rounding : FPRounding,
isbfloat16 : boolean,
fpexc : boolean
) => bits(N)

begin
// N is a parameter as well as a formal since it is used in the
// return type

// No assert required since N is really constrained :)
var result: bits(N); // result is of type "bits({16,32,64})"

// The values assigned below must be declared here or they will not
// be in scope outside of the "if" statement's branches

var minimum_exp: integer {-14,-126,-1022};
var E : integer {5,8,11};
var F : integer {7,10,23,52};

// Obtain format parameters
// - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

minimum_exp = -14;
E = 5;
F = 10;

elsif N == 32 && isbfloat16 then
minimum_exp = -126;
E = 8;
F = 7;

elsif N == 32 then
minimum_exp = -126;
E = 8;
F = 23;

else // N == 64
minimum_exp = -1022;
E = 11;
F = 52;

end

// ...lots of stuff...

// Presumably we declare sign somewhere...
var sign: bit;

// At this point the type checker knows:
// E ==> E
// F ==> F
// so it can't compare them, but it can do arithmetic with them:

result = [sign,
biased_exp[E-1:0],
int_mant[F-1:0],
Zeros(N-(E+F+1))];

// Note that the invocation of `Zeros` requires its argument to be a constrained integer

// sign is a bits(1)
// biased_exp[E-1:0] is a bits(E)
// int_mant[F-1:0] is a bits(F)

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter 11. Changes
11.2. Examples

// Zeros(N-(E+F+1)) is a bits(N-(E+F+1))
// Hence RHS is a bits(1+E+F+(N-(E+F+1)))
// hence RHS is a bits(N)
// So type-checker is happy that RHS width always matches LHS width
// and domain comparison is necessary for demonstrating type-satisfaction

return result;
end

Note

In the above, ‘E’ and ‘F’ do not need to be immutable for the invocation of ‘Zeros’ in the assignment to ‘result’.
In this particular case they cancel out. The final width is “N” which is a statically evaluable expression and
hence can be compared with the width of result. If it had been “E+N” then it would not be a statically evaluable
expression so the width of the RHS would not be comparable with any LHS. This may need some more rules
around subexpression widths to say that the final width of an expression must be reducible to a statically
evaluable expression but intermediate subexpressions need not.

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter 12
ASL grammar

The complete grammar for ASL is as follows.

<comment> ::= {"//"} { <any except newline> }
| {"/*"} { <any including newline> } {"*/"}

<boolean_lit> ::= ({"TRUE"} | {"FALSE"})

<int_lit> ::= digit ('_' | digit)*

<hex_lit> ::= '0' 'x' (digit | ["abcdefABCDEF"]) ('_' | digit | ["abcdefABCDEF"])*

<real_lit> ::= digit ('_' | digit)* '.' digit ('_' | digit)*

<string_lit> ::= '"' ((char - ["\"\\"]) | ('\\' ["nt\"\\"]))* '"'

<bitvector_lit> ::= '\'' ["01 "]* '\''

<bitmask_lit> ::= '\'' ["01x "]* '\''

<identifier> ::= (letter | '_') (letter | '_' | digit)*

identifier_list ::= identifier "," identifier_list
| identifier

identifier_trailing ::= identifier

identifier_trailing_list ::= identifier_trailing "," identifier_trailing_list
| identifier_trailing
| identifier_trailing ","

program ::= decl_list

annotation ::= "@" identifier "(" null_or_expr_list ")"

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter 12. ASL grammar

decl_list ::= decl decl_list
| decl

decl ::= annotation decl
| type_decl
| storage_decl
| function_decl
| getter_decl
| setter_decl
| "pragma" identifier null_or_expr_list ";"

type_decl ::= "type" identifier "of" ty "subtypes" ty ";"
| "type" identifier "of" ty ";"
| "type" identifier "subtypes" ty with_opt ";"

field ::= identifier ":" ty

field_list ::= field "," field_list
|
| field

storage_decl ::= "var" identifier ":" ty ";"
| "var" identifier ty_opt "=" expr ";"
| "let" identifier ty_opt "=" expr ";"
| "constant" identifier ty_opt "=" expr ";"
| "config" identifier ty_opt "=" expr ";"

subprogram_body ::= "begin" stmt_list "end"

function_decl ::= "func" identifier parameters_opt "(" formal_list ")" return_ty_opt
↪→subprogram_body

return_ty_opt ::= "=>" ty
|

args_opt ::= "[" formal_list "]"
|

getter_decl ::= "getter" identifier parameters_opt args_opt "=>" ty subprogram_body

setter_decl ::= "setter" identifier parameters_opt args_opt "=" identifier ":" ty
↪→subprogram_body

parameters_opt ::= "{" parameter_list "}"
|

parameter ::= identifier ty_opt

parameter_list ::= parameter "," parameter_list
|
| parameter

formal ::= identifier ":" ty

formal_list ::= formal "," formal_list
|
| formal

ty ::= identifier
| "boolean"
| "integer" constraint_opt
| "real"
| "string"
| "bit"
| "bits" "(" bitwidth ")" bitfields_opt
| "enumeration" "{" identifier_trailing_list "}"
| "(" ty_list ")"
| "array" "[" expr "]" "of" ty

