

297

Exception Handling
ARM7TDMI

14.1 INTRODUCTION

Large applications, including operating systems, often have to deal with inputs from
various sources, such as keyboards, mice, USB ports, and even power management
blocks telling the processor its battery is about to run dry. Sometimes an embed-
ded microcontroller has only one or two external input sources (e.g., from sensors
in an engine), but it may still have peripheral devices that may need attention from
time to time, such as a watchdog timer. Universal asynchronous receiver/transmitters
(UARTs), wake-up alerts, analog-to-digital converters (ADCs), and I2C devices can
all demand the processor’s time. In the next two chapters, we’re going to examine
the different types of exceptions a processor can face in light of the fact that they
are not isolated, only running code and talking to no one. In our definition of an
exception, the events that can cause one must not be immediately thought of as bad
or unwanted. Exceptions include benign events like an interrupt, and this can be any
kind of interrupt, like someone moving a mouse or pushing a button. Technically,
anything that breaks a program’s normal flow could be considered an exception, but
it’s worth detailing the different types, since some can be readily handled and others
are unexpected and can cause problems. At this end of the spectrum, catastrophic
faults, such as a bus error when trying to fetch an instruction, may have no solution
in software and the best outcome may be to alert the user before halting the entire
system. Certain events can lead to a serious system failure, and while they are rare,
they should be anticipated to help find the cause of the problem during application
development or to plan for a graceful shutdown. For example, a rogue instruction in
the processor’s pipeline or a memory access to an address that doesn’t exist should
not occur once the software is finished and tested. Version 4T cores and version 7-M
cores handle exceptions differently, and we’ll therefore examine the exception model
for the Cortex-M4 in Chapter 15. In this chapter, we’ll start with the exception model
for the ARM7TDMI, and we’ll examine exceptions in two large classes—interrupts
and error conditions.

14.2 INTERRUPTS

Interrupts are very common in microprocessor systems. They provide the ability
for a device such as a timer or a USB interface to poke the processor in the ribs and
loudly announce that it wants attention. Historically, large computers only took a
set of instructions and some data, calculated an answer, and then stopped. These

14

298 ARM Assembly Language

machines had no worries about dozens of interfaces and devices all vying for part
of the CPU’s time. Once microprocessors became ubiquitous in electronic devices,
they had to deal with supporting an operating system and application software in
addition to calculating and moving data for other parts of a system. Microcontrollers
are, in effect, smaller versions of complete systems, where motor controllers, timers,
real-time clocks, and serial interfaces all demand some face time from the processor.
So what’s the best way to let the processor do its main tasks while allowing other
peripherals to ask for assistance every so often?

Say you had a UART, which is a type of serial interface, attached to a proces-
sor that received a character from another device, say a wireless keyboard. When a
character shows up in the UART, it’s basically sitting at a memory location assigned
to the UART waiting for the processor to get the data. There are roughly three ways
the processor can handle this situation. The first, and by far the least efficient, is
for the processor to sit in a loop doing absolutely nothing except waiting for the
character to show up. Given the speed at which processors run, where billions of
instructions can now be processed in a single second, waiting even 1/100th of a
second for a device to transmit the data wastes millions of cycles of bandwidth. The
second option is for the processor to occasionally check the memory location to
see if there is some new data there, known as polling. While the processor can do
other things while it waits, it still has to take time to examine the (possibly empty)
memory location. The third option, and clearly the best one, is to have the device
tell the processor when there is new data waiting for it. This way, the processor can
spend its time performing other functions, such as updating a display or converting
MP3 data to an analog waveform, while it waits for a slower device to complete
its task. An interrupt is therefore an efficient method for telling the processor that
something (usually a device or peripheral) needs attention. If you refer back to the
diagram of the ARM7TDMI in Chapter 1 (Figure 1.4), you will notice two external
lines coming into the part—nIRQ and nFIQ, where the “n” denotes an active low
signal. These are the two interrupt lines going into the processor, with a low priority
interrupt called IRQ and a high priority interrupt called FIQ. In addition to hard-
ware interrupts, software has one as well, called aptly enough, Software Interrupt
or SWI in the older notation, and SVC in the newer notation. We will look at all of
these in detail to see how they work.

14.3 ERROR CONDITIONS

While you hope not to have these exceptions in a system, they do occur often enough
that software needs to be sufficiently robust to handle them. The ARM cores recog-
nize a few error conditions, some of which are easy to handle, some of which are not.
An undefined instruction in the program can cause an error, but this may or may not
be intentional. In a completely tested system where no new code is introduced (e.g.,
an embedded processor in an MP3 player that only handles the display), one would
not expect to see a strange instruction suddenly show up in the application code.
However, if you know that you have a design that requires floating-point operations,
but the processor does not support floating-point in hardware, you could decide to
use floating-point instructions and emulate them in software. Once the processor

299Exception Handling

sees floating-point instructions (which aren’t listed in this book but can be found in
the ARM Architectural Reference Manual (ARM 2007c)), it will take an undefined
instruction exception since there is no hardware to perform the operations. The pro-
cessor can then take the necessary actions to perform the operations anyway, using
only software to emulate the floating-point operation, appearing to the user as if
floating-point hardware were present.

Data and prefetch aborts are the exception types that often cause programmers the
most angst. A prefetch abort occurs when the processor attempts to grab an instruc-
tion in memory but something goes wrong—if memory doesn’t exist or the address
is outside of a defined memory area, the processor should normally be programmed
to recover from this. If the address is not “expected” but still permitted, then the
processor may have additional hardware (known as a memory management unit or
MMU) to help it out, but this topic is outside the scope of this book. A data abort
occurs when the processor attempts to grab data in memory and something goes
wrong (e.g., the processor is in an unprivileged mode and the memory is marked as
being readable only in a privileged mode). Certain memory regions may be config-
ured as being readable but not writable, and an attempt to write to such a region can
cause a data abort. As with prefetch aborts, the processor usually needs to be able
to recover from some situations and often has hardware to assist in the recovery. We
will see more about aborts in Section 14.8.4.

14.4 PROCESSOR EXCEPTION SEQUENCE

When an exception occurs, the ARM7TDMI processor has a defined sequence of
events to start the handling and recovery of the exception. In all cases except a reset
exception, the current instruction is allowed to complete. Afterward, the following
sequence begins automatically:

• The CPSR is copied into SPSR_<mode>, where <mode> is the new mode
into which the processor is about to change. Recall from Chapter 2 that
the register file contains SPSR registers for exceptional modes, shown in
Figure 14.1.

