arm

Learn the architecture - AArch64 virtualization

Version 1.0

Non-Confidential Issue 03
Copyright © 2019, 2022 Arm Limited (or its affiliates). 102142_0100_03_en
All rights reserved.




Learn the architecture - AArché4 virtualization Document ID: 102142 0100 03 en
Version 1.0

Learn the architecture - AArché4 virtualization

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 1 January 2019 Non-Confidential Initial release

0100-02 19 May 2022 Non-Confidential Minor text fixes to images
0100-03 8 June 2022 Non-Confidential Minor text fixes to images

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 46



Learn the architecture - AArché4 virtualization Document ID: 102142 0100 03 en
Version 1.0

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm'’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 46


https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - AArché4 virtualization Document ID: 102142 0100 03 en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 4 of 46


mailto:terms@arm.com

Learn the architecture - AArché4 virtualization Document ID: 102142 0100 03 en
Version 1.0

Contents
Contents
L. OVEIVIEW.eeteieeeteteteeeteesetesseseseeseesse et ese st e e ssesassesessesessssessssesssessnsensnsessnsessnsesensesessssensesensesessesensesessesensssenens 6
2. INtroduction tO VIrtUAIZAtION........c.ceeeeeeeeeeeeeeeteeeeeeeeee et eesess e ssesese s sssesesessssnsesesesansesessnsssnsane 7
3. Virtualization iN AAICROA.........eeeeeeeeteeeteeeteeeseestesestesesesessssessesessesessssessesessasesssessssessssessssesessesessses 12
4, StAZE 2 traANSIAtiON.....e ettt resteseste e te et e et e e ae e aese e se e b e e be e b e et e s e benensenansenansenans 13
5. Trapping and emulation of INSTFUCLIONS........oecveeeeeeeeeteeteeeeeceecte ettt se e seseeseseseseesenens 22
6. ViIrtUaliZING EXCEPLIONS......ooveeeeeeeerrereeeeetrreneeeeeseseeessesssesesssesesessssssesssensssssesesesssssssesesssssssesessssssnsesensnsnens 25
7. Virtualizing the ENEIIC tIMEIS... ettt seese s sessssessesessesessesessssessssessssessssesessesessesen 29
8. Virtualization oSt EXEENSIONS........ceevieeeieieeeereseesereeaerestereeseseesesessessssesesessssessssesessssersesessesessesessesessssens 32
9. NEStEd VIrtUAlIZAtION......cvieeeeeeteeeteeeeerteeere et ste e ste e ssesesseseseebeseesesessesessesessesansesensesessssessesessesesansensann 38
10. SECUIE VIFtUAIIZAtION. .....voeeeeereeeteeetereeeeeeete e e se e essesesesssssssesessssesssesessssnsssesessrsnsesesessssnsssenessrssssen 41
11, COStS Of VIFTUAIZATION.....ccueeeeeeeeteetceteeteeteeteeteetee et esaesesaesesaesessesessesessesessssessasessrsessssesersesenses 43
12. CheCk YOUF KNOWIEAZE. .....uceeeeeeeeeeeeteeteeeteestesesseseesesesassesesessesesssessssessssessssesssessssessssesessesessesessesessasens 44
13. Related iNfOrMAtioN.......coceeeeeeeeeeeteceeteeere et e ete e ste e sse e saesesaesessesesesesensesessessssesessesessesensesenssesenns 45
T4, INEXE SEEPS ettt te st e e esessesesesesaesaesesbessessessessessssessessessessessesersensessensessessesersensen 46

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 46



Learn the architecture - AArché4 virtualization Document ID: 102142 0100 03 en
Version 1.0
Overview

1. Overview

This guide describes the virtualization support in Armv8-A AArché4. Topics covered include stage 2
translation, virtual exceptions, and trapping.

This guide includes some basic virtualization theory as an introduction, and gives some examples
of how a hypervisor might use the features that it describes. It doesn’t cover the operation of a
specific hypervisor, or attempt to explain how to write your own hypervisor from scratch. Both
subjects are beyond the scope of this guide.

At the end of this guide, you can Check your knowledge. You will have learned about the two types
of hypervisor and how they map on to the Arm Exception levels. You will be able to explain the
operation of traps and how they can be used to emulate operations. And you will be able to list
which virtual exceptions a hypervisor can generate and describe the mechanisms for doing this.

