
275

Subroutines and Stacks

13.1 INTRODUCTION

Subroutines, which are routines dedicated to focused or shorter tasks, occur in nearly
all embedded code, often to perform initialization routines or to handle algorithms
that require handcrafted assembly. You’re very likely to write subroutines when you
come across a large problem to solve. The notion of divide-and-conquer aptly applies
to writing assembly code—it’s just easier to get your head around a problem by
describing it as a sequence of events, worrying about the low-level details when you
write the event itself. For example, you could break a large program that controls a
motor into something that looks like

main BL ConfigurePWM
 BL GetPosition
 BL CalcOffset
 BL MoveMotor
 ...

and then write each of the smaller tasks as subroutines. Even if you’re coding at
a high level, say in C or C++, it’s natural to break down a large task into smaller
blocks or functions, each function being a routine that can be called from a main
routine.

To write a proper subroutine, we also have to look at ways of saving and restoring
data, passing information to and from subroutines, and building stacks. This chapter
will cover some instructions that we skipped in Chapter 5, the load and store multiple
operations LDM and STM, and their synonymous mnemonics PUSH and POP, as
they’re used frequently in stack operations. We’ll briefly look at ARM standards that
govern stack creation and define a standard way to call subroutines, so that a com-
mon protocol exists for all developers. Without such standards, programmers could
easily write code that is incompatible with code created using third-party tools, or
even tools from ARM. Before writing any code, though, we have to look at those new
instructions and define what we mean by a stack.

13.2 THE STACK

Stacks are conceptually Last In-First Out (LIFO) queues that can be used to describe
systems from the architectural level down to the hardware level. Stacks can be used
for software operations, too. More abstract descriptions of stacks can be used as data
types by languages such as Java or Python, and there are even stack-based computer
systems. When referring to hardware, generally these are areas in memory that have

13

engler, cs140e: annotations
written for assembly programmers, but useful for under
standing how stacks and register saving works for our threads lab

276 ARM Assembly Language

a variable length and a fixed starting address. Figure 13.1 shows a description of a
hardware stack, with each entry being a fixed number of bytes in memory (for our
case, generally these are word-length values). Data is written, or pushed, onto the top
of the stack, and also read, or popped, from the top of the stack, where the proces-
sor adjusts the stack pointer before or after each operation. ARM processors have a
stack pointer, register r13, which holds the address of either the next empty entry or
the last filled entry in the queue, depending on what type of stack you have. We’ll see
the different types shortly.

13.2.1 LdM/sTM insTRuCTions

Back in Chapter 5, we covered all of the basic load and store instructions, leaving
off one pair until now—the load and store multiple instructions. Where LDR and
STR instructions transfer words, halfwords, and bytes, the LDM and STM instruc-
tions always transfer one or more words using registers and a pointer to memory,
known as the base register. This type of load/store appears most often in the context
of stacks and exception handling, since the processor only has a limited number of
registers, and at times, you just have to make some room for new data somewhere.
By saving off the contents of the registers before handling an exception or going to a
subroutine, you free up registers for different uses. Obviously, these must be restored
when you’re finished, and there are instructions for doing exactly that. There are
also advantages in using a multiple register transfer instruction instead of a series
of single data transfer instructions, to wit, the code size decreases. A single LDM
instruction can load multiple registers from memory using only a single instruction,
rather than individual LDR instructions. Execution time also shortens, since only
one instruction must be fetched from memory.

On the ARM7TDMI, the syntax of the LDM instruction is

 LDM <address-mode> {<cond>} <Rn> {!}, <reg-list> {̂ }

where {<cond>} is an optional condition code; <address-mode> specifies the
addressing mode of the instruction, which tells us how and when we change the
base register; <Rn> is the base register for the load operation; and <reg-list> is a

PUSH POP

FIGURE 13.1 A hardware stack in memory.

277Subroutines and Stacks

comma-delimited list of symbolic register names and register ranges enclosed in
braces. We’ll talk more about the “!” and “^” symbols in a moment.

On the Cortex-M3/M4, the syntax of the LDM instruction is

 LDM <address-mode> {<cond>} <Rn> {!}, <reg-list>

where {<cond>} is an optional condition code; <address-mode> specifies the address-
ing mode of the instruction (although as we’ll see in the next section, there are only
two); <Rn> is the base register for the load operation; and <reg-list> is a comma-
delimited list of symbolic register names and register ranges enclosed in braces.

EXAMPLE 13.1

Suppose you wanted to load a subset of all registers, for example, registers r0 to
r3, from memory, where the data starts at address 0xBEEF0000 and continues
upward in memory. The instruction would simply be

 LDMIA r9, {r0-r3}

where the base register r9 holds the address 0xBEEF0000. The addressing mode
used here is called Increment After, or IA. This says to increment the address after
each value has been loaded from memory, which we’ll see shortly. This has the
same effect as four separate LDR instructions, or

 LDR r0, [r9]
 LDR r1, [r9, #4]
 LDR r2, [r9, #8]
 LDR r3, [r9, #12]

Notice in the example above that at the end of the load sequence, register r9 has
not been changed and still holds the value 0xBEEF0000. If you wanted to load
data into registers r0 through r3 and r12, you could simply add it to the end of the
list, i.e.,

 LDMIA r9, {r0-r3, r12}

Obviously, there must be at least one register in the list, but it doesn’t actually
matter in what order you list the registers. The lowest register will always be loaded
from the lowest address in memory, and the highest register will be loaded from the
highest address. For example, you could say