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter 12. ASL grammar

| "record" fields_opt
| "exception" fields_opt

constraint_opt ::= constraint
|

bitfields_opt ::= "{" bitfield_list "}"
|

fields_opt ::= "{" field_list "}"
|

with_opt ::= "with" fields_opt
|

bitwidth ::= expr
| "-" ":" ty
| constraint

constraint ::= "{" constraint_range_list "}"

constraint_range ::= expr
| expr ".." expr

constraint_range_list ::= constraint_range "," constraint_range_list
| constraint_range

ty_opt ::= ":" ty
|

ty_list ::= ty "," ty_list
|
| ty

bitfield_spec ::= ":" ty
| bitfields_opt

bitfield ::= "[" slice_list "]" identifier bitfield_spec

bitfield_list ::= bitfield "," bitfield_list
|
| bitfield

stmt ::= annotation stmt
| decl_stmt
| lexpr "=" expr ";"
| identifier "(" null_or_expr_list ")" ";"
| "return" expr_opt ";"
| "assert" expr ";"
| "throw" expr_opt ";"
| "pass" ";"
| "if" expr "then" stmt_list elsif_list else_opt "end"
| "case" expr "of" alt_list otherwise_opt "end"
| "for" identifier "=" expr direction expr "do" stmt_list "end"
| "while" expr "do" stmt_list "end"
| "repeat" stmt_list "until" expr ";"
| "try" stmt_list "catch" catcher_list otherwise_opt "end"
| "pragma" identifier null_or_expr_list ";"

stmt_list ::= stmt stmt_list
| stmt

decl_stmt ::= "var" identifier ":" ty ";"
| "var" identifier "," identifier_list ":" ty ";"
| "var" decl_item "=" expr ";"
| "let" decl_item "=" expr ";"
| "constant" decl_item "=" expr ";"

decl_item ::= identifier ty_opt

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter 12. ASL grammar

| "(" decl_item_list ")" ty_opt
| "[" decl_item_list "]" ty_opt
| "-" ty_opt

decl_item_list ::= decl_item "," decl_item_list
| decl_item

lexpr ::= "-"
| lexpr_atom
| "(" lexpr_list ")"

lexpr_list ::= lexpr "," lexpr_list
| lexpr

lexpr_atom ::= identifier
| lexpr_atom "." identifier
| lexpr_atom "." "[" identifier_list "]"
| "[" lexpr_atom_list "]"
| lexpr_atom "[" null_or_slice_list "]"

lexpr_atom_list ::= lexpr_atom "," lexpr_atom_list
| lexpr_atom

elsif ::= "elsif" expr "then" stmt_list

elsif_list ::= elsif elsif_list
|

else_opt ::= "else" stmt_list
|

alt ::= "when" pattern_list where_opt "=>" stmt_list

where_opt ::= "where" expr
|

alt_list ::= alt alt_list
|

otherwise_opt ::= "otherwise" "=>" stmt_list
|

pattern ::= "-"
| expr
| expr ".." expr
| "<=" expr
| ">=" expr
| pattern_set

pattern_set ::= "{" pattern_list "}"
| "!" "{" pattern_list "}"
| bitmask_lit

pattern_list ::= pattern "," pattern_list
| pattern

direction ::= "to"
| "downto"

catcher ::= "when" identifier ":" ty "=>" stmt_list
| "when" ty "=>" stmt_list

catcher_list ::= catcher catcher_list
|

expr_opt ::= expr
|

expr_list ::= expr "," expr_list

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter 12. ASL grammar

| expr

null_or_expr ::= expr

null_or_expr_list ::= null_or_expr "," null_or_expr_list
|
| null_or_expr

expr ::= "if" cexpr "then" expr elsif_expr_list "else" expr
| cexpr

elsif_expr ::= "elsif" expr "then" expr

elsif_expr_list ::= elsif_expr elsif_expr_list
|

cexpr ::= cexpr binop_boolean cexpr_cmp
| cexpr checked_type_constraint
| cexpr_cmp

cexpr_cmp ::= cexpr_cmp binop_comparison cexpr_add_sub
| cexpr_add_sub

cexpr_add_sub ::= cexpr_add_sub binop_add_sub_logic cexpr_mul_div
| cexpr_mul_div

cexpr_mul_div ::= cexpr_mul_div binop_mul_div_shift cexpr_pow
| cexpr_pow

cexpr_pow ::= cexpr_pow binop_pow bexpr
| bexpr

binop_boolean ::= "&&"
| "||"
| "-->"
| "<->"