• The appropriate CPSR bits are set. The core will switch to ARM state if it
was in Thumb state, as certain instructions do not exist in Thumb that are
needed to access the status registers. The core will also change to the new
exception mode, setting the least significant 5 bits in the CPSR register. IRQ
interrupts are also disabled automatically on entry to all exceptions. FIQ
interrupts are disabled on entry to reset and FIQ exceptions.

• The return address is stored in LR_<mode>, where <mode> is the new
exception mode.

• The Program Counter changes to the appropriate vector address in memory.

Note that the processor is responsible for the above actions—no code needs to
be written. At this point, the processor begins executing code from an exception
handler, which is a block of code written specifically to deal with the various excep-
tions. We’ll look at how handlers are written and what’s done in them shortly. Once

300 ARM Assembly Language

the handler completes, the processor should then return to the main code—whether
or not it returns to the instruction that caused the exception depends on the type
of exception. The handler may restore the Program Counter to the address of the
instruction after the one that caused the exception. Either way, the last two things
that remain to be done, and must be done by the software handler, are

• The CPSR must be restored from SPSR_<mode>, where <mode> is the
exception mode in which the processor currently operates.

• The PC must be restored from LR_<mode>.

These actions can only be done in ARM state, and fortunately, the software can usu-
ally do these two operations with a single instruction at the end of the handler.

It is worth noting at this point that while most ARM cores have similar excep-
tion handling sequences, there are some differences in the newest cores (e.g., the
Cortex-M3/M4 has a different programmer’s model, and the Cortex-A15 has even
more exception types and modes). The Technical Reference Manuals for the indi-
vidual cores contain complete descriptions of exception sequences, so future projects
using version 7 and version 8 processors might require a little reading first.

Mode
User/System

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
PC

CPSR CPSR
SPSR_SVC

= banked register

SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ
CPSR CPSR CPSR CPSR

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_SVC
R14_SVC
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_ABORT
R14_ABORT
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_UNDEF
R14_UNDEF
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_IRQ
R14_IRQ
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
PC

Supervisor Abort Undefined Interrupt Fast Interrupt

FIGURE 14.1 Register organization.

301Exception Handling

14.5 THE VECTOR TABLE

Earlier in Section 2.3.3, we saw the exception vector table for the first time, but we
didn’t do much with it. At this point, we can start using these addresses to handle
the various types of exceptions covered in this chapter. Figure 14.2 shows the table
again, with the vectors listed as they would be seen in memory. Recall that while
some processors, e.g., the 6502 and Freescale’s 680x0 families, put addresses in their
vector tables, ARM uses actual instructions, so the reset exception vector (at address
0x0) would have a change-of-flow instruction of some type sitting there. It may not
be the actual instruction B, as we’ll see in a moment.

Having covered literal pools, we can now begin to examine the way that real
ARM code would be written and stored in memory with regard to exceptions.
Figure 14.3 shows a memory map from address 0x0 to 0xFFFFFFFF and an example
layout for the exception handlers. Note that this is only an example, and may not be
applicable to your application, so these are just options. For each type of exception,
there is usually a dedicated block of code, called an exception handler, that is respon-
sible for acknowledging an exceptional condition and, more often than not, fixing
it. Afterward, the code should return the processor back to the point from where it
left, now able to continue without the exception. Not all exceptions need handlers,
and in some deeply embedded systems, the processor may not be able to recover.
Consider the hypothetical situation where the processor tries to read a memory loca-
tion that is not physically present. Further suppose that an address in the memory
map does not point to a memory chip or memory block but rather points to nothing.
The machine may be programmed to reset itself if something like that ever happens.
Larger applications, such as a cell phone, will have to deal with all exceptions and
provide robust methods to recover from them, especially in light of having hardware
that can change, e.g., if a memory card can be added or removed.

Since exception vectors contain instructions at their respective addresses in mem-
ory, an exception such as an IRQ, which is a low-priority interrupt, would have some
kind of change-of-flow instruction in its exception vector to force the processor to

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
Software Interrupt

Undefined instruction
Reset

FIGURE 14.2 Exception vector table.

302 ARM Assembly Language

begin fetching instructions from its handler. These change-of-flow instructions are
one of the following:

• Branch instruction—A direct branch can be used to jump to your exception
handler; however, the range of a B instruction is only 32 MB, and this may
not always work with every memory organization. If your exception handler
is more than 32 MB away, you must use another type of instruction.

• MOV instruction—A MOV instruction can change the PC simply by load-
ing the register with a value. The value loaded could be created from a byte
rotated by an even number of bits, so that it fits within a 32-bit instruction,
for example,

 MOV PC, #0xEF000000

 Notice also that this instruction contains a 32-bit address, but it can be con-
structed using the rotation scheme discussed in Chapter 6.

• LDR instruction—Recall that data can be stored in instruction memory
and then accessed by using an offset to the Program Counter, as we saw in
Chapter 6 with literals. The instruction would have the form

 LDR PC, [PC + offset]

 where the offset would be calculated using the address of the handler, the
vector address, and the effects of the pipeline.

Looking at our example memory map in Figure 14.3, we see that the reset excep-
tion can use a simple branch (B) instruction, provided that we place the reset handler

0x30008000

MOV PC, #0x30000000
LDR PC, [PC, #+0xFF0]

Undef handler
Undef handler outside 32MB

branch instruction range

SVC exception handler placed on
appropriate address boundary

Literal pool containing address of
undef handler

SVC handler

0xFFFFFFFF

0x30008000

0x30000000

FIQ handler

B IRQ_handler
Reserved

Data abort vector
Prefetch abort vector

Reset vector

>32 MB 0x2000000

0x1000

0xFFC
<4 KB

IRQ handler within 32MB branch
instruction range

FIQ handler follows vector table

IRQ handler

FIGURE 14.3 Example memory map with exception handlers.

303Exception Handling

within a 32 MB range. The next exception, the undefined instruction exception, uses
a load instruction with an offset to access the value sitting at address 0xFFC in
memory. When the processor is executing the load instruction at address 0x4, the
Program Counter contains the value 0xC, since it is the address of the instruction
being fetched. The offset would then be 0xFF0. When the value at address 0xFFC,
0x30008000, is loaded into the Program Counter, it has the same effect as jump-
ing there with a branch instruction. One other thing to note is the size of the offset
used—there are only 12 bits to create an offset with a load instruction of this type;
hence, the value 0xFFC is the last word that could be accessed within that 4 KB
range. The next word has the address 0x1000 and is too far away.