 LDMIA r9, {r5, r3, r0-r2, r14}

and register r0 will be loaded first, followed by registers r1, r2, r3, r5, and r14.
Analogous to the load multiple instruction, the store multiple instruction (STM)

transfers register data to memory, and for the ARM7TDMI, its syntax is

STM <address-mode> {<cond>} <Rn> {!}, <reg-list> {̂ }

equiv

engler
Arrow

engler
Arrow

278 ARM Assembly Language

where the options are identical to those for the LDM instruction. The syntax for the
Cortex-M3/M4 is

 STM <address-mode> {<cond>} <Rn> {!}, <reg-list>

The options on LDM and STM instructions are used sparingly, but they’re worth
mentioning here. Starting from the value in the base register, the address accessed is
decremented or incremented by one word for each register in the register list. Since
the base register is not modified after an LDM or STM instruction completes, you
can force the address to be updated by using the “!” option with the mnemonic. If
you happen to have the base register in the register list, then you must not use the
writeback option. The caret (̂) option is discussed in Chapter 14, since it relates more
to the procedures of handling exceptions.

The addressing modes go by different names, as we’ll see in a moment, but basi-
cally there are four:

IA—Increment After
IB—Increment Before
DA—Decrement After
DB—Decrement Before

The suffix on the mnemonic indicates how the processor modifies the base regis-
ter during the instruction. For example, if register r10 contained 0x4000,

 LDMIA r10, {r0, r1, r4}

would begin by loading register r0 with data from address 0x4000. The value in
the base register is incremented by one word after the first load is complete. The
second register, r1, is loaded with data from 0x4004, and register r4 is loaded
with data from 0x4008. Note here that the base register is not updated after the
instruction completes. The other three suffixes indicate whether the base register
is changed before or after the load or store, as well as whether it is incremented
or decremented, as shown in Figure 13.2. In the following sections, we’ll exam-
ine stacks and the other addressing mode suffixes that are easier to use for stack
operations.

IA

Increasing
address

r4
r1
r0

r4
r1
r0

r4
r1
r0

r4
r1
r0

LDMxx r10, {r0, r1, r4}

Base register (Rb)

STMxx r10, {r0, r1, r4}

IB DA DB

r10

FIGURE 13.2 LDM/STM operations.

useful for accessing registers in exception
handler.

engler
Arrow

279Subroutines and Stacks

While the ARM7TDMI supports all four addressing modes, version 7-M pro-
cessors like the Cortex-M3/M4 have more restrictive options and a few cautions to
mind. There are only two addressing modes from which to choose:

IA—Increment After
DB—Decrement Before

since the Cortex-M3/M4 supports only one type of stack, which we’ll examine more
closely in the next few sections. If an LDM instruction is used to load the Program
Counter, ensure that bit 0 of the loaded value is set to a 1; otherwise a fault exception
occurs. For both the STM and LDM instructions, the stack pointer should not be
included in the register list. Also be aware that if you have an LDM instruction that
has the Link Register in the register list, you cannot include the Program Counter in
the list. Consult the ARM v7-M Architectural Reference Manual (ARM 2010a) for
other restrictions when using LDM and STM instructions.

13.2.2 push And pop

There are two instructions that are synonymous with STMDB and LDMIA, namely
PUSH and POP, respectively. PUSH can be used in place of a STMDB instruction
with both the ARM7TDMI and the Cortex-M4, as it falls in line with the new pre-
ferred UAL mnemonics. The syntax for the two instructions is

 PUSH{<cond>} <reglist>
 POP{<cond>} <reglist>

where {<cond>} is an optional condition code and <reg-list> is a comma-delimited
list of symbolic register names and register ranges enclosed in braces. PUSH has
similar restrictions to the STM instruction, e.g., the register list must not contain the
PC. POP has similar restrictions to the LDM instruction, e.g., the register list must
not contain the PC if it contains the LR.

EXAMPLE 13.2

PUSH and POP make it very easy to conceptually deal with stacks, since the
instruction implicitly contains the addressing mode. Suppose we have a stack that
starts at address 0x20000200 on the Tiva TM4C123GH6ZRB, grows downward
in memory (a full descending stack), and has two words pushed onto it with the
following code:

 AREA Example3, CODE, READONLY
 ENTRY
SRAM_BASE EQU 0x20000200
 LDR sp, =SRAM_BASE

 LDR r3, =0xBABEFACE
 LDR r4, =0xDEADBEEF
 PUSH {r3}
 PUSH {r4}

280 ARM Assembly Language

 POP {r5}
 POP {r6}

stop B stop ; stop program

As we’ll see in the next section, a full descending stack implies that the stack
pointer is pointing to the last (full) item stored in the stack (at address 0x20000200)
and that the stack items are stored at addresses that decrease with each new
entry. Therefore, our stack pointer must be decremented before anything new is
placed on the stack. The first word in our program would be stored in memory at
address 0x200001FC. The second word would be stored at address 0x200001F8.
If you run the code above in a simulator and view a memory window, such as the
one in Figure 13.3, you will see the two words stored at successively decreasing
addresses. The POP instructions will read the data into whichever registers we
choose, so the value 0xDEADBEEF is popped off the top of the stack into regis-
ter r5. The stack pointer is incremented afterward. The second POP instruction
moves the value 0xBABEFACE into register r6, shown in Figure 13.4, returning the
stack pointer value to 0x20000200.