binop_comparison ::= "=="
| "!="
| ">"
| ">="
| "<"
| "<="

binop_add_sub_logic ::= "+"
| "-"
| "OR"
| "XOR"
| "AND"

binop_mul_div_shift ::= "*"
| "/"
| "DIV"
| "DIVRM"
| "MOD"
| "<<"
| ">>"

binop_pow ::= "^"

unop ::= "-"
| "!"
| "NOT"

binop_in ::= "IN"

bexpr ::= unop bexpr
| expr_term

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter 12. ASL grammar

expr_term ::= expr_atom binop_in pattern_set
| "UNKNOWN" ":" ty
| expr_atom

expr_atom ::= identifier
| identifier "(" null_or_expr_list ")"
| identifier "{" field_assignment_list "}"
| literal_expr
| expr_atom "[" null_or_slice_list "]"
| expr_atom "." identifier
| expr_atom "." "[" identifier_list "]"
| "(" pattern_list ")"
| "[" expr_list "]"

field_assignment ::= identifier "=" expr

field_assignment_list ::= field_assignment "," field_assignment_list
|
| field_assignment

checked_type_constraint ::= "as" ty
| "as" constraint

slice ::= expr
| expr ":" expr
| expr "+:" expr
| expr "*:" expr

slice_list ::= slice "," slice_list
| slice
| slice ","

null_or_slice ::= slice

null_or_slice_list ::= null_or_slice "," null_or_slice_list
|
| null_or_slice

literal_expr ::= int_lit
| hex_lit
| real_lit
| bitvector_lit
| string_lit
| boolean_lit

<reserved_id> ::= "AND" | "DIV" | "DIVRM" | "EOR"
| "IN" | "MOD" | "NOT" | "OR"
| "SAMPLE" | "UNKNOWN" | "UNSTABLE" | "XOR"
| "_" | "access" | "advice" | "after"
| "any" | "array" | "as" | "aspect"
| "assert" | "assume" | "assumes" | "before"
| "begin" | "bit" | "bits" | "boolean"
| "call" | "case" | "cast" | "catch"
| "class" | "config" | "constant" | "dict"
| "do" | "downto" | "else" | "elsif"
| "end" | "endcase" | "endcatch" | "endclass"
| "endevent" | "endfor" | "endfunc" | "endgetter"
| "endif" | "endmodule" | "endnamespace" | "endpackage"
| "endproperty" | "endrule" | "endsetter" | "endtemplate"
| "endtry" | "endwhile" | "entry" | "enumeration"
| "event" | "exception" | "export" | "expression"
| "extends" | "extern" | "feature" | "for"
| "func" | "get" | "getter" | "gives"
| "if" | "iff" | "implies" | "import"
| "in" | "integer" | "intersect" | "intrinsic"
| "invariant" | "is" | "let" | "list"
| "map" | "module" | "namespace" | "newevent"
| "newmap" | "of" | "original" | "otherwise"
| "package" | "parallel" | "pass" | "pattern"

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter 12. ASL grammar

| "pointcut" | "port" | "pragma" | "private"
| "profile" | "property" | "protected" | "public"
| "real" | "record" | "repeat" | "replace"
| "requires" | "rethrow" | "return" | "rule"
| "set" | "setter" | "shared" | "signal"
| "statements" | "string" | "subtypes" | "template"
| "then" | "throw" | "to" | "try"
| "type" | "typeof" | "union" | "until"
| "using" | "var" | "watch" | "when"
| "where" | "while" | "with" | "ztype"

<delimiter> ::= "!" | "!=" | "&&" | "(" | ")" | "*" | "*:" | "+" | "+:"
| "," | "-" | "-->" | "." | ".." | "/" | ":" | ";" | "<"
| "<->" | "<<" | "<=" | "=" | "==" | "=>" | ">" | ">=" | ">>"
| "@" | "[" | "]" | "^" | "{" | "||" | "}"

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Alphabetical index of rules

This section contains lists of Declarations, Rules and Information items, indexed alphabetically.