Continuing up the table, we come to the SWI (or SVC, as it is now known) excep-
tion. This example shows that an address like 0x30000000 can be generated using
the byte rotation scheme and therefore can be reached using a simple MOV instruc-
tion. The SVC handler is then placed at that location in memory. Skipping the two
abort exceptions and the reserved vector, we continue to address 0x18, where the
IRQ exception vector contains a simple branch instruction, and the IRQ handler
starts at an address that is located within 32 MB of the branch.

The last exception vector, to which we alluded back in Chapter 2, sits at the top of
the vector table for a reason. FIQ interrupts are fast interrupts, meaning that if you
have a critical event that must be serviced immediately, and it holds the highest prior-
ity among interrupts, then you want to spend as little time as possible getting to the
code to service it. We also know from Chapter 8 that branches cause a pipelined archi-
tecture to throw away instructions, so rather than cause the processor to take some
type of branch to get to the handler, the FIQ vector is the first instruction of the han-
dler! There is no need to branch, since the Program Counter will be set to the address
0x1C when the processor acknowledges and begins to service the interrupt. The FIQ
handler is then executed as the Program Counter increments through memory.

14.6 EXCEPTION HANDLERS

Exceptions require some housekeeping. Normally, the processor is busy moving data
or crunching numbers, but when an exception occurs, processors have to prepare
to save the status of the machine, since at some point they must return to crunch-
ing numbers or moving data. When an exceptional condition is seen by the proces-
sor, the first thing it must do is copy the Current Program Status Register into a
Saved Program Status Register, and in particular the SPSR belonging to the new
mode associated with the exception. Recall that for five of the seven modes, there are
unique SPSRs (e.g., Abort Mode has an SPSR_abort). The Current Program Status
Register must then be changed to reflect what happened—the mode bits will be
changed, further interrupts may be disabled, and the state will change from Thumb
state to ARM state if the processor was executing Thumb instructions (there’s more
on Thumb in Chapter 17). Since exceptions cause the code to jump to a new location
in memory, it’s imperative to save off a return address, akin to what was done for
subroutines, so that the processor can return later. This return address is stored in the
Link Register associated with the exception type (e.g., R14_FIQ if the processor took
an FIQ exception). The Program Counter is then changed to the appropriate vector

304 ARM Assembly Language

address. All of this work is done by the processor, so the focus for the programmer
is to write the appropriate exception handler.

Once the mode of the processor has been changed, the exception handler will
have to access its own stack pointer (R13_FIQ, for example), its own Link Register,
and its own Saved Program Status Register. There are general-purpose registers that
can be used by the handler, but normally some of these are saved off to a stack before
using them, since any registers that are corrupted by a handler must be restored
before returning (refer back to the ARM Application Procedure Call Standard that
we saw in Chapter 13). This whole process of storing registers to external memory
takes time, and again, depending on the type of exception, may cause an unaccept-
able delay in processing an exception. Going back to the idea of a fast interrupt,
we’ve already seen that the FIQ vector sits at the top of the vector table, saving a
branch instruction. To prevent having to store data on the stack before handling the
FIQ interrupts, there are also five additional general-purpose registers (R8_FIQ to
R12_FIQ) that the handler can access.

Exception handlers can be intentionally short, or long, robust routines depending
on how much needs to be done for any given exception. In Section 14.8.2, we’ll exam-
ine an undefined exception handler of only a few lines. At the end of all handlers, the
programmer is responsible for restoring the state of the machine and returning back
to the original instruction stream before the exception. This can be done as an atomic
operation, moving the contents of the SPSR back into the CPSR while moving the
Link Register into the Program Counter. The instructions to do these operations only
exist in the ARM instruction set, which was why the processor had to switch from
Thumb to ARM if it was executing Thumb code. The various return methods are
discussed more in the next few sections.

14.7 EXCEPTION PRIORITIES

Exceptions must be prioritized in the event that multiple exceptions happen at the
same time. Consider the case where a peripheral on a microcontroller has generated
a low-priority interrupt, say an A/D converter has finished sampling some data and
alerts the processor by pulling on the IRQ line. At the exact same time, the proces-
sor tries to access a memory location that is undefined while another high-priority
interrupt tries to tell the processor that we’re about to lose power in two minutes. The
processor must now decide which exception type gets handled first. Table 14.1 shows
the exception types in order of their priority.

For complicated reasons, data aborts are given the highest priority apart from
the reset exception, since if they weren’t, there would be cases where if two or more
exceptions occurred simultaneously, an abort could go undetected. If an FIQ and an
IRQ interrupt occur at the same time, the FIQ interrupt handler goes first, and after-
ward, the IRQ will still be pending, so the processor should still be able to service
it. An SVC and an Undefined Instruction exception are mutually exclusive, since
an SVC instruction is defined and cannot generate an Undefined Instruction excep-
tion. To settle the contention described earlier, the Data Abort exception would be
handled first, followed by the FIQ interrupt alerting the system to a power failure,
and then the A/D converter will have its turn.

305Exception Handling

A situation could present itself where the processor is already handling an excep-
tion and another exception occurs. For example, suppose the processor is working
on an FIQ interrupt and has already begun executing the handler for it. During the
course of executing this code, a data abort occurs—one that could be helped by addi-
tional MMU hardware. The processor would begin exception processing again, stor-
ing the CPSR into the register SPSR_abort, changing the mode, etc., and then jump
to the new exception handler. Once the second exception completes and the Program
Counter points back to the first handler, the original FIQ exception can finish up. If
another FIQ interrupt tried to interrupt instead of a data abort, it would be blocked,
because FIQ interrupts are automatically disabled by the processor upon entry to FIQ
mode. The software could enable them again, but this is not typical practice.

14.8 PROCEDURES FOR HANDLING EXCEPTIONS

As mentioned before, sometimes handlers can be very short and sometimes they can
be quite complicated—it all depends on what the handler is responsible for doing.
In this next section, we’ll examine the basic requirements for the different excep-
tion types, along with some detailed code examples using the STR910FM32 and
LPC2132 microcontrollers included in the Keil simulation tools.

14.8.1 ReseT exCepTions

When the processor first receives power, it will put the value 0x00000000 on the
32-bit address bus going to memory and receive its first instruction, usually a branch.
This branch then takes it to the first instruction of the reset handler, where initializa-
tion of the processor or microcontroller is started. Depending on what’s needed, a
reset handler can be very simple, or it may need to perform tasks such as:

• Set up exception vectors
• Initialize the memory system (e.g., if a memory management unit [MMU]

or memory protection unit [MPU] is present)

TABLE 14.1
ARM7TDMI Exception Priorities

Priority Exception Comment

Highest Reset Handler usually branches straight to the main routine.