Before you begin

We assume that you have a basic understanding of virtualization, including what a Virtual Machine
(VM) is as well as the role of the hypervisor. Familiarize yourself with the Exception model and
address translation in Memory management.
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2. Introduction to virtualization

Here we will introduce some introductory hypervisor and virtualization theory. If you are already
familiar with these concepts, you might want to skip this material.

We use the term hypervisor in this guide to mean a piece of software that is responsible for
creating, managing, and scheduling of Virtual Machines (VMs).

Why is virtualization important

Virtualization is a widely used technology, and underpins almost all modern cloud computing and
enterprise infrastructure. Virtualization is used by developers to run multiple Operating Systems

(OS) on a single machine, and to test software without the risk of damaging the main computing

environment.

Virtualization is popular for server systems, and support for virtualization is a requirement for most
server grade processors. This is because virtualization gives very desirable features to the data
center, including:

e |solation: At its core, virtualization provides isolation between virtual machines running on a
single physical system. This isolation allows the sharing of a physical system between mutually
distrusting computing environments. For example, two competitors can share the same physical
machine in a data center without being able to access each other’s data.

o High Availability: Virtualization allows seamless and transparent migration of workloads
between physical machines. This technique is commonly used to migrate workloads away from
a faulting hardware platform that may require maintenance and replacement.

e Workload balancing: To optimize the hardware and power budget of the data center, it is
important to use each hardware platform as much as possible. Again, this can be achieved
using migration of virtual machines, or by co-hosting suitable workloads on physical machines.
This means that the physical machines are used for as much of their capacity as possible. This
provides the best power budget for the data center provider, and the best performance for the
tenant.

e Sandboxing: VMs can be used to provide sandboxes for applications that might interfere
with the rest of the machine that they run on. Examples of such applications include legacy
applications, or software that is in development. Running those applications in a VM prevents
bugs or malicious parts of the applications from interfering with other applications or data on
the physical machine.

Standalone and hosted hypervisors

Hypervisors can be divided into two broad categories: standalone, or Type 1, hypervisors and
hosted, or Type 2, hypervisors.

We will look first at a hosted, or Type 2, hypervisor. In a Type 2 hypervisor configuration, the Host
OS has full control of the hardware platform and all its resources, including CPU and physical
memory. The following diagram illustrates a hosted, or Type 2, hypervisor:
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App(s) App(s)

Guest OS Guest OS
App(s)

Host OS

Hardware

If you have previously used software such as Virtual Box or VMware Workstation, this is the type
of hypervisor that you were running. An OS, referred to as the Host OS, is installed on the platform
and the hypervisor runs within the Host OS, taking advantage of existing functionality to manage
hardware. The hypervisor can then host virtual machines, which themselves run an OS. We refer to

this as the Guest OS.

Next, we will look first at a standalone, or Type 1, hypervisor:
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Figure 2-1: Standalone or Type 1 hypervisor

App(s) App(s)

Guest OS Guest OS

Hypervisor

Hardware

You can see that there is no Host OS in this hypervisor design. The hypervisor runs directly on the
hardware, and has full control of the hardware platform and all its resources, including CPU and
physical memory. Just like hosted hypervisors, standalone hypervisors can host virtual machines.
These virtual machines can run one, or more than one, full Guest OS.

The two most commonly used open-source hypervisors on Arm platforms are Xen (standalone,
Type 1) and KVM (hosted, Type 2). We will use these hypervisors to illustrate some of the points in
this guide. However, there are many other hypervisors available, both open source and proprietary.

Full virtualization and para-virtualization

The classic definition of a VM is a separate, isolated computing environment, which is
indistinguishable from the real physical machine. Even though it is possible to fully emulate real
machines on Arm-based system, this is often not an efficient thing to do. Therefore, this kind of
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emulation is not done very often. For example, emulating a real Ethernet device is slow, because
each access to an emulated register performed by the Guest OS must be handled in software by
the hypervisor. This handling can be much more expensive than accessing registers on a physical
device.

A preferred alternative, which is usually used to improve performance, is to enlighten the Guest
OS. By making the Guest OS aware that it is running in a VM, and by providing virtual devices that
are designed to have good performance when being emulated in the hypervisor and accessed from
a Guest OS, a Guest OS can achieve good performance, even for I/O.