13.2.3 fuLL/eMpTy AsCending/desCending sTACKs

Stack operations are easy to implement using LDM and STM instructions, since the
base register is now just the stack pointer, register r13. Several types of stacks can be
built, depending on personal preferences, programming, or hardware requirements.

FIGURE 13.3

sp

sp
sp

sp

sp BABEFACE

BABEFACE BABEFACE
DEADBEEF

BABEFACE
DEADBEEFDEADBEEF

BABEFACE
DEADBEEFsp

r3

r5
r6

r4

PUSH operation

POP operation

FIGURE 13.4

281Subroutines and Stacks

Your software tools will probably build a particular type of stack by default.
Fortunately, they all use the same instructions—the differences lie with suffixes on
those instructions. The options are

Descending or ascending—The stack grows downward, starting with a high
address and progressing to a lower one (a descending stack), or upward, start-
ing from a low address and progressing to a higher address (an ascending
stack).

Full or empty—The stack pointer can either point to the last item in the stack (a
full stack), or the next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead
of the increment/decrement and before/after suffixes. For example, you can just use
the FD suffix to indicate that you’re building a full descending stack; the assembler
will translate that into the appropriate instructions. Pushing data onto a full descend-
ing stack is done with an STMDB instruction. The stack starts off at a high address
and works its way toward a lower address, and full refers to the stack pointer point-
ing at the last item in the stack, so before moving new data onto it, the instruction
has to decrement the pointer beforehand. Popping data off this type of stack requires
the opposite operation—an LDMIA instruction. Because the address always points
to the last item on the stack, the processor reads the data first, then the address is
incremented. Refer to Table 13.1 for a list of stack-oriented suffixes.

EXAMPLE 13.3

Let’s build a full descending stack in memory, using register r13 as the pointer to
the stack. Further suppose that this code is part of a routine that will require the
Link Register and registers r4 through r7 to be saved on the stack. Assume that the
SRAM starts at address 0x20000200 for the Tiva TM4C123GH6ZRB microcon-
troller. Our code might start something like this:

 AREA Test, CODE, READONLY
SRAM_BASE EQU 0x20000200
 ENTRY
 ; set up environment
 LDR sp, =SRAM_BASE ;r13 = ptr to stack memory
 ;
 ; your main code is here
 ;

TABLE 13.1
Stack-Oriented Suffixes

Stack Type PUSH POP

Full descending STMFD (STMDB) LDMFD (LDMIA)

Full ascending STMFA (STMIB) LDMFA (LDMDA)

Empty descending STMED (STMDA) LDMED (LDMIB)

Empty ascending STMEA (STMIA) LDMEA (LDMDB)

282 ARM Assembly Language

		 ; call your routine with a branch and link instruction
		 BL	 Myroutine
		 ;
Myroutine	 ; Routine code goes here. First, create space in the register
		 ; file by saving r4-r7, then save the Link Register for the return,
		 ; all with a single store multiple to the stack
		 STMDB	 sp!, {r4-r7,lr}	 ;Save some working registers
	 ;
	 ; Routine code
	 ;
	 ; Restore saved registers and move the Link Register contents
	 ; into the Program Counter, again with one instruction
	 LDMIA	 sp!, {r4-r7,pc}	 ;restore registers and return
	 END

Recall that full descending stacks can be created by using the STMDB/LDMIA
combination, identical to the PUSH/POP combination. Notice that the LDM
instruction pops the value of the Link Register into the Program Counter, so if we
were to call our stacking routine as part of another function, the return address
is moved into the Program Counter automatically and fetching begins from there.
This is exactly how subroutines are called, which brings us to our next section.

13.3  SUBROUTINES

Most large programs consist of many smaller blocks of code, or subroutines, where
functions can be called at will, such as a print routine or a complicated arithme-
tic function like a logarithm. A large task can be described more easily this way.
Subroutines also allow programmers to write and test small blocks of code first,
building on the knowledge that they’ve been proven to work. Subroutines should fol-
low certain guidelines, and software should be able to interrupt them without caus-
ing any errors. A routine that can be interrupted and then called by the interrupting
program, or more generally, can be called recursively without any problems, is called
reentrant. By following a few simple procedures at the start of your code, you should
be able to write reentrant subroutines with few headaches.

We’ve already seen a few examples of subroutines in Chapter 6, where the subrou-
tine is called with the BL (branch and link) instruction. This instruction transfers the
branch target (the starting address of your subroutine) into the Program Counter and
also transfers the return address into the Link Register, r14, so that the subroutine
can return back to the calling program.

Subroutines can also call other subroutines, but caution must be taken to ensure
information is not lost in the process. For example, in Figure 13.5, a main routine
calls a subroutine called func1. The subroutine should immediately push the values
of any registers it might corrupt, as well as the Link Register, onto the stack. At some
point in the code, another subroutine, func2, is called. This subroutine should begin
the exact same way, pushing the values of any used registers and the Link Register
onto the stack. At the end of func2, a single LDM instruction will restore any cor-
rupted registers to their original values and move the address in the Link Register
(that we pushed onto the stack) into the Program Counter. This brings us back to
point where we left off in subroutine func1. At the end of func1, registers are restored
and the saved Link Register value coming off the stack is moved into the Program
Counter, taking us back to the main routine. If func1 doesn’t save the Link Register

283Subroutines and Stacks

at the start of its routine, when func2 is called, the Link Register will get overwrit-
ten with a new return address, so when func1 finishes and tries to return to the main
routine, it has the wrong return address.