Data Abort Can sometimes be helped with hardware (MMU).

FIQ Current instruction completes, then the interrupt is acknowledged.

IRQ Current instruction completes, then the interrupt is acknowledged. Used
more often than FIQ.

Prefetch Abort Can sometimes be helped with hardware (MMU).

SVC Execution of the instruction causes the exception.

Lowest Undefined
Instruction

SVC and Undef are actually mutually exclusive, so they have the same
priority.

306 ARM Assembly Language

• Initialize all required processor mode stacks and registers
• Initialize any critical I/O devices
• Initialize any peripheral registers, control registers, or clocks, such as a

phase-locked loop (PLL)
• Enable interrupts
• Change processor mode and/or state

We’ll see in the example shortly how registers are configured and how interrupts
are handled. Once the handler sets up needed registers and peripherals, it will jump
to the main routine in memory. Reset handlers do not have a return sequence at the
end of the code.

14.8.2 undefined insTRuCTions

We saw in Chapter 3 that the ARM7TDMI has about 50 instructions in its instruc-
tion set, plus all of the combinations of addressing modes and registers. With exactly
232 possible instruction bit patterns, that leaves quite a few combinations of ones and
zeros that are classified as an undefined instruction! An exception can occur if the
processor doesn’t recognize a bit pattern in memory, but it can also take an Undefined
exception in two other cases. The first is if the processor encounters an instruction
that is intended for a coprocessor (such as a floating-point unit or other special bit
of hardware that was attached to the ARM7TDMI’s coprocessor interface), but the
coprocessor either doesn’t exist or it doesn’t respond. This first case was mentioned in
Section 14.3, where the processor can emulate floating-point instructions by building
a very smart exception handler that goes into the instruction memory and examines
the offending instruction. If it turns out to be one of the instructions that the software
wishes to support (e.g., a floating-point addition), then it begins to decode it. Software
determines the operation that is needed, which would have to use integer registers
and an integer datapath to perform the operation, and then calculates the result using
a floating-point format. We then return to the main routine again. Theoretically, it
allows software to be written only once using real floating-point instructions, and this
could save money and power if speed isn’t critical. Should a hardware floating-point
unit be present (maybe a silicon vendor makes two slightly different models of micro-
controller or SoC), the code will execute more quickly in hardware.

The second case that can generate an undefined instruction exception involves
a coprocessor not responding to an instruction. As an example, Vector Floating-
Point (VFP) coprocessors appear on some of the more advanced ARM cores, such
as the Cortex-A8 and ARM1136JF-S. They have unique instructions, such as FDIVS
and FSQRTS, and the ability to generate errors just like the main integer processor.
However, if the VFP coprocessor generates an exception while processing one of its
own instructions (suppose it tried to divide by zero), it will simply not respond when
the integer processor tries to give it another instruction. The exception handler will
then have to determine that the VFP coprocessor generated an exception on the last
instruction that it accepted.

The last case that will generate an exception is when the processor sees a legitimate
coprocessor instruction but is not in a privileged mode. For example, on most advanced

307Exception Handling

applications processors, such as the ARM926EJ-S, ARM1136JF-S, or Cortex-A15,
caches are included to improve performance (think of a cache as a small block of
memory used to hold instructions and data so that the processor doesn’t have to go to
external memory as often). Caches always have a cache control register to set things up,
and ARM uses Coprocessor 15, or CP15, to do this. While there isn’t a real coproces-
sor in hardware, the instructions can be used anyway—have a look at the STC (Store
Coprocessor) instruction and notice that bits 8 through 11 designate a coprocessor
number. Coprocessor 15 is reserved for cache and MMU control registers. Meddling
with these registers is only allowed if you’re in a privileged mode, so a user’s code
would not be allowed to change the hardware configurations. The processor would
reject the offending instruction by taking an Undefined Instruction exception.

EXAMPLE 14.1

Let’s examine a simple bit of code, running on an LPC2132 microcontroller from
NXP, that forces an Undefined Instruction exception. In order to demonstrate how
the processor behaves during such an exception, we’ll use a contrived situation
where we wish to allow an instruction, normally undefined, to be emulated in
software. This is analogous to floating-point emulation mentioned earlier, except
our handler will be very short and very clumsy. Suppose that we call our instruc-
tion ADDSHFT. It takes one argument—the contents of register Rm, which can
range from r0 to r7—and adds the contents of register r0 to it, shifting the result left
by 5 bits. The assembler certainly wouldn’t recognize the mnemonic, so we will
call the instruction manually using DCD statements. When the processor fetches
the word of data in memory, it proceeds through the pipeline as an instruction.
Once the processor tries to execute our new bit pattern, it will take an Undefined
Instruction exception, where our handler will decode the instruction and perform
the operation.

There are a few things to observe in the example. The first is which operations
the processor does for us, and which operations must be done by a program-
mer. Recall the switching the mode is normally done by the processor during an
exceptional condition; however, as we’ll see shortly, the programmer can also
manually change the mode to set up a stack pointer. On the ARM7TDMI, saving
registers and state information to the stack must be done by the programmer.
The second thing to observe is the register file. Since the machine will change to
Undef mode, we will be using a new register r13 and r14, so when you simulate
this program, be sure to note the values in all of the registers in the processor,
since we will now be working with more than just the traditional r0 through r15
in a single mode.

Below, you can see the complete code listing:

; Area Definition and Entry Point

SRAM_BASE EQU 0x40000000 ; start of RAM on LPC2132
Mode_UND EQU 0x1B
Mode_SVC EQU 0x13
I_Bit EQU 0x80
F_Bit EQU 0x40

 AREA Reset, CODE, READONLY
 ARM
 ENTRY

308 ARM Assembly Language

; Exception Vectors
; Dummy Handlers are implemented as infinite loops which can be modified.