Strictly speaking, full system virtualization emulates a real physical machine. Xen (the open source
project), on the other hand, popularized the term paravirtualization, in which core parts of the
Guest OS are modified to operate on a virtual hardware platform instead of a physical machine.
This modification is undertaken to improve performance.

Today, on most architectures that have hardware support for virtualization, including Arm, the
Guest OS runs mostly unmodified. The Guest OS thinks that it is operating on real hardware,
except for drivers for /O peripherals such as block storage and networking, which use
paravirtualized devices and device drivers. Examples of such paravirtualized I/O devices are Virtio
and Xen PV Bus.

Virtual machines and virtual CPUs

It is important to understand the difference between a Virtual Machine (VM) and a Virtual CPU
(vCPU). A VM will contain one or more vCPUs, as shown in the following diagram:

Figure 2-2: Virtual Machine and Virtual CPUs

Virtual Machine

Virtual Processor Virtual Processor

vCPU vCPU vCPU vCPU

The distinction between VM and vCPU will become important when we look at some of the other
topics in this guide. For example, a page of memory might be allocated to a VM, and therefore be
accessible to all the vCPUs in that VM. However, a virtual interrupt is targeted at a specific vCPU,
and can only go to that vCPU.
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Strictly, we should refer to a virtual Processing Element (vPE), rather than a vCPU.
Remember that a Processing Element (PE) is the generic term for a machine that
implements the Arm architecture. This guide uses vCPU instead of VPE, because
vCPU is the term that most people are familiar with. However, in the architecture
specifications, the term vPE is used.
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3. Virtualization in AArché64

Software running at EL2 or higher has access to several controls for virtualization:

e Stage 2 translation
e EL1/0 instruction and register access trapping

e Virtual exception generation
The Exception Levels (ELs) in Non-Secure and Secure states are shown here:

Figure 3-1: Virtualization in AArch64

Non-secure state Secure state
ELO App(s) App(s) - Trusted Service
EL1 Guest OS Guest OS : Trusted OS
e
EL3 Secure Monitor/Firmware

In the diagram, Secure EL2 is shown in grey. This is because support for EL2 in Secure state is not
always available. This is discussed in the section on Secure virtualization.

There are also features in the architecture that support:

e Secure virtualization

e Hosted, or Type 2, hypervisors

e« Nested virtualization
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4. Stage 2 translation

This chapter introduces Stage 2 translation and ways to control memory access.

What is stage 2 translation

Stage 2 translation allows a hypervisor to control a view of memory in a Virtual Machine (VM).
Specifically, it allows the hypervisor to control which memory-mapped system resources a VM can
access, and where those resources appear in the address space of the VM.

This ability to control memory access is important for isolation and sandboxing. Stage 2 translation
can be used to ensure that a VM can only see the resources that are allocated to it, and not the
resources that are allocated to other VMs or the hypervisor.

For memory address translation, stage 2 translation is a second stage of translation. To support this,
a new set of translation tables known as Stage 2 tables, are required, as shown here:

Figure 4-1: VA to IPA to PA address translation

Virtual Address Space
What the OS think
is the Physical
Peripherals Address Space Physical Address Space

Kernel

Translation PBR

Translation
Tables Tables \ DDR

— _
Stage 1 \ / Stage 2
Tables Peripherals Tables Peripherals

Flash Flash

Application

SRAM
ROM

An Operating System (OS) controls a set of translation tables that map from the virtual address
space to what it thinks is the physical address space. However, this process undergoes a second
translation into the real physical address space. This second stage is controlled by the hypervisor.

The OS-controlled translation is called stage 1 translation, and the hypervisor-controlled translation
is called stage 2 translation. The address space that the OS thinks is physical memory is referred to
as the Intermediate Physical Address (IPA) space.

For an introduction to how address translation works, see our guide on Memory
management.
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The format of the translation tables used for stage 2 is very similar to that used for stage 1.
However, some of the attributes are handled differently in stage 2 and the Type, Normal or Device,
is encoded directly into table entry rather than via a MAIR_ELx register.