13.4  PASSING PARAMETERS TO SUBROUTINES

Subroutines are often written to be as general as possible. A subroutine that com-
putes the arctangent of 8 is of little use, but one that computes the arctangent of
any given number can potentially be used throughout your code. Therefore, data or
addresses need to be able to move into or out of a subroutine, and these values are
called parameters. These can be passed to a subroutine through a predefined set of
registers, a specified block of memory, or on the stack. We’ll see what the trade-offs
and requirements are for the different approaches, starting with the use of registers.

13.4.1 P assing Parameters in Registers

Passing parameters in registers is a fast way of transferring data between the calling
program and a subroutine, but the subroutine must expect the data to be in specific
registers.

EXAMPLE 13.4

Saturation arithmetic is used frequently in signal processing applications. For situ-
ations where the output of a digital filter or digital controller cannot exceed a cer-
tain value, saturation arithmetic can be used to effectively drive the result to either
the most positive or most negative value that can be represented with a given
number of bits. For example, a 32-bit value such as 0x7FFFFFFC can be seen as a
large, positive value in a two’s complement representation. However, if you were
to add another small, positive number to it, such as 9, then the value becomes
0x80000005, which is now a very large negative number. If we were to use sat-
uration arithmetic, the value returned from the addition would be 0x7FFFFFFF,
which is the largest positive value you can represent in 32 bits using two’s
complement. Similarly, a large negative movement because of subtraction, e.g.,
0x80000001 minus 2, would produce 0x80000000, the largest negative number,

func1 func2

STMFD
sp!, {regs, lr}

MOV pc, lr

BL func2BL func1

LDMFD
sp!, {regs, pc}

...
......

...

...
...

FIGURE 13.5  Stacking the Link Register during entry to a subroutine.

284 ARM Assembly Language

using saturation arithmetic. Imposing these two limits could be used to prevent an
audio or speech waveform from going from the most positive to the most negative
value, which introduces high-frequency “clicks” in the signal. Suppose we wish to
use saturation arithmetic to perform a logical shift left by m bits. Clearly a number
as simple as 0x40000000 already gets us into trouble. This can actually be done
on an ARM7TDMI using only four instructions, as described by Symes (Sloss,
Symes, and Wright 2004):

; r4 = saturate32(r5 < <m)
MOV	 r6, #0x7FFFFFFF
MOV	 r4, r5, LSL m
TEQ	 r5, r4, ASR m	 ; if (r5! = (r4 > >m))
EORNE	 r4, r6, r5, ASR #31	 ; r4 = 0x7FFFFFFF^sign(r5)

Let’s convert this algorithm into a subroutine, and then pass the parameters
through registers. For our example, the parameters are the value to be shifted,
the shift count, and the return value. Our target microcontroller can again be the
LPC2132 from NXP. The code might look something like the following:

SRAM_BASE	 EQU	 0x40000000
	 AREA 	Passbyreg, CODE, READONLY
	 ENTRY

	 LDR	 sp, =SRAM_BASE
	 ; try out a positive case (this should saturate)
	 MOV	 r0, #0x40000000
	 MOV	 r1, #2
	 BL	 saturate

	 ; try out a negative case (should not saturate)
	 MOV	 r0, #0xFFFFFFFE
	 MOV	 r1, #8
	 BL	 saturate

stop
	 B	 stop
saturate
	 ; Subroutine saturate32
	 ; Performs r2 = saturate32(r0 < <r1)
	 ; Registers used:
	 ; r0 - operand to be shifted
	 ; r1 - shift amount (m)
	 ; r2 = result
	 ; r6 – scratch register

	 STMIA	sp!,{r6,lr}
	 MOV	 r6, #0x7FFFFFFF
	 MOV	 r2, r0, LSL r1
	 TEQ	 r0, r2, ASR r1		 ; if (r0! = (r2 > >m))
	 EORNE	r2, r6, r0, ASR #31	 ; r2 = 0x7FFFFFFF^sign(r0)
	 LDMDB	sp!,{r6,pc}		 ; return

	 END

285Subroutines and Stacks

There are a few things to note in this example. The first is that we have three
parameters to pass between the calling routine and the subroutine: the operand
to be shifted, the shift amount, and the result. We can use registers r0, r1, and r2
for these parameters. Note that the subroutine also expects the parameters to be
in these specific registers. The second point is that one register, r6, is corrupted
in our subroutine, and we should, therefore, stack it to preserve its original value.
Our stack pointer, register r13, is loaded with the base address of SRAM on the
LPC2132. Our stack starts at this address and goes upward in memory. The Link
Register is also stacked so that we ensure our subroutine can be interrupted, if nec-
essary. We exit the subroutine by using only a single LDM instruction, since the
last register to be updated is the PC, and this is loaded with the LR value, returning
us to the calling routine.

13.4.2 P assing Parameters by Reference

A better approach to passing parameters is to send a subroutine information to
locate the arguments to a function. Memory, such as a block of RAM, could hold
the parameters, and then the calling program could pass just the address of the
data to the subroutine, known as calling by reference. This allows for changing
values, and in fact, is more efficient in terms of register usage for some types
of data, e.g., a long string of characters. Rather than trying to pass large blocks
of data through registers, the starting address of the data is the only parameter
needed.

EXAMPLE 13.5

The same shift routine we wrote earlier could be written as shown below, now
passing the address of our parameters in SRAM to the subroutine through register
r3. Again, the target is the LPC2132.