182

Declaration Index

D_BHPJ, 54

D_BJNY, 83

D_BMGM, 96

D_BTBR, 109

D_BVGK, 102

D_CBQK, 102

D_CCTY, 147

D_CFYP, 114

D_CQXL, 32

D_CSFT, 147

D_CWVH, 146

D_DPXJ, 39

D_FXQV, 96

D_FXST, 146

D_GGCQ, 91

D_GVBK, 18

D_GWWP, 52

D_GWXK, 96

D_HBCP, 110

D_HLQC, 146

D_HTPL, 82

D_JLJD, 150

D_JRXM, 110

D_JTDG, 91

D_JWKG, 52

D_JWXX, 52

D_KCKX, 148

D_KCYT, 81

D_KNBD, 29

D_KXWT, 58

D_LJLW, 114

D_MFBC, 114

D_MRYB, 54

D_MTQJ, 150

D_NMFP, 44

D_NRWC, 102

D_NZWT, 29

D_PMBL, 115

D_PQCK, 29

D_QJYV, 85

D_QMYP, 52

D_QNHM, 148

D_QTJC, 56

D_QXYC, 42

D_TRFW, 114

D_TRVR, 107

D_VFTV, 52

D_VMZX, 96

D_VPZZ, 109

D_VXKM, 114

D_WGQS, 41

D_WSXY, 84

D_WSZM, 102

D_WXQV, 36

D_XRBT, 149

D_YYDW, 146

D_YZBQ, 34

D_ZPMF, 149

D_ZTPP, 100

D_ZXSS, 100

183

Rules Index

R_BDJK, 37

R_BFWL, 78

R_BGGC, 26

R_BHMY, 50

R_BKNT, 122

R_BNCY, 152

R_BQJG, 115

R_BRCJ, 92

R_BRCM, 153

R_BSMK, 100

R_BSQR, 163

R_BWDX, 42

R_BWYF, 56

R_BYRT, 57

R_BZKW, 124

R_CCVD, 115

R_CFTD, 138

R_CGDG, 36

R_CGWR, 40

R_CHBW, 37

R_CHKR, 42

R_CHTH, 163

R_CKGP, 51

R_CLQJ, 78

R_CNHB, 37

R_CPCK, 138

R_CQSX, 90

R_CRQJ, 152

R_CSQC, 25

R_CTMN, 163

R_CWNT, 87

R_CZTX, 100

R_DBZZ, 50

R_DFWZ, 52

R_DGBM, 154

R_DGJT, 39

R_DGRV, 91

R_DHKH, 91

R_DHRC, 45

R_DHZT, 103

R_DJMC, 51

R_DKGQ, 103

R_DLXT, 51

R_DLXV, 41

R_DPZK, 164

R_DVVQ, 70

R_DWSP, 34

R_DXWN, 41

R_DYQZ, 66

R_FHYZ, 130

R_FKGP, 50

R_FMLK, 78

R_FMXK, 108

R_FPMT, 50

R_FPPF, 56

R_FQLB, 46

R_FRDX, 53

R_FRWD, 22

R_FTPK, 110

R_FTVN, 110

R_FWMM, 101

R_FWQM, 110

R_FZSD, 102

R_GBNC, 50

184

Alphabetical index of rules
Rules Index

R_GBNH, 56

R_GFSD, 56

R_GFSH, 22

R_GHRP, 102

R_GHXR, 153

R_GNTS, 111

R_GQNL, 152

R_GQVZ, 37

R_GRVJ, 30

R_GVCC, 91

R_GVKS, 92

R_GVZK, 29

R_GWCP, 31

R_GXQH, 70

R_GYCG, 138

R_GYJZ, 132

R_HDDS, 74

R_HDGV, 52

R_HHCD, 39

R_HJPN, 100

R_HJYJ, 34

R_HPRD, 23

R_HQZY, 48

R_HWTV, 110

R_HYFH, 22

R_HYQK, 45

R_IRNQ, 164

R_JBXQ, 110

R_JBXS, 52

R_JFRD, 79

R_JGRK, 24

R_JGVX, 53

R_JGWF, 122

R_JHKL, 40

R_JHST, 87

R_JJCJ, 39

R_JPVL, 73

R_JQXC, 90

R_JQYF, 110

R_JVTR, 87

R_JWPH, 163

R_JZST, 92

R_KCDS, 67

R_KCMK, 52

R_KCZS, 130

R_KDKS, 47

R_KFGJ, 52

R_KFYS, 124

R_KGXL, 42

R_KKDF, 78

R_KLDR, 89

R_KMBD, 114

R_KSQP, 50

R_KSZM, 79

R_KTBG, 71

R_KVNX, 73

R_KXMR, 125

R_KZTJ, 86

R_LCCN, 138

R_LCFD, 79

R_LCSZ, 54

R_LGHS, 37

R_LJBG, 102

R_LLJZ, 69

R_LPDL, 48

R_LPVP, 90

R_LRHD, 152

R_LSNP, 100

R_LSVV, 89

R_LVTH, 112

R_LXQZ, 111

R_LYDS, 100

R_MBRM, 138

R_MBZP, 54

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Alphabetical index of rules
Rules Index