VMIDs

Each VM is assigned a virtual machine identifier (VMID). The VMID is used to tag translation
lookaside buffer (TLB) entries, to identify which VM each entry belongs to. This tagging allows
translations for multiple different VMs to be present in the TLBs at the same time.

The VMID is stored in VTTBR_EL2 can either be 8 or 16 bits. The VMID is controlled by the
VTCR_EL2.VS bit. Support for 16-bit VMIDs is optional, and was added in Armv8.1-A.

Translations for the EL2 and EL3 translation regimes are not tagged with a VMID,
because they are not subject to stage 2 translation.

VMID interaction with ASIDs

TLB entries can also be tagged with an Address Space Identifier (ASID). An application is assigned
an ASID by the OS, and all the TLB entries in that application are tagged with that ASID. This
means that TLB entries for different applications are able to coexist in the TLB, without the
possibility that one application uses the TLB entries that belong to a different application.

Each VM has its own ASID namespace. For example, two VMs might both use ASID 5, but they use
them for different things. The combination of ASID and VMID is the thing that is important.

Attribute combining and overriding

The stage 1 and stage 2 mappings both include attributes, such as type and access permissions.
The Memory Management Unit (MMU) combines the attributes from the two stages to give a final
effective value. The MMU does this by selecting the stage that is more restrictive, as you can see
here:

Figure 4-2: Combining stage 1 and stage 2 attributes

Intermediate Physical

Virtual Address Space Address Space Physical Address Space
Device —> _— Normal —>
Stage 1 Stage 2
Tables Tables

In this example, the Device type is more restrictive than the Normal type. Therefore, the resulting
type is Device. The result would be the same if we reversed the example, so that stage 1 = Normal,
and stage 2 = Device.
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This method of combining attributes works for most use cases, but sometimes the hypervisor might
want to override this behavior. For example, during early boot of a VM. For these cases, there are
some control bits that override the normal behavior:

e HCR_EL2.CD. This makes all stage 1 attributes Non-cacheable.
e HCR_EL2.DC. This forces stage 1 attributes to be Normal, Write-Back Cacheable.

e HCR_EL2.FWB. This allows stage 2 to override the stage 1 attribute, instead of regular
attribute combining.

HCR_EL2.FWB was introduced in Armv8.4-A.

Emulating Memory-mapped Input/Output (MMIO)

Like the physical address space on a physical machine, the IPA space in a VM contains regions that
are used to access both memory and peripherals, as shown here:
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Figure 4-3: IPA space of a VM block diagram

IPA space of a VM

Peripherals

The VM can use peripheral regions to access both real physical peripherals, which are often
referred to as directly assigned peripherals, and virtual peripherals.

Virtual peripherals are completely emulated in software by the hypervisor, as this diagram
highlights:
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Figure 4-4: Stage 2 mappings for virtual and assigned peripherals

IPA space of a VM Physical Address Space
DDR
DDR
PA
Fault -
Assigned Peripheral Peripheral
Peripheral
Virtual Peripheral VTTBR_EL?2
Flash
lash SRAM
Flas ROM

An assigned peripheral is a real physical device that has been allocated to the VM, and mapped
into its IPA space. This allows software that is running within the VM to interact with the peripheral
directly.

A virtual peripheral is one that the hypervisor is going to emulate in software. The corresponding
stage 2 table entries would be marked as fault. Software in the VM thinks that it can talk directly to
the peripheral, but each access triggers a stage 2 fault, with the hypervisor emulating the peripheral
access in the exception handler.

To emulate a peripheral, a hypervisor needs to know not only which peripheral was accessed, but
also which register in that peripheral was accessed, whether the access was a read or a write, the
size of the access, and the registers used for transferring data.

The Exception Model guide introduces the FAR_ELx registers. When dealing with stage 1 faults,
these registers report the virtual address that triggered the exception. A virtual address is not
helpful to a hypervisor, because the hypervisor would not usually know how the Guest OS has
configured its virtual address space. For stage 2 faults, there is an additional register, HPFAR_ELZ,
which reports the IPA of the address that aborted. Because the IPA space is controlled by the
hypervisor, it can use this information to determine the register that it needs to emulate.

For single general-purpose register loads or stores that trigger a stage 2 fault, additional syndrome
information is provided. This information includes the size of the accesses and the source or
destination register, and allows a hypervisor to determine the type of access that is being made to
the virtual peripheral.