Vectors LDR PC, Reset_Addr
 LDR PC, Undef_Addr
 LDR PC, SVC_Addr
 LDR PC, PAbt_Addr
 LDR PC, DAbt_Addr
 NOP ; Reserved Vector
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undef_Addr DCD UndefHandler
SVC_Addr DCD SVCHandler
PAbt_Addr DCD PAbtHandler
DAbt_Addr DCD DAbtHandler
 DCD 0 ; Reserved Address
IRQ_Addr DCD IRQHandler
FIQ_Addr DCD FIQHandler

SVCHandler B SVCHandler
PAbtHandler B PAbtHandler
DAbtHandler B DAbtHandler
IRQHandler B IRQHandler
FIQHandler B FIQHandler

; Reset Handler

; Undefined Instruction test
; 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; |0 1 1 1 |0 1 1 1 |1 1 1 1 |0 0 0 0 |0 0 0 0 |1 1 1 1 1 1 1 1| Rm |
;|CC = AL | OP | Rn = 0 | Rd = 0 | Rm |

Reset_Handler
; The first order of business is to set up a stack pointer in
; UNDEF mode, since we know our simulation will hit an undefined
; instruction.
 MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
 LDR sp, = SRAM_BASE + 80; initialize stack pointer
 ; switch back to Supervisor mode
 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit

 MOV r0, #124; put some test data into r0
 MOV r4, #0x8B; put some test data into r4
ADDSHFTr0r0r4 DCD 0x77F00FF4; r0 = (r0 + r4) LSL #5
 NOP

Loop B Loop
 NOP

;/**/
;/* Undefined Handler */
;/**/
; Note that this handler is NOT AAPCS compliant. See the
; RealView Compilation Tools Developer Guide for examples of
; AAPCS-compliant handlers, specifically for maintaining 8-byte
; alignment and stack requirements. We’re taking some shortcuts
; here just so we can concentrate on a simple mechanism to deal
; with an undefined instruction.

309Exception Handling

UndefHandler
 STMFD sp!, {r0-r12, LR} ; Save Workspace & LR to Stack
 MRS r0, SPSR ; Copy SPSR to r0
 STR r0, [sp, #-4]! ; Save SPSR to Stack

 LDR r0, [lr,#-4] ; r0 = undefined instruction
 BIC r2, r0, #0xF00FFFFF ; clear out all but opcode bits
 TEQ r2, #0x07F00000 ; r1 = opcode for ADDSHFT
 BLEQ ADDSHFTInstruction ; if a valid opcode, handle it

 ; insert tests for other undefined instructions here

 LDR r1, [sp], #4 ; Restore SPSR to R1
 MSR SPSR_cxsf, r1 ; Restore SPSR
 LDMFD sp!, {r0-r12, PC}^ ; Return to program after
 ; Undefined Instruction

; ADDSHFT instruction adds r0 + Rm (where Rm can only be between r0 and r7),
; shifts the result left 5 bits, and stores result in r0. It also does not
; decode immediates, CC, S-bit, etc.)

ADDSHFTInstruction

 BIC r3, r0, #0xFFFFFFF0 ; mask out all bits except Rm
 ADD r3, r3, #1 ; bump past the SPSR on the stack
 LDR r0, [sp, #4] ; grab r0 from the stack
 LDR r3, [sp, r3, LSL #2] ; use the Rm field as an offset
 ADD r0, r0, r3 ; calculate r0 + Rm
 MOV r0, r0, LSL #5 ; r0 = (r0 + Rm) < <5
 STR r0, [sp, #4] ; store r0 back on the stack
 BX lr

 END

Figure 14.4 shows the basic flow of the program. The first few instructions of
the program form the vector table, using PC-relative load instructions at each
exception vector. Notice that the reset handler’s address is referenced in the DCD
statement

Reset_Addr DCD Reset_Handler

so that when the processor comes out of reset, the first instruction it executes is
LDR, which will load the Program Counter with a constant it fetches from mem-
ory. Examine the assembler listing and you will notice the PC-relative load instruc-
tion and the offset calculated by the linker. The constant in memory is the address
of the reset handler, by design. Inside the reset handler, the machine is forced into
Undef mode so that we can set up a stack pointer, since we know in advance we
are going to switch modes after hitting our strange instruction. The machine is
switched back into Supervisor mode afterward. When the processor then tries to
execute the bit pattern we deliberately put into the pipeline,

ADDSHFTr0r0r4 DCD 0x77F00FF4 ; r0 = (r0 + r4) LSL #5

310 ARM Assembly Language

it immediately changes the mode to Undef and sets the Program Counter to 0x4,
expecting to fetch some type of branch instruction at the exception vector that will
ultimately take us to our handler.

Now that the processor has begun exception processing, the instruction at
address 0x4 is fetched and executed. This PC-relative load moves the address
of our handler into the Program Counter, and fetching begins from there. The
first three instructions in the handler save off register and SPSR information to
the stack. A comparison is made to determine if the bit pattern the processor
rejected was something we wish to support, and if so, the processor branches to
the ADDSHFTInstruction routine. When returning from our undefined instruction
exception, we restore the SPSR and the register file that was stacked and move the
Link Register value into the Program Counter, given as

 LDMFD sp!, {r0-r12, PC}^

This particular version of LDM does two things: it loads the Link Register value
back into the Program Counter, effectively jumping back to where we left off, and
it moves the SPSR back into the CPSR. Astute readers will notice that we made
no adjustment to the Program Counter or Link Register values before we jumped
back to the main code. We mentioned before that in some cases, such as during
a branch and link instruction (BL), the Link Register value may be adjusted due

SVC Undef

PC = 0
Jump to reset handler

Switch to undef mode

Hit offending instruction

Set up stack pointer
switch to SVC mode

Undef_addr PC
enter handler

Test for valid
instruction encoding

ADDSHFT instruction

Return to main code

Spin in infinite loop

FIGURE 14.4 Exception flow diagram.

311Exception Handling

to the fact that the Program Counter points two instructions ahead of the instruc-
tion being executed. In this case, the Link Register holds the return address of
the instruction following the offending instruction, so the processor will not re-
execute the one that caused the exception. For some exceptions, as we’ll see in
a moment, you might want to retry an offending instruction. Since we’ve finished
handling the exception, the machine automatically changes back to Supervisor
mode.

14.8.3 inTeRRupTs

ARM cores have two interrupt lines—one for a fast interrupt (FIQ) and one for a
low-priority interrupt (IRQ). If there are only two interrupts in the entire system,
then this works well, as there is already some level of prioritization offered. FIQs
have a higher priority than IRQs in two ways: they are serviced first when multiple
interrupts arise, and servicing an FIQ disables IRQ interrupts. Once the FIQ handler
exits, the IRQ can then be serviced. FIQ interrupts also have the last entry in the vec-
tor table, providing a fast method of entering the handler, as well as five extra banked
registers to use for exception processing.