SRAM_BASE	 EQU	 0x40000000
	 AREA 	 Passbymem, CODE, READONLY
	 ENTRY

	 LDR	 sp, =SRAM_BASE	 ; stack pointer initialized
	 LDR	 r3, =SRAM_BASE + 100	; writable memory for parameters

	 ; try out a positive case (this should saturate)
	 MOV	 r1, #0x40000000
	 MOV	 r2, #2
	 STMIA	 r3, {r1,r2}	 ; save off parameters
	 BL	 saturate

	 ; try out a negative case (should not saturate)
	 MOV	 r1, #0xFFFFFFFE
	 MOV	 r2, #8
	 STMIA	 r3, {r1,r2}
	 BL	 saturate

stop
	 B	 stop

286 ARM Assembly Language

saturate
	 ; Subroutine saturate32
	 ; Parameters are read from memory, and the
	 ; starting address is in register r3. The result
	 ; is placed at the start of parameter memory.
	 ; Registers used:
	 ; r3 – holds address of parameters in memory
	 ; r4 - result
	 ; r5 - operand to be shifted
	 ; r6 – scratch register
	 ; r7 - shift amount (m)

	 ; r4 = saturate32 (r5 <<  m)
	 STMIA	 sp!,{r4-r7,lr}		 ; save off used registers
	 LDMIA	 r3, {r5,r7}		 ; get parameters
	 MOV	 r6, #0x7FFFFFFF
	 MOV	 r4, r5, LSL r7
	 TEQ	 r5, r4, ASR r7		 ; if (r5! = (r4 > >m))
	 EORNE	 r4, r6, r5, ASR #31		 ; r4 = 0x7FFFFFFF^sign(r5)
	 STR	 r4, [r3]		 ; move result to memory
	 LDMDB	 sp!,{r4-r7,pc}		 ; return

	 END

The operand to be shifted and the shift count are stored in memory starting at
address SRAM_BASE + 100, where they are read by the subroutine. The entry to
the subroutine does some housekeeping by saving off the registers about to be
corrupted to the stack, including the Link Register. This is required by the ARM
Application Procedure Call Standard (AAPCS), which is covered shortly.

There are two options for returning a value from this subroutine. The first is
to just store it back in memory for later reading by some other code. The second
option is to return the value in a register, say register r3. In our example, the value
is stored back to memory. If you were doing string comparisons, you might call a
subroutine and send the addresses of the two strings to the subroutine, expecting
either a one (they matched) or a zero (they did not match) to be stored in a register
as the result.

13.4.3 P assing Parameters on the Stack

One of the most straightforward ways to pass parameters to a subroutine is to use the
stack. This is very similar to passing parameters in memory, only now the subroutine
uses a dedicated register for a pointer into memory—the stack pointer, register r13.
Data is pushed onto the stack before the subroutine call; the subroutine grabs the data
off the stack to be used; and results are then stored back onto the stack to be retrieved
by the calling routine.

At this point it’s worth mentioning that a programmer should be mindful of which
stack pointer he or she is using. Recall from Chapter 2 that the ARM7TDMI has dif-
ferent stack pointers for Supervisor mode, the exception modes, and for User mode,
allowing different stacks to be built for the different modes if the programmer wishes
to do so. The Cortex-M4 has two stack pointers, a main stack pointer (MSP), which
is the default stack pointer, and a process stack pointer (PSP). The choice of stack

287Subroutines and Stacks

pointers is controlled through the CONTROL Register, which was mentioned briefly
in Chapter 2. We’ll examine these more when dealing with exceptions in Chapter 15.

EXAMPLE 13.6

Rewriting the same saturated shift routine using the stack would look something
like the code that follows:

SRAM_BASE	 EQU	 0x40000000
	 AREA 	 Passbystack, CODE, READONLY
	 ENTRY

	 LDR	 sp, =SRAM_BASE	 ; stack pointer initialized

	 ; try out a positive case (this should saturate)
	 MOV	 r1, #0x40000000
	 MOV	 r2, #2
	 STMIA	 sp!, {r1,r2}	 ; push parameters on the stack
	 BL	 saturate
	 ; pop results off the stack
	 ; now r1 = result of shift
	 LDMDB	 sp!, {r1,r2}

	 ; try out a negative case (should not saturate)
	 MOV	 r1, #0xFFFFFFFE
	 MOV	 r2, #8
	 STMIA	 sp!, {r1,r2}
	 BL	 saturate
	 LDMDB	 sp!, {r1,r2}
stop
	 B	 stop
saturate
	 ; Subroutine saturate32
	 ; Parameters are read from the stack, and
	 ; registers r4 through r7 are saved on the stack.
	 ; The result is placed at the bottom of the stack.
	 ; Registers used:
	 ; r4 - result
	 ; r5 - operand to be shifted
	 ; r6 – scratch register
	 ; r7 - shift amount (m)

	 ; r4 = saturate32 (r5 <<  m)
	 STMIA	 sp!,{r4-r7,lr}		 ; save off used registers
	 LDR	 r5, [sp, #-0x20]	 ; get first parameter off stack
	 LDR	 r7, [sp, #-0x1C]	 ; get second parameter off stack
	 MOV	 r6, #0x7FFFFFFF
	 MOV	 r4, r5, LSL r7
	 TEQ	 r5, r4, ASR r7		 ; if (r5! = (r4 > >m))
	 EORNE	 r4, r6, r5, ASR #31	 ; r4 = 0x7FFFFFFF^sign(r5)
	 STR	 r4, [sp, #-0x20]	 ; move result to bottom of stack
	 LDMDB	 sp!,{r4-r7,pc}		 ; return

	 END

The stack structure is drawn in Figure 13.6. The two parameters are pushed to
the bottom of the stack, and then the saved registers are stacked on top of them,

288 ARM Assembly Language

ending with the Link Register at the top. Since register r13 now points to the top of
the stack, it’s necessary to use the stack pointer with a negative offset to address
the parameters. When the result is computed, it must be stored back to the bottom
of the stack, again using the stack pointer with a negative offset.