This diagram illustrates the process of trapping then emulating the access:
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Figure 4-5: Example of emulating an access to MMIO

3 ERET

VM'’s |IPA space

vCPU DDR

LDR x0, [virt uart_rx reg]

Virtual Uart

HPFAR_EL2 I ipa virt uart rx

[

I‘.
ESR_EL2 I Read, 4 bytes, x0 '{-- Flash

T
AR -

s2_abort_handler:
identify virt perip reg()
emulate_access()
return_to_vepu()

Hypervisor

This process is described in these steps:

1.

Software in the VM attempts to access the virtual peripheral. In this example, this is the receive
FIFO of a virtual UART.

This access is blocked at stage 2 translation, leading to an abort routed to EL2.

e The abort populates ESR_EL2 with information about the exception, including the number
of bytes accessed, the target register and whether it was a load or store.

e The abort also populates HPFAR_EL2 with the IPA of the aborting access.

The hypervisor uses the information from ESR_EL2 and HPFAR_EL2 to identify the virtual
peripheral register accessed. This information allows the hypervisor to emulate the operation. It
then returns to the vCPU via an ERET.

e Execution restarts on the instruction after the LDR.

System Memory Management Units (SMMUs)

So far, we have considered different types of access that come from the processor. Other masters
in a system, such DMA controllers, might be allocated for use by a VM. We need some way to
extend the stage 2 protections to those masters as well.

Consider a system with a DMA controller that does not use virtualization, as shown in the following
diagram:
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Figure 4-6: DMA controller that does not use virtualization

Processor

Host OS

VA DMA
't MMU
PA
PA
Interconnect

The DMA controller would be programmed via a driver, typically in kernel space. That kernel space
driver can ensure that the OS level memory protections are not breached. This means that one
application cannot use the DMA to get access to memory that it should not be able to see.

Let's consider the same system, but with the OS running within a VM, as shown in the following
diagram:
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Figure 4-7: OS running within a VM block diagram

Processor

Guest OS
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o DMA
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PA
Interconnect

In this system, a hypervisor is using stage 2 to provide isolation between VMs. The ability of
software to see memory is limited by the stage 2 tables that the hypervisor controls.

Allowing a driver in the VM to directly interact with the DMA controller creates two problems:

e Isolation: The DMA controller is not subject to the stage 2 tables, and could be used to breach
the VM’s sandbox.

e Address space: With two stages of translation, what the kernel believes to be PAs are IPAs. The
DMA controller still sees PAs, therefore the kernel and DMA controller have different views of
memory. To overcome this problem, the hypervisor could trap every interaction between the
VM and the DMA controller, providing the necessary translation.When memory is fragmented,
this process is inefficient and problematic.

An alternative to trapping and emulating driver accesses is to extend the stage 2 regime to also
cover other masters, such as our DMA controller. When this happens, those masters also need an
MMU. This is referred to as a System Memory Management Unit (SMMU, sometimes also called
IOMMU):
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Figure 4-8: System Memory Management Unit
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The hypervisor would be responsible for programming the SMMU, so that the upstream master,
which is the DMA in our example, sees the same view of memory as the VM to which it is
assigned.

This process solves both of the problems that we identified. The SMMU can enforce the isolation
between VMs, ensuring that external masters cannot be used to breach the sandbox. The SMMU
also gives a consistent view of memory to software in the VM and the external masters allocated to
the VM.

Virtualization is not the only use case for SMMUs. There are many other cases that are not covered
within the scope of this guide.
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5. Trapping and emulation of instructions

Sometimes a hypervisor needs to emulate operations within a Virtual Machine (VM). For example,
software within a VM might try to configure low level processor controls relating to power
management or cache coherency. Typically, you do not want to give the VM direct access to these
controls, because they could be used to break isolation, or to affect other VMs in your system.

A trap causes an exception when a given action, such as reading a register, is performed. A
hypervisor needs the ability to trap operations, like the ones that configure low level controls, in a
VM and emulate them, without affecting other VMs.

The architecture includes trap controls for you to trap operations in a VM and emulate them. When
a trap is set, performing a specific action that would normally be allowed causes an exception to a
higher Exception level. A hypervisor can use these traps to emulate operations within a VM.