R_MDZD, 41

R_MGHV, 42

R_MHFW, 164

R_MHPW, 89

R_MHWM, 43

R_MKGB, 91

R_MPMG, 36

R_MRHT, 129

R_MWBN, 115

R_MXPS, 23

R_MXYQ, 37

R_MZJJ, 54

R_NBDJ, 110

R_NCNQ, 103

R_NCTB, 54

R_NCWM, 152

R_NFBN, 102

R_NFKG, 79

R_NHGP, 71

R_NJDZ, 138

R_NPWR, 90

R_NXRC, 110

R_NXRX, 48

R_NXSF, 78

R_NYNK, 130

R_NYWH, 82

R_NZGH, 89

R_PBFK, 23

R_PBLF, 74

R_PDLM, 46

R_PFWQ, 115

R_PGFC, 109

R_PHNZ, 82

R_PHRL, 100

R_PLYX, 51

R_PMHS, 56

R_PMKP, 90

R_PMQB, 103

R_PNQJ, 78

R_PRZN, 51

R_PSZY, 87

R_PTDD, 52

R_PTNG, 77

R_PXRR, 39

R_PZZJ, 132

R_QCVM, 52

R_QCYM, 36

R_QDQD, 78

R_QGGH, 138

R_QKXV, 54

R_QMDM, 23

R_QNQV, 69

R_QQBB, 22

R_QSVS, 154

R_QWSQ, 138

R_QXGW, 103

R_QYBH, 115

R_QYKH, 164

R_QYZD, 102

R_QZJS, 102

R_RCSD, 65

R_RFQP, 146

R_RHTN, 112

R_RLQP, 100

R_RMTQ, 36

R_RQNG, 89

R_RTCF, 115

R_RXHX, 53

R_RXQB, 87

R_RXYN, 153

R_RYMD, 23

R_RZLL, 51

R_SBLX, 50

R_SCHV, 110

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Alphabetical index of rules
Rules Index

R_SDJK, 110

R_SFPM, 53

R_SKRK, 102

R_SNQJ, 71

R_SPNM, 91

R_SPPT, 69

R_SQJJ, 78

R_SQXN, 129

R_SRHN, 48

R_SSBD, 89

R_SVDJ, 100

R_SVJB, 138

R_SVMM, 152

R_SWQD, 22

R_SWVP, 45

R_TCDL, 114

R_TFJZ, 78

R_THSV, 152

R_TJKQ, 112

R_TJRH, 54

R_TMYS, 86

R_TPHR, 100

R_TRDJ, 50

R_TSKH, 69

R_TTGQ, 122

R_TTMQ, 50

R_TVPR, 40

R_TWDQ, 57

R_TXTC, 91

R_TZNR, 100

R_TZRV, 79

R_TZSP, 115

R_VBLL, 97

R_VBMX, 130

R_VCZX, 104

R_VDDG, 164

R_VDPC, 110

R_VGZF, 152

R_VNKT, 146

R_VQRH, 57

R_VTJW, 110

R_VXCS, 56

R_WBCQ, 66

R_WDGQ, 146

R_WFMF, 41

R_WGSY, 110

R_WGVR, 138

R_WHRS, 114

R_WJYH, 100

R_WKCY, 138

R_WKHC, 52

R_WLCH, 75

R_WMFV, 111

R_WQRN, 85

R_WVQT, 90

R_WVXS, 110

R_WWTV, 153

R_WZCS, 71

R_WZJQ, 50

R_WZSL, 85

R_WZVX, 97

R_X001, xi

R_XBMN, 75

R_XCJD, 32

R_XHPB, 78

R_XKGC, 151

R_XNBN, 136

R_XNSK, 163

R_XSDC, 78

R_XSSL, 86

R_XVWK, 130

R_XWRB, 90

R_XYLP, 79

R_XZVT, 127

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Alphabetical index of rules
Rules Index