If the example above used full descending stacks, then the PUSH and POP instruc-
tions could be used just as easily. To see how this might look using a Cortex-M4, let’s
examine the same algorithm that uses full descending stacks.

EXAMPLE 13.7

Since the object of the example is to compare the stack structures rather than the
algorithm itself, the following code shows how to push two values onto the stack,
call the subroutine, and then pop two values off the stack. Careful readers will
have noticed that if the shift value were fixed, rather than variable as it is in our
subroutine, you could save quite a bit of coding by just using the SSAT instruction
that we saw in Chapter 7. For this example, the SRAM block begins at address
0x20000000 on the Tiva TM4C123GH6ZRB.

SRAM_BASE	 EQU    0x20000200

	 LDR	 sp, =SRAM_BASE	 ; stack pointer initialized

	 ; try out a positive case (this should saturate)
	 MOV	 r1, #0x40000000
	 MOV	 r2, #2
	 PUSH 	 {r1,r2}	 ; push parameters on the stack
	 BL	 saturate
	 ; pop results off the stack
	 ; now r1 = result of shift
	 POP 	 {r1,r2}

	 ; try out a negative case (should not saturate)
	 MOV	 r1, #0xFFFFFFFE
	 MOV	 r2, #8
	 PUSH 	 {r1,r2}

sp
lr
r7
r6
r5
r4
r3

sp-0x1C parameter 2 r7
sp-0x20 parameter 1 r5...

...

FIGURE 13.6  Stack configuration.

289Subroutines and Stacks

 BL saturate
 POP {r1,r2}
stop
 B stop

saturate
 ; Subroutine saturate32
 ; Parameters are read from the stack, and
 ; registers r4 through r7 are saved on the stack.
 ; The result is placed at the bottom of the stack.
 ; Registers used:
 ; r4 - result
 ; r5 - operand to be shifted
 ; r6 - scratch register
 ; r7 - shift amount (m)

 ; r4 = saturate32(r5 << m)
 PUSH {r4-r7,lr} ; save off used registers
 LDR r5, [sp, #0x14] ; get first parameter off stack
 LDR r7, [sp, #0x18] ; get second parameter off stack
 MOV r6, #0x7FFFFFFF
 MOV r4, r5, LSL r7
 ASR r4, r7
 TEQ r5, r4 ; if (r5! = (r4 > >m))
 IT NE
 EORNE r4, r6, r5, ASR #31 ; r4 = 0x7FFFFFFF^sign(r5)
 STR r4, [sp, #0x14] ; move result to bottom of stack
 POP {r4-r7,pc} ; return

Notice at the end of the subroutine that the Link Register value that was pushed
onto the stack is now loaded into the Program Counter using the POP instruction,
similar to the method used by the ARM7TDMI.

13.5 THE ARM APCS

It turns out that there’s a standard called the ARM Application Procedure Call
Standard (AAPCS) for the ARM architecture, which is part of the Application
Binary Interface (ABI) (ARM 2007b). The AAPCS defines how subroutines can
be separately written, separately compiled, and separately assembled to work
together. It describes a contract between a calling routine and a called routine that
defines:

• Obligations on the caller to create a program state in which the called rou-
tine may start to execute

• Obligations on the called routine to preserve the program state of the caller
across the call

• The rights of the called routine to alter the program state of its caller

The standard is also designed to combine the ease, speed, and efficiency of pass-
ing parameters through registers with the flexibility and extensibility of passing in
the stack. While the document describes procedures for writing code, it also defines

290 ARM Assembly Language

the use of registers, shown in Figure 13.7. Some parts of the specification include the
following:

The first four registers r0-r3 (also called a1-a4, for argument) are used to pass
argument values into a subroutine and to return a result value from a func-
tion. They may also be used to hold intermediate values within a routine
(but in general, only between subroutine calls).

Register r12 (IP) may be used by a linker as a scratch register between a rou-
tine and any subroutine it calls. It can also be used within a routine to hold
intermediate values between subroutine calls.

Typically, the registers r4-r8, r10, and r11 are used to hold the values of a
routine’s local variables. Of these, only r4-r7 can be used uniformly by the
whole Thumb instruction set, but the AAPCS does not require that Thumb
code only use those registers.

A subroutine must preserve the contents of the registers r4-r8, r10, r11, and SP
(and r9 in some Procedure Call Standard variants).

Stacks must be eight-byte aligned, and the ARM and Thumb C and C++ com-
pilers always use a full descending stack.

For floating-point operations, similar rules apply. According to the standard, reg-
isters s16-s31 must be preserved across subroutine calls; registers s0-s15 do not need
to be preserved, so you could use these for passing arguments to a subroutine. The
only status register that may be accessed by conforming code is the FPSCR, and
within this register, certain bits must be left unchanged. While it’s important to write
code that conforms to the specification, beginning programmers would do well to

Arguments into function
Result(s) from function
Otherwise corruptible

(Additional parameters
passed on stack)

Register variables
must be preserved

Scratch register
(corruptible)

Stack pointer
Link Register

Program Counter

Register

r3
r2
r1
r0

r7
r8

r9/sb
r10/s1

r13/sp
r14/lr
r15/pc

r11

r12

r6
r5
r4

FIGURE 13.7 The ARM APCS specification for register usage.