For example, executing a Wait For Interrupt (WFI) instruction usually puts the CPU into a low
power state. By asserting the TWI bit, if HCR_EL2.TWI==1, then executing WFI at ELO or EL1 will
instead cause an exception to EL2.

Traps are not just for virtualization. There are EL3 and EL1 controlled traps as well.
However, traps are particularly useful to virtualization software. This guide only
discusses the traps that are typically associated with virtualization.

In our WFI example, an OS would usually execute a WFI as part of an idle loop. With a Guest OS
within a VM, the hypervisor can trap this operation and schedule a different vCPU instead, as this
diagram shows:

Figure 5-1: Example of trapping WFIs from EL1 to EL2

vCPUO vCPU1

Trap due to

HCR EL2.TWI . | oo ERET

»| Context switcher

Hypervisor
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Presenting virtual values of registers

Another example of using traps is to present virtual values of registers. For example,
ID_AA6AMMERO_EL1 reports support for memory system-related features in the processor. An OS
might read this register as part of boot, to determine which features within the kernel to enable. A
hypervisor might want to present a different value, called a virtual value, to the Guest OS.

To do this, the hypervisor enables the trap that covers reads of the register. On a trap exception,
the hypervisor determines which trap was triggered, and then emulates the operation. In

this example, the hypervisor populates the destination register with the virtual value of
ID_AA64MMFRO_EL1, as shown here:

Figure 5-2: Example of trapping and emulating an operation

vCPU

———— MRS X0,ID AA64MMFRO_ELl —

Trap exception *+ | === =====ssssmcsccemcssscsssssssscsss--

ERET

ESR_EL2 Trap, ID AA64MMFRO_EL1

trap handler:
identify trapped op()
o get virt wvalue()
set_virt walue_in_vecpu_context()
return_to_wvcpu()

Hypervisor

Traps can also be used as part of lazy context switching. For example, an OS will typically initialize
the Memory Management Unit (MMU) configuration registers (TTBR<n>_EL1, TCR_EL1 and
MAIR_EL1) during boot, and then will not reprogram them again. A hypervisor can use this to
optimize its context switching routine, by only restoring the registers on a context switch and not
saving them.

However, the OS might do something unusual and reprogram the registers after boot. To avoid this
causing any problems, the hypervisor can set the HCR_EL2.TVM trap. This setting causes any write
to the MMU related registers to generate a trap into EL2, which allows the hypervisor to detect
whether it needs to update its saved copies of those registers.
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The architecture uses the terms trapping and routing for separate, but related,
concepts. To recap, a trap causes an exception when a given action, such as reading
a register, is performed. Routing refers to the Exception level that an exception is
taken to once it has been generated.

MIDR and MPIDR

Using a trap to virtualize an operation requires significant computation. The operation generates a
trap exception to EL2, and the hypervisor determines the desired operation, emulates it and then
returns to the guest. Feature registers, such as ID_AA64MMERO_EL1, are not frequently accessed
by operating systems. This means that the computation is acceptable when trapping accesses to
these registers into a hypervisor to emulate a read.

For registers that are accessed more frequently, or in performance critical code, you want to avoid
such compute load. Examples of these registers and their values include:

e MIDR_EL1. The type of processor, for example Cortex-A53

e MPIDR_EL1. The affinity, for example core 1 of processor 2

A hypervisor might want a Guest OS to see the virtual values of these registers, without having to
trap each individual access. For these registers, the architecture provides an alternative to trapping:
e VPIDR_EL2. This is the value to return for EL1 reads of MIDR_EL1.

e VMPIDR_EL2. This is the value to return for EL1 reads of MPIDR_EL1.

The hypervisor can setup these registers before entering the VM. If software running within the

VM reads MIDR_EL1 or MPIDR_EL1, the hardware will automatically return the virtual value,
without the need for a trap.

VMPIDR_EL2 and VPIDR_EL2 do not have defined reset values. They must be
initialized by start-up code before entering EL1 for the first time. This is especially
important in bare metal environments.
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6. Virtualizing exceptions

Interrupts are used by hardware in the system to signal events to software. For example, a GPU
might send an interrupt to signal that it has completed rendering a frame.