But with only two lines, how would an SoC with dozens of potential interrupt
sources compete for the processor’s time? There are a couple of ways to do this.
The first, but not the best way, is to basically wire OR the interrupts coming from
peripherals or external devices together. This would then be used to signal an inter-
rupt on one of the two lines going to the processor. However, this would require
polling each interrupt source to determine who triggered the interrupt, which would
waste thousands of cycles of time (especially if the requesting device is in a hurry
and happens to be the last one in the list!) A second way is to use an external inter-
rupt controller, which is a specialized piece of hardware that takes in all of the inter-
rupt lines, assigns priorities to them, and often provides additional information to
help the processor, such as a register that can be read for quickly determining who
requested the interrupt. When handling interrupts, the processor must first change
the Program Counter to either address 0x18 or 0x1C in memory, fetch the instruction
that will change the Program Counter, e.g., either a MOV or LDR instruction, then
jump to a new address, which is the start of the interrupt handler. The first column of
Figure 14.5 shows what happens when you have multiple sources of interrupts. If the
incoming lines are wired together or connected to an external interrupt controller,
after the processor jumps to the start of the interrupt handler, the handler itself still
has to determine which device caused the interrupt, and only after doing so can the
processor branch to the correct interrupt handler.

 The second column of Figure 14.5 shows the general flow for a better way to
handle interrupts. Suppose all of the interrupting peripherals in a system are con-
nected through a controller so that when a device, such as a timer, needs attention
(let’s say the timer expired), the controller itself pulls on an interrupt line going to
the processor. It also has the ability to give the processor the address of the interrupt
handler so that all the processor needs to do is load the address into the Program
Counter. The instruction to do so would still sit in the vector table as it did before.
Programmers would not be absolved of all duties, however, as a few registers would

312 ARM Assembly Language

need to be configured before using such a controller. The modern solution to handle
multiple interrupt sources, therefore, is to use what’s known as a vectored interrupt
controller (VIC), and given that so many popular microcontrollers have them now,
it’s worth a closer look.

14.8.3.1 Vectored Interrupt Controllers
Vectored Interrupt Controllers require a bit of thought and effort but make deal-
ing with interrupts less taxing. For hardware engineers, it makes designs more
straightforward, since all the logic needed to build complicated interrupt schemes
is already there. Software engineers appreciate the fact that everything is spelled
out, but it still requires some work to get registers configured, interrupts enabled
and defined, and memory locations initialized. Like the other microcontrollers
that we’ve examined so far, the STR910FAM32 contains an ARM core (although
this one is an ARM9E-based microcontroller), along with the two AMBA bus-
ses (AHB and APB) for interfacing to the memory and peripherals. You can see
from Figure 14.6 that the VIC sits off the AHB bus, so it appears as a memory-
mapped device. VIC registers exist at memory locations rather than within the
processor, a topic we’ll examine in much more detail when we look at memory-
mapped peripherals in the Chapter 16. For a complete description of the VIC in
the STR910FAM32 microcontroller, consult the STR91xFAxxx Reference Manual
(STMicroelectronics 2006).

The basic principle behind the VIC is to provide enough information to the pro-
cessor so that it doesn’t have to go searching through all of the possible interrupts to

IRQ C

IRQ

0x18

IRQ C IRQ C

0x18

B <IRQ C>

B <IRQ > LDR pc, <VIC>

Vectored controller VIC interfaceSimple controller

FIGURE 14.5 Three methods of handling interrupts.

313Exception Handling

determine the requester. It has multiple inputs and only two outputs for most cores—
the FIQ and IRQ interrupt lines. It also provides the most important component—the
address of the interrupt handler. Rather than polling every possible interrupt source,
the VIC can simply give the processor the address of the handler in a register. The
processor then loads this value into the Program Counter by way of an LDR instruc-
tion in the IRQ exception vector.

1.8V Core supply, VDD

Stacked burst flash memory die

Main flash 256 KB,
or 512 KB

2nd flash
32 KB

JTAG ISP

Burst interface

Burst interface
Pre-fetch
queue and

branch cache

JTAG

AVDD
AVREF*
AVSS

STR91x

GND Core GND, VSS
3.0 or 3.3V I/O supply, VDDQ

GND I/O GND, VSSQ

VBATT

Backup
supply 64 KB or 96 KB

SRAM
RTC Arbiter

Data TCM
interface

ARM966E-S
RISC CPU Core

Control logic/BIU and write buffer

Instruction
TCM

interface
JTAG
debug

and
ETM ETM

Real time clock

Wake up
(4) 16-bit timers,

CAPCOM, PWM

Motor control,
3-ph induction

(3) UART w/IrDA

(2) I2C

(80) GPIO****

(2) SPI

CAN 2.0B

8-channel 10-bit
ADC

Watchdog Tmr

32.768 kHz
XTAL

AMBA/AHBA interface

Programmable vectored
interrupt controllers

4 MHz to 25
MHz XTAL

EMI Ctrl

USB bus

To ethernet
PHY (Mll)**

16
External memory
interface (EMI)***,

muxed address/data

Programmable DMA
controller (8 ch.)

EM
I b

us

 or
16

 G
PI

O

AH
B

M
UX

 to
 48

 G
PI

O

AP
B

Et
he

rn
et*

*
or

 16
 G

PI
O

USB* full speed, 10
endpoints with FIFOs

Ethernet**
MAC, 10/100

* USB not available on STR910
**Ethernet MAC not available on STR910 and STR911
***EMI not available on LQFP80
****Only 40GPIOs on LQFP80

Dedicated
DMA

PLL, power management,
and supervisory reset AHB

to
APB

32 48

Request
from

UART,
12C,
SPI,

Timers,
Ext req

FIGURE 14.6 STR910FAM32 microcontroller. (From STMicroelectronics, STR91xF data
sheet [Rev4], STMicroelectronics, Geneva, Switzerland. With permission.)

314 ARM Assembly Language

EXAMPLE 14.2

To illustrate how a VIC works, on the following pages is some actual code that can
be run on the Keil tools. The code itself is a shortened version of the initialization
code available for the STR910FAM32 microcontroller.