R_YBWY, 47

R_YCDB, 59

R_YCPX, 132

R_YDFQ, 84

R_YHNV, 39

R_YSPM, 110

R_YTKY, 69

R_YTNR, 89

R_YVXF, 91

R_YYFR, 83

R_YYPN, 37

R_YZHM, 127

R_ZCVD, 111

R_ZDKC, 146

R_ZDSJ, 69

R_ZFFV, 71

R_ZHVH, 84

R_ZHYT, 83

R_ZJKY, 111

R_ZJSH, 36

R_ZLWD, 115

R_ZNDL, 63

R_ZNTH, 50

R_ZRKM, 48

R_ZRVY, 23

R_ZRWH, 103

R_ZSND, 89

R_ZTJN, 152

R_ZTLB, 91

R_ZTRR, 70

R_ZVPT, 138

R_ZWCH, 67

R_ZWGH, 103

R_ZWHP, 48

R_ZXHP, 79

R_ZYVW, 87

R_ZYWY, 124

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Info Index

I_BBQR, 101

I_BCWW, 53

I_BGHB, 37

I_BHLN, 135

I_BHTH, 168

I_BKLJ, 163

I_BLDK, 164

I_BLVP, 112

I_BTCY, 105

I_BTMT, 115

I_BYVL, 28

I_BZVB, 112

I_CDVY, 101

I_CGRH, 133

I_CGYH, 105

I_CHGZ, 87

I_CHMP, 48

I_CJVD, 84

I_CMLP, 115

I_CVDB, 166

I_CVXB, 37

I_CXPS, 163

I_DFML, 110

I_DGWJ, 111

I_DMNL, 33

I_DVSM, 52

I_EOAX, 104

I_FBVH, 54

I_FCGK, 111

I_FKJC, 79

I_FLKF, 115

I_FPVZ, 106

I_FSFQ, 109

I_FVRF, 94

I_FWTW, 166

I_FXJV, 57

I_FYFN, 53

I_FZMS, 37

I_GBMH, 167

I_GFJP, 22

I_GFZT, 151

I_GHGK, 100

I_GJHS, 75

I_GJZQ, 134

I_GKLW, 52

I_GLHK, 50

I_GLWM, 104

I_GQMV, 103

I_GQRD, 133

I_GQWR, 25

I_GQYG, 136

I_GYSK, 107

I_GZVM, 91

I_HBFS, 167

I_HJBH, 31

I_HJCD, 23

I_HJRD, 45

I_HLBL, 42

I_HMRK, 138

I_HSQL, 58

I_HSWR, 108

I_HSWW, 46

I_HVLX, 24

I_HYBT, 147

189

Alphabetical index of rules
Info Index

I_JDCC, 36

I_JDSX, 166

I_JEJD, 71

I_JLGK, 163

I_JQPK, 32

I_JRDL, 28

I_JSKW, 102

I_JVRM, 48

I_KBXM, 79

I_KFCR, 101

I_KFYG, 89

I_KGKS, 48

I_KGMC, 36

I_KJDR, 140

I_KKCC, 111

I_KKQY, 150

I_KLDY, 71

I_KMVJ, 168

I_KNXJ, 108

I_KPBX, 36

I_KRLL, 97

I_KTJN, 118

I_KXSD, 108

I_LDNP, 95

I_LFJZ, 112

I_LGHJ, 126

I_LHLR, 146

I_LRVN, 48

I_LRZB, 25

I_LWMD, 167

I_LWQQ, 45

I_LYKD, 147

I_LZCX, 146

I_MHYB, 107

I_MHYS, 164

I_MJMQ, 167

I_MJWM, 131

I_MKPR, 134

I_MMKF, 111

I_MPSW, 103

I_MQWB, 40

I_MRHK, 102

I_MSZT, 148

I_MTML, 48

I_MTWL, 104

I_MVBT, 166

I_MVNZ, 45

I_MZXL, 34

I_NBCT, 153

I_NDWK, 167

I_NHXT, 104

I_NLFD, 108

I_NTYZ, 148

I_NWMX, 168

I_NXJR, 147

I_NXKD, 18

I_PBPQ, 23

I_PDKT, 112

I_PFGQ, 109

I_PFNG, 52

I_PGSS, 138

I_PKXK, 146

I_PPXZ, 168

I_PQCT, 109

I_PQJD, 168

I_PRPY, 34

I_PZGZ, 166

I_QCZX, 23

I_QDHP, 37

I_QFZH, 138

I_QJNF, 54

I_QJSV, 166

I_QJTN, 151

I_QMQX, 51

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Alphabetical index of rules
Info Index

I_QMWT, 34

I_QNSD, 106

I_QRXP, 151

I_QSLR, 68

I_QSXM, 166

I_RBZW, 50

I_RDBH, 169

I_RKBV, 112

I_RQQB, 113

I_RXLG, 103

I_RYRP, 111

I_SBCK, 140

I_SBFK, 74

I_SBWR, 115

I_SCBX, 102

I_SCLY, 24

I_SCTB, 109

I_SJDC, 107

I_SLNQ, 56

I_SMMH, 110

I_SNBZ, 25

I_SQVV, 103

I_SRQF, 78

I_SSXJ, 84

I_SZVF, 132

I_TBHH, 112

I_TBWS, 169

I_TCST, 132

I_TFPS, 41

I_TFSZ, 71

I_TQGH, 112

I_TRPS, 154

I_TSXL, 73

I_TTQJ, 79

I_TVDT, 54

I_TWJF, 52

I_TWTZ, 107

I_TZVJ, 104

I_VFDP, 114

I_VGSP, 68

I_VMKF, 103

I_VMZF, 125

I_VPST, 104

I_VQBX, 23

I_VQHQ, 50

I_VQLX, 132

I_VYLK, 51

I_WBWL, 101

I_WDMD, 69

I_WHLV, 54

I_WJCL, 32

I_WLNM, 63

I_WLPJ, 101

I_WVGG, 150

I_WVQZ, 138

I_WXGP, 164

I_WYKZ, 28

I_WZKM, 109

I_XFKN, 22

I_XFPV, 73

I_XKWM, 167

I_XPDT, 37

I_XSFY, 149

I_XVBG, 132

I_XYKC, 149

I_YBGL, 150

I_YBHF, 102

I_YDBR, 89

I_YFTF, 32

I_YHML, 125

I_YHRP, 124

I_YJBB, 133

I_YKLF, 92

I_YMFM, 169

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Alphabetical index of rules
Info Index