291Subroutines and Stacks

practice with the specification in mind, and as time permits, rework your code to
follow the standard.

EXAMPLE 13.8

Let’s look at a short floating-point routine for the Cortex-M4 that uses a Taylor
series expansion to compute the value of sin(x). The subroutine uses registers
s0-s10, so no floating-point registers need to be stacked. The input to the routine
and the final result are stored in register s0. As we saw in Chapter 7, sometimes
divisions can be avoided entirely by calculating constants beforehand and using
multiplication operations instead.

;**
;
; This is the code that gets called when the processor first starts execution
; following a reset event.
;
;**
   EXPORT Reset_Handler
	 ENTRY

Reset_Handler

	 ; Enable the FPU
	 ; Code taken from ARM website
	 ; CPACR is located at address 0xE000ED88
	 LDR.W	 r0, =0xE000ED88

	 LDR	 r1, [r0]		 ; Read CPACR
	 ; Set bits 20-23 to enable CP10 and CP11 coprocessors
	 ORR	 r1, r1, #(0xF <<  20)
	 ; Write back the modified value to the CPACR
	 STR	 r1, [r0]		 ; wait for store to complete
	 DSB

	 ; Reset pipeline now that the FPU is enabled
	 ISB

	 ;
	 ; The calculation of the sin(x) will be done in the
	 ; subroutine SinCalc. The AAPCS dictates the first
	 ; 16 FPU registers (s0-s15) are not preserved, so we will
	 ; use them in the calling routine to pass the operand and
	 ; return the result. Registers s16-s31 must be preserved in
	 ; a subroutine, so they are used in the calling routine.

	 ; FPU registers
	 ; s0 - Passed operand and returned result

	 ; Evaluate the function for operand the test operand
	 VLDR.F32 	 s0, = 1.04719
	 BL 	 SinCalc
Exit	 B 	 Exit

	 ; Sine code
	 ; The algorithm is a Taylor series with
	 ; 4 terms (x = x - x^3/3! + x^5/5! - x^7/7!)
	 ; Optimized, we have 9 multiplications and 3 adds.
	 ; We can avoid the divisions by computing 1/3!, 1/5!, etc. and
	 ; using the constant in a multiplication.

292 ARM Assembly Language

	 ;
	 ; This formula works for all x in the range [0, pi/2]
	 ; [0, pi/2]
	 ;
	 ; This routine assumes AAPCS -
	 ; regs s0-s15 parameters and/or scratch
	 ; Register usage:
	 ; s0 - input operand and return result
	 ; s1 - 1/3! (invfact3)
	 ; s2 - 1/5! (invfact5)
	 ; s3 - 1/7! (invfact7)
	 ; s4 - x * s1 (xdiv3), then s4 * s7 (x^2 * xdiv3) (x3div3)
	 ; s5 - x * s2 (xdiv5), then s5 * s8 (x^4 * xdiv5) (x5div5)
	 ; s6 - x * s3 (xdiv7), then s6 * s9 (x^6 * xdiv7) (x7div7)
	 ; s7 - x^2
	 ; s8 - x^4
	 ; s9 - x^6
	 ; s10 - scratch

SinCalc
	 ; set up the three inverse factorial constants
	 VLDR.F32	 s1, invfact3
	 VLDR.F32	 s2, invfact5
	 VLDR.F32	 s3, invfact7

	 ;
	 VMUL.F32	 s4, s0, s1 ; compute xdiv3
	 VMUL.F32	 s7, s0, s0 ; compute x^2
	 VMUL.F32	 s5, s0, s2 ; compute xdiv5
	 VMUL.F32	 s4, s4, s7 ; compute x3div3
	 VMUL.F32	 s8, s7, s7 ; compute x^4
	 VMUL.F32	 s6, s0, s3 ; compute xdiv7
	 VSUB.F32	 s10, s0, s4 ; compute terms12, x-x^3/3!
	 VMUL.F32	 s9, s7, s8 ; compute x^6
	 VMUL.F32	 s5, s5, s8 ; compute x5div5
	 VMUL.F32	 s6, s6, s9 ; compute x7div7
	 VADD.F32	 s10, s10, s5 ; compute terms123, x-x^3/3! + x^5/5!
	 VSUB.F32	 s0, s10, s6 ; compute result

	 BX 	 lr ; return

invfact3	 DCD	 0x3E2AAAAB ; 1/3!
invfact5	 DCD	 0x3C088888 ; 1/5!
invfact7	 DCD	 0x39500CD1 ; 1/7!

13.6  EXERCISES

	 1.	What’s wrong with the following ARM7TDMI instructions?
	 a.	 STMIA	 r5!, {r5, r4, r9}
	 b.	 LDMDA	 r2, {}
	 c.	 STMDB	 r15!, {r0-r3, r4, lr}

	 2.	On the ARM7TDMI, if register r6 holds the address 0x8000 and you exe-
cuted the instruction

	 STMIA  r6, {r7, r4, r0, lr}

		 what address now holds the value in register r0? Register r4? Register r7?
The Link Register?