; Standard definitions of Mode bits and Interrupt (I & F)
; flags in PSRs
SRAM_BASE EQU 0x04000000
VectorAddr EQU 0xFFFFF030 ; VIC Vector Address Register
Mode_USR EQU 0x10
Mode_IRQ EQU 0x12
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled

; System Control Unit (SCU) definitions

SCU_BASE EQU 0x5C002000 ; SCU Base Address (non-buffered)
SCU_CLKCNTR_OFS EQU 0x00 ; Clock Control register Offset
SCU_PCGR0_OFS EQU 0x14 ; Peripheral Clock Gating Register 0 Offset
SCU_PCGR1_OFS EQU 0x18 ; Peripheral Clock Gating Register 1 Offset
SCU_PRR0_OFS EQU 0x1C ; Peripheral Reset Register 0 Offset
SCU_PRR1_OFS EQU 0x20 ; Peripheral Reset Register 1 Offset
SCU_SCR0_OFS EQU 0x34 ; System Configuration Register 0 Offset

SCU_CLKCNTR_Val EQU 0x00020000
SCU_PLLCONF_Val EQU 0x000BC019
SCU_PCGR0_Val EQU 0x000000FB
SCU_PCGR1_Val EQU 0x00EC0803
SCU_PRR0_Val EQU 0x00001073
SCU_PRR1_Val EQU 0x00EC0803

 PRESERVE8

; Area Definition and Entry Point
; Startup Code must be linked first at Address at which it expects to run.
 AREA Reset, CODE, READONLY
 ENTRY

 ARM

; Exception Vectors Mapped to Address 0.
; Absolute addressing mode must be used.
; Dummy Handlers are implemented as infinite loops which can be modified.
Vectors
 LDR pc, Reset_Addr
 LDR pc, Undef_Addr
 LDR pc, SVC_Addr
 LDR pc, PAbt_Addr
 LDR pc, DAbt_Addr
 NOP ; Reserved Vector
 LDR pc, [pc, #-0x0FF0]
 LDR pc, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undef_Addr DCD UndefHandler
SVC_Addr DCD SVCHandler
PAbt_Addr DCD PAbtHandler
DAbt_Addr DCD DAbtHandler
 DCD 0 ; Reserved Address
IRQ_Addr DCD IRQHandler
FIQ_Addr DCD FIQHandler
UndefHandler B UndefHandler
SVCHandler B SVCHandler

315Exception Handling

PAbtHandler B PAbtHandler
DAbtHandler B DAbtHandler
IRQHandler B IRQHandler
FIQHandler B FIQHandler

Reset_Handler

; Setup Clock

 LDR r0, =SCU_BASE
 LDR r1, =0x00020002
 STR r1, [r0, #SCU_CLKCNTR_OFS]

 ; Select OSC as clk src

 NOP
 ; Wait for OSC stabilization
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 LDR r1, =SCU_CLKCNTR_Val

 ; Setup clock control

 STR r1, [r0, #SCU_CLKCNTR_OFS]
 LDR r1, =SCU_PCGR0_Val

 ; Enable clock gating

 STR r1, [r0, #SCU_PCGR0_OFS]
 LDR r1, =SCU_PCGR1_Val
 STR r1, [r0, #SCU_PCGR1_OFS]

; Setup Peripheral Reset

 LDR r1, =SCU_PRR0_Val
 STR r1, [r0, #SCU_PRR0_OFS]
 LDR r1, =SCU_PRR1_Val
 STR r1, [r0, #SCU_PRR1_OFS]

; Enter IRQ Mode and set its Stack Pointer

 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
 LDR sp, =SRAM_BASE + 100

; Enter User Mode

 MSR CPSR_c, #Mode_USR

; VIC registers

316 ARM Assembly Language

VIC0_VA7R EQU 0xFFFFF11C ; Vector Address Register for TIM3 IRQ
VIC0_VC7R EQU 0xFFFFF21C ; Vector Control Register for TIM3 IRQ
VIC0_INTER EQU 0xFFFFF010 ; Interrupt Enable Register

; TIM3 registers
TIM3_CR2 EQU 0x58005018 ; TIM3 Control Register 2
TIM3_CR1 EQU 0x58005014 ; TIM3 Control Register 1

 LDR r4, =VIC0_VA7R
 LDR r5, =IRQ_Handler
 STR r5, [r4]

 ; Setup TIM3 IRQ Handler addr

 LDR r4, =VIC0_VC7R
 LDR r5, [r4]
 ORR r5, r5, #0x27
 STR r5, [r4]

 ; Enable the vector interrupt and specify interrupt number
 LDR r4, =VIC0_INTER
 LDR r5, [r4]
 ORR r5, r5, #0x80
 STR r5, [r4] ; Enable TIM3 interrupt

 ; Timer 3 Configuration (TIM3)

 LDR r4, =TIM3_CR2
 LDR r5, =0xFF00
 LDR r6, =0x200F
 LDR r8, [r4]
 AND r8, r8, r5 ; Clear prescaler value
 ORR r8, r8, r6

 ; Setup TIM3 prescaler and enable TIM3 timer overflow interrupt
 STR r8, [r4]
 LDR r4, =TIM3_CR1
 LDR r5, =0x8000
 LDR r6, [r4]
 ORR r6, r6, r5
 STR r6, [r4] ; TIM3 counter enable

; main loop

 LDR r9, =0xFFFFFFFF

Loop B Loop

IRQ_Handler

 SUB lr, lr, #4 ; Update Link Register
 SUB r9, r9, #1
 STMFD sp!, {r0-r12, lr} ; Save Workspace & LR to Stack
 LDR r4, =0x5800501C ; r4 = address of TIM3_SR
 LDR r5, =~ 0x2000
 LDR r6, [r4]
 AND r6, r6, r5
 STR r6, [r4] ; Clear Timer Overflow interrupt flag
 LDR r0, =VectorAddr ; Write to the VectorAddress
 LDR r1, =0x0 ; to clear

317Exception Handling

 STR r1, [r0] ; the respective Interrupt
 LDMFD sp!, {r0-r12, PC}^ ; Return to program, restoring state

 END

Nearly all of the code sets up registers, initializes clocks, or sets up stack pointers.
Note that this example removes some parts that are not critical to demonstrating
how interrupts work. You can see all of the EQU directives that assign names to
numeric values—this is purely for convenience. Reading code becomes difficult
otherwise. The modes are translated into bit patterns, e.g., Mode_USR is equated
to 0x10, which is what the lower 5 bits of the CPSR would look like in User mode.