I_YMHX, 115

I_YMRT, 151

I_YPXD, 78

I_YWKG, 92

I_YXSY, 125

I_YYQX, 111

I_YZBT, 169

I_ZDDJ, 100

I_ZGJQ, 56

I_ZLBW, 132

I_ZLZC, 112

I_ZPWM, 148

I_ZQSD, 23

I_ZQVM, 167

I_ZTMQ, 110

I_ZWHZ, 169

DDI0612
00bet7

Copyright © 2019-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

	Architecture Specification Language
	Proprietary Notice
	Confidentiality Status
	Product Status
	Web Address

	Contents
	Preface
	About this book
	Abstract
	Structure of this document

	Conventions
	Typographical conventions
	Numbers
	Rules-based writing
	Declaration
	Goal
	Rule
	Rationale
	Information

	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book

	Inclusive terminology commitment
	Open issues
	Issues expected to be addressed in ASL Release 1.0
	Issues likely to be addressed in a future ASL specification

	Language versioning
	Major version
	Minor version
	Document version
	Pre-release version
	Revision
	Precedence

	1 Introduction
	1.1 Specifications
	1.1.1 Example specification 1
	1.1.2 Example specification 2
	1.1.3 Example specification 3
	1.1.4 Specification errors

	2 Lexical structure
	2.1 Notational conventions
	2.2 Tokens
	2.2.1 Comments and other whitespace
	2.2.2 Literals
	2.2.3 Identifiers
	2.2.4 Delimiters

	2.3 Pragmas
	2.4 Annotations

	3 Builtin Types
	3.1 Singular and aggregate types
	3.2 Restrictions on anonymous types
	3.3 Integer type
	3.4 Real type
	3.5 String type
	3.6 Enumeration types
	3.7 Boolean type
	3.8 Bitvector type
	3.8.1 Bitfields
	3.8.1.1 Nested bitfields

	3.9 Array types
	3.10 Tuple types
	3.11 Record types
	3.12 Exception types
	3.13 Named Types

	4 Declaration syntax
	4.1 Scope of global declarations
	4.2 Compile-time and execution-time
	4.3 Named type declarations
	4.3.1 Subtypes

	4.4 Global storage elements
	4.4.1 Initialization of globals

	4.5 Subprogram declarations
	4.5.1 Side-effect-free subprograms
	4.5.2 Functions and procedures
	4.5.3 Getters and Setters

	4.6 Pragmas
	4.7 Annotations
	4.7.1 Recursion limits
	4.7.2 Loop limits

	5 Expression syntax
	5.1 Conditional expressions
	5.2 Binary and unary operators
	5.2.1 Operator precedence

	5.3 Pattern matching
	5.4 Atomic expressions
	5.5 Record Expressions
	5.6 Exception Expressions
	5.7 Function Invocations
	5.8 Literal constants
	5.9 Arrays, bitslices and invoking getter functions
	5.9.1 Bitslices

	5.10 Tuples
	5.11 Checked type conversions
	5.12 The UNKNOWN expression

	6 Statement syntax
	6.1 Statements
	6.2 Local storage elements
	6.2.1 Scope of local declarations
	6.2.2 Initialization of locals

	6.3 Procedure invocation statements
	6.4 Return statements
	6.5 Assignment statements
	6.5.1 Left hand side rules
	6.5.2 Multi-assignment
	6.5.3 Setter invocation

	6.6 Assertion statements
	6.7 Conditional statements
	6.8 Case Statements
	6.8.1 Case guards

	6.9 Repetitive statements
	6.9.1 Loop limits

	6.10 Exception handling
	6.10.1 Try statements
	6.10.2 Throw Statements
	6.10.3 Catchers
	6.10.4 Rethrowing exceptions

	6.11 Pragmas

	7 Type inference and type-checking
	7.1 Type nomenclature
	7.1.1 Named, Anonymous and Primitive types
	7.1.2 Structure of a type
	7.1.3 Domain of Values for Types

	7.2 Execution-time checks
	7.3 Constrained types
	7.4 Constrained Integers
	7.4.1 Domain of integers

	7.5 Constraints on bitvector widths
	7.5.1 Types of bitvector
	7.5.2 Bitvectors of the form bits(-: ty)
	7.5.3 Bitvectors of the form bits(expr)
	7.5.4 Summary of types of bitvector
	7.5.5 Domain of a bitvector
	7.5.6 Use of bitvectors of undetermined width
	7.5.7 Use of bitvector storage elements and expressions
	7.5.8 Examples of constrained width bitvectors