293Subroutines and Stacks

	 3.	Assume that memory and ARM7TDMI registers r0 through r3 appear as
follows:

Address Register

0x8010 0x00000001 0x13 r0

0x800C 0xFEEDDEAF 0xFFFFFFFF r1

0x8008 0x00008888 0xEEEEEEEE r2

0x8004 0x12340000 0x8000 r3

0x8000 0xBABE0000

		 Describe the memory and register contents after executing the instruction

	 LDMIA  r3!, {r0, r1, r2}

	 4.	Suppose that a stack appears as shown in the first diagram below. Give the
instruction or instructions that would push or pop data so that memory appears
in the order shown. In other words, what instruction would be necessary to go
from the original state to that shown in (a), and then (b), and then (c)?

Address

0x8010 0x00000001 0x00000001 0x00000001 0x00000001

0x800C 0xFEEDDEAF 0xFEEDDEAF 0xFEEDDEAF 0xFEEDDEAF

0x8008 0xBABE2222 0xBABE2222

0x8004 0x12340000

0x8000

Original (a) (b) (c)

	 5.	Convert the cosine table from Problem 1 in Chapter 12 into a subroutine,
using a full descending stack.

	 6.	Rewrite Example 13.4 using full descending stacks.

	 7.	Rewrite Example 13.5 using full descending stacks.

	 8.	Rewrite Example 13.6 using full descending stacks.

	 9.	Convert the factorial program written in Chapter 3 into a subroutine, using
full descending stacks. Pass arguments to the subroutine using both pass-
by-register and pass-by-stack techniques.

	 10.	Write the ARM7TDMI division routine from Chapter 7 as a subroutine that
uses empty ascending stacks. Pass the subroutine arguments using regis-
ters, and test the code by dividing 4000 by 32.

	 11.	Match the following terms with their definitions:

	 a.	 Recursive	 1. �Subroutine can be interrupted and called by the inter-
rupting routine

294 ARM Assembly Language

	 b.	 Relocatable	 2. A subroutine that calls itself
	 c.	 Position	 3. �The subroutine can be placed anywhere in memory

independent
	 d.	 Reentrant	 4. �All program addresses are calculated relative to the

Program Counter

	 12.	Write the ARM7TDMI division routine from Chapter 7 as a subroutine that
uses full descending stacks. Pass the subroutine arguments using the stack,
and test the code by dividing 142 by 7.

	 13.	Write ARM assembly to implement a PUSH operation without using LDM
or STM instructions. The routine should handle three data types, where
register r0 contains 1 for byte values, 2 for halfword values, and 4 for word
values. Register r1 should contain the data to be stored on the stack. The
stack pointer should be updated at the end of the operation.

	 14.	Write ARM assembly to check whether an N × N matrix is a magic square.
A magic square is an N × N matrix in which the sums of all rows, columns,
and the two diagonals add up to N(N2 + 1)/2. All matrix entries are unique
numbers from 1 to N2. Register r1 will hold N. The matrix starts at location
0x4000 and ends at location (0x4000 + N2). Suppose you wanted to test a
famous example of a magic square:

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

		 The numbers 16, 3, 2, and 13 would be stored at addresses 0x4000 to 0x4003,
respectively. The numbers 5, 10, 11, and 8 would be stored at addresses
0x4004 to 0x4007, etc. Assume all numbers are bytes. If the matrix is a
magic square, register r9 will be set upon completion; otherwise it will be
cleared. You can find other magic square examples, such as Ben Franklin’s
own 8 × 8 magic square, on the Internet to test your program.

	 15.	Another common operation in signal processing and control applications is
to compute a dot product, given as

	

a c xm m

m

N

=
=

−

∑
0

1

		 where the dot product a is a sum of products. The coefficients cm and the
input samples xm are stored as arrays in memory. Assume sample data and
coefficients are 16-bit, unsigned integers. Write the assembly code to com-
pute a dot product for 20 samples. This will allow you to use the LDM
instruction to load registers with coefficients and data efficiently. You prob-
ably want to bring in four or five values at a time, looping as needed to

295Subroutines and Stacks

exhaust all values. Leave the dot product in a register, and give the register
the name DPROD using the RN directive in your code. If you use the newer
v7-M SIMD instructions, note that you can perform two multiples on 16-bit
values at the same time.

	 16.	Suppose your stack was defined to be between addresses 0x40000000 and
0x40000200, with program variables located at address 0x40000204 and
higher in memory, and your stack pointer contains the address 0x400001FC.
What do you think would happen if you attempt to store 8 words of data on
an ascending stack?

	Front Cover
	Contents
	Preface
	Acknowledgments
	Authors
	Chapter 1: An Overview of Computing Systems
	Chapter 2: The Programmer’s Model
	Chapter 3: Introduction to Instruction Sets : v4T and v7-M
	Chapter 4: Assembler Rules and Directives
	Chapter 5: Loads, Stores, and Addressing
	Chapter 6: Constants and Literal Pools
	Chapter 7: Integer Logic and Arithmetic
	Chapter 8: Branches and Loops
	Chapter 9: Introduction to Floating-Point : Basics, Data Types, and Data Transfer
	Chapter 10: Introduction to Floating-Point : Rounding and Exceptions
	Chapter 11: Floating-Point Data-Processing Instructions
	Chapter 12: Tables
	Chapter 13: Subroutines and Stacks
	Chapter 14: Exception Handling : ARM7TDMI
	Chapter 15: Exception Handling : v7-M
	Chapter 16: Memory-Mapped Peripherals
	Chapter 17: ARM, Thumb and Thumb-2 Instructions
	Chapter 18: Mixing C and Assembly
	Appendix A: Running Code Composer Studio
	Appendix B: Running Keil Tools
	Appendix C: ASCII Character Codes
	Appendix D
	Glossary
	References
	Back Cover