The code actually starts after the first AREA directive, and you can see the
exception vector table being built with the label Vectors starting the table. While
we normally use LDR instructions to load the PC when a handler is not close
enough to use a B (branch) instruction, the method used here is the most general
and copes with any memory map. In fact, take a look at the vector table, as shown
in Table 14.2. The IRQ vector now contains an instruction that tells the processor
to load the PC with a value from memory. The address of that value in memory
is calculated using the difference between the Program Counter (which would be
0x20 when this instruction reaches the execute stage of the ARM7TDMI’s pipe-
line) and the value 0xFF0, giving 0xFFFFF030, which is a strange address and
not at all intuitive. It turns out that the VIC has an address register for the proces-
sor, called VIC0_VAR, that just happens to sit at address 0xFFFFF030 in memory
(STMicroelectronics defined the address—it could have been anything). This reg-
ister holds the address of our IRQ exception handler, and the address is matched
to a particular interrupt source. For example, suppose a timer and a USB interface
can both generate interrupts. Inside of the VIC, handler addresses are stored in
memory-mapped registers for each interrupt source. So if the USB interface gener-
ates an interrupt, its exception handler address is placed in the VIC0_VAR register.
If the timer generates an interrupt, then the handler address belonging to the timer
is placed in the VIC0_VAR register. Instead of a generic exception handler for
interrupts, which would have to spend time figuring out who triggered the IRQ
interrupt, the programmer can write a special handler for each type of interrupt
and the processor will jump immediately to that unique handler.

In the example code, TIMER3 is used to generate an interrupt when the counter
increments from 0x0000 to 0xFFFF. TIMER3 sits on channel 7 by default and its

TABLE 14.2
Vector Table Showing IRQ Branch Instruction

Exception Vector Instruction

Reset LDR pc, Reset_Addr

Undefined Instruction LDR pc, Undef_Addr

SVC LDR pc, SVC_Addr

Prefetch Abort LDR pc, PAbt_Addr

Data Abort LDR pc, DAbt_Addr

Reserved NOP

IRQ LDR pc, [pc, -0x0FF0]
FIQ LDR pc, FIQ_Addr

318 ARM Assembly Language

interrupt line goes through VIC0. There are three registers that also need to be set
up for VIC0 as shown in Table 14.3. You can see on page 316 where the code
equates addresses with the names of the VIC registers. Immediately afterward,
the address of the timer’s interrupt handler, called IRQ_Handler, is stored in the
VIC0_VA7R register. Remember that if an interrupt is triggered, the VIC will know
it was TIMER3 requesting the interrupt, and then it will move the handler’s address
from VIC0_VA7R into VIC0_VAR. The remaining code enables and configures the
timer.

The handler itself is at the end of the code. It adjusts the Link Register value
first so that we can exit the handler with a single instruction (to be discussed in a
moment). The second instruction in the handler begins stacking off registers into
memory, including the Link Register. The rest of the handler clears the timer over-
flow flag in the timer peripheral, and it disables the interrupt request by writing to
the VIC0_VAR register. An interrupt handler usually contains the code that clears
the source of the interrupt.

Returning from an interrupt is not difficult, but it does require a little explana-
tion. The timing diagram in Figure 14.7 shows an example sequence of events in
the ARM7TDMI processor’s pipeline. Cycle 1 shows the point at which the pro-
cessor acknowledges that the IRQ line has been asserted. The ADD instruction is
currently in the execute stage and must complete, since the processor will allow all
instructions to finish before beginning an interrupt exception sequence. In Cycle
2, the processor has now begun handling the IRQ, but notice that the Program

TABLE 14.3
VIC0 Registers

Address Register Name Function

0xFFFFF010 VIC0_INTER Interrupt enable register

0xFFFFF11C VIC0_VA7R Vector address register

0xFFFFF21C VIC0_VC7R Control register

Cycle
Address

0x8000
0x8004
0x8008
0x800C
0x0018
0x001C
0x0020

0xAF04
0xAF00

0xAF08

Operation

ADD
SUB

X
MOV

XX
XXX
STMFD
MOV
LDR

B (to 0xAF00)

1

IRQ

2 3 4 5 6 7 8

F
F

F
F

F
F

F
F

F

F

D

D
D

D
D

E

E

E

Execute
IRQ

Decode
IRQ Linkret Adjust

FIGURE 14.7 Interrupt processing in the ARM7 pipeline.

319Exception Handling

Counter has already progressed, i.e., the processor has fetched an instruction from
this address, and the PC points to the instruction at 0x800C. It is this value that is
loaded into the Link Register in Cycle 3. The exception vector 0x18 becomes the
new Program Counter value, and the instruction at this address is fetched, which
is a branch instruction. In Cycle 4, the Link Register can be adjusted in the same
way that it is for BL instructions, but this makes the address in the Link Register
0x8008, which is four bytes off if we decide to use this address when we’re done
with the interrupt handler.

In our example code, the handler adjusts the Link Register value straight away
before stacking it. Notice the first instruction in the handler is

 SUB lr, lr, #4

This allows us to exit the handler using only a single instruction:

 LDMFD sp!, {r0-r12, pc}^

which is a special construct. The LDM instruction restores the contents of the
registers from the stack, in addition to loading the PC with the value of the Link
Register. The caret (̂) at the end of the mnemonic forces the processor to transfer
the SPSR into the CPSR at the same time, saving us an instruction. This is the rec-
ommended way to exit an interrupt handler.

14.8.3.2 More Advanced VICs
Believe it or not, there is an even faster way of handling interrupts. Referring back to
Figure 14.5, we’ve described two methods already, which are shown in the first two
columns. The first requires the processor to branch to an address—the start of your
interrupt handler. The handler then determines who requested the interrupt, branch-
ing to yet another location for the handler. The second method uses a VIC so that the
processor still goes to the IRQ exception vector, but instead of branching to a generic
handler, it branches to a handler address that is given to it by the VIC.

If the VIC is coupled ever more tightly to the processor, it’s possible to forgo an
exception vector completely; ergo, a bus is created on the processor that talks directly
to the VIC. As shown in the third column of Figure 14.5, when an interrupt occurs, the
processor knows to take the address from the dedicated bus. Recall from the previous
example that the VIC has memory-mapped registers that are attached to the AHB bus.
When an interrupt occurs, the processor gets its interrupt service routine address from
the VIC0_VAR register, which is also on the AHB bus. The third method allows the
interrupt service routine’s address to be given to the core on a dedicated address bus,
along with handshake lines to signal that the address is stable and that the core has
received it. The processor doesn’t even have to go to the exception vector at address
0x18. Since the processor core must be modified to accept a more advanced vectored
interrupt controller, this feature is not found on all ARM processors.

14.8.4 ABoRTs

Aborts have something of a negative connotation to them, but not all of them are bad.
Certainly, the processor should be prepared to deal with any that happen to appear,