	7.6 Relations on types
	7.6.1 Subtype-satisfaction
	7.6.1.1 Subtype-satisfaction and bitvectors

	7.6.2 Type-Satisfaction
	7.6.3 Type-clashing
	7.6.4 Subprogram clashing

	7.7 Type checking rules
	7.7.1 Global type checking
	7.7.2 Subprogram type checking
	7.7.3 Statement type checking
	7.7.4 Assignment and initialization type checking
	7.7.5 Implicit constraints for compile-time-constant integer expressions

	7.8 Subprograms and overloading
	7.8.1 Dependently typed bit vector formals
	7.8.1.1 Examples

	7.8.2 Subprogram invocations
	7.8.2.1 Example of overloading
	7.8.2.2 Example: Actual parameter type-satisfaction
	7.8.2.3 Example: Parameter from actual width type-satisfaction
	7.8.2.4 Example: Parameter-defining types
	7.8.2.5 Example: Invocation constraints on parameters
	7.8.2.6 Example: Invocation constraints on parameters:
	7.8.2.7 Example: Function with under-constrained integer formal
	7.8.2.8 Example: Function with well-constrained integer formal
	7.8.2.9 Example: Assignments with under-constrained integers
	7.8.2.10 Example: Precise checked type conversions on actuals

	7.8.3 Primitive Operators
	7.8.4 Operator definitions
	7.8.5 Primitive operations on integers
	7.8.6 Primitive operations on bitvectors

	7.9 Conditional expressions
	7.9.1 Lowest common ancestor

	7.10 Comparison operations
	7.11 Bitvector concatenation
	7.11.1 Determined width of a bitvector concatenation
	7.11.2 Constraint of a bitvector concatenation

	7.12 Bitslices
	7.13 Checked type conversions
	7.13.1 Checked type conversions on expressions
	7.13.1.1 Checked type conversions on integer expressions

	7.13.2 Examples of checked type conversions
	7.13.2.1 Checked type conversion with configs
	7.13.2.2 Checked type conversion on literal
	7.13.2.3 Checked type conversion with bits({...})

	7.14 Bitvector width comparison
	7.15 Base values
	7.15.1 Base value of integers
	7.15.2 Base values of other types

	7.16 Type checking examples
	7.16.1 Named types example
	7.16.2 Anonymous types example
	7.16.3 Constrained types examples
	7.16.3.1 Example: constrained integer types
	7.16.3.2 More Invocation Examples
	7.16.3.3 More assignment examples

	8 Interpretation
	8.1 Mutability
	8.1.1 Statically evaluable expressions
	8.1.2 Deciding equivalence for statically evaluable expressions

	8.2 Interpretation of functions and procedures
	8.2.1 Execution-time subprograms
	8.2.2 Compile-time-constant subprograms

	8.3 Evaluation of expressions
	8.3.1 Execution-time expressions
	8.3.2 Compile-time-constant expressions

	8.4 Behavior of types
	8.4.1 Execution-time types
	8.4.2 Compile-time-constant types

	8.5 Evaluation of expressions
	8.5.1 Evaluation order

	8.6 Evaluation of operations
	8.6.1 Boolean operations
	8.6.2 Real operations
	8.6.3 Integer operations
	8.6.4 Bitvector operations

	9 Standard library
	9.1 Standard integer functions and procedures
	9.2 Standard real functions and procedures
	9.3 Standard bitvector functions and procedures
	9.4 Runtime exception types
	9.5 Other standard functions and procedures

	10 Runtime Environment
	10.1 Dynamic errors

	11 Changes
	11.1 Changes in version 1.0
	11.1.1 Local Variables are initialized
	11.1.2 Slice notation
	11.1.3 Record type
	11.1.4 UNPREDICTABLE
	11.1.5 IMPLEMENTATION_DEFINED
	11.1.6 SEE
	11.1.7 Implicit Variables
	11.1.8 Type specifiers
	11.1.9 Return types
	11.1.10 var keyword
	11.1.11 New BNFC grammar
	11.1.12 Primitive Boolean
	11.1.13 Case statements
	11.1.14 Field concatenation
	11.1.15 IMPLIES
	11.1.16 IFF
	11.1.17 Let declarations
	11.1.18 Bitvector concatenation
	11.1.19 Primitive Operations
	11.1.20 Type system changes
	11.1.21 Reserved Keywords
	11.1.22 Exceptions
	11.1.23 Qualified Identifiers
	11.1.24 Forward Declarations
	11.1.25 Constrained types
	11.1.26 Return type width inference
	11.1.27 Exclusive-OR operator

	11.2 Examples
	11.2.1 BigEndianReverse
	11.2.2 AlignBits
	11.2.3 FPRoundBase

	12 ASL grammar
	Alphabetical index of rules
	Declaration Index
	Rules Index
	Info Index