A system that uses virtualization is more complex. Some interrupts might be handled by the
hypervisor itself. Other interrupts might come from devices allocated to a Virtual Machine (VM),
and need to be handled by software within that VM. Also, the VM that is targeted by an interrupt
might not be running at the time that the interrupt is received.

This means that you need mechanisms to support the handling of some interrupts in EL2 by the
hypervisor. You also need mechanisms for forwarding other interrupts to a specific VM or specific
Virtual CPU (vCPU) within a VM.

To enable these mechanisms, the architecture includes support for virtual interrupts: vIRQs, vFIQs,
and vSErrors. These virtual interrupts behave like their physical counterparts (IRQs, FIQs, and
SErrors), but can only be signaled while executing in ELO and EL1. It is not possible to receive a
virtual interrupt while executing in EL2 or EL3.

To recap, support for virtualization in Secure state was introduced in Armv8.4-
A. For a virtual interrupt to be signaled in Secure ELO/1, Secure EL2 needs to be
supported and enabled. Otherwise virtual interrupts are not signaled in Secure
state.

Enabling virtual interrupts

To signal virtual interrupts to ELO/1, a hypervisor must set the corresponding routing bit in
HCR_EL2. For example, to enable vIRQ signaling, a hypervisor must set HCR_EL2.IMO. This setting
routes physical IRQ exceptions to EL2, and enables signaling of the virtual exception to EL1.

Virtual interrupts are controlled per interrupt type. In theory, a VM could be configured to receive
physical FIQs and virtual IRQs. In practice, this is unusual. A VM is usually configured only to
receive virtual interrupts.

Generating virtual interrupts
There are two mechanisms for generating virtual interrupts:

1. Internally by the core, using controls in HCR_EL2.

2. Using a GICv2, or later, interrupt controller.

Let's start with mechanism 1. There are three bits in HCR_EL2 that control virtual interrupt
generation:

e VI = Setting this bit registers a vIRQ.

e VF = Setting this bit registers a vFIQ.

e VSE = Setting this bit registers a vSError.
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Setting one of these bits is equivalent to an interrupt controller asserting an interrupt signal into
the vCPU. The generated virtual interrupt is subject to PSTATE masking, just like a regular interrupt.

This mechanism is simple to use, but the disadvantage is that it only provides a way to generate the
interrupt itself. The hypervisor is then required to emulate the operation of the interrupt controller
in the VM. To recap, trapping and emulating operations in software involve overhead that is best
avoided for frequent operations such as interrupts.

The second option is to use Arm’s Generic Interrupt Controller (GIC) to generate virtual interrupts.
From Arm GICv2, the GIC can signal both physical and virtual interrupts, by providing a physical
CPU interface and a virtual CPU interface, as shown in the following diagram:

Figure 6-1: The GIC virtual and physical CPU interfaces

GIC

Distributor

Redistributor

Physical CPU interface Virtual CPU interface

E IRQ FIQ vIRQ VFIQ "

These two interfaces are identical, except that one signals physical interrupts and the other one
signals virtual interrupts. The hypervisor can map the virtual CPU interface into a VM, allowing
software in that VM to communicate directly with the GIC. The advantage of this approach is
that the hypervisor only needs to set up the virtual interface, and does not need to emulate it.
This approach reduces the number of times that the execution needs to be trapped to EL2, and
therefore reduces the overhead of virtualizing interrupts.

o
* Although Arm GICv2 can be used with Armv8-A designs, it is more common to see
GICv3 or GICv4 used.

Note

Example of forwarding an interrupt to a vCPU

So far, we have looked at how virtual interrupts are enabled and generated. Let’s see an example
that shows the forwarding of a virtual interrupt to a vCPU. In this example, we will consider a
physical peripheral that has been assigned to a VM, as shown in the following diagram:
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Figure 6-2: Example sequence for forwarding a virtual interrupt

vCPU

I Application I
—» 5

| rornel |.‘_

GIC 1
Interrupt Controller

HCR_EL2 I]H0=1, FMO=1, AMO=1 I 2 r Y

'

interrupt_handler: ¢ '

identify_interrupt() :

forward_wvirtual_interrupt() == === g S '
return_to_vepu() 3

Hypervisor

The diagram illustrates these steps:

1.
2.

The physical peripheral asserts its interrupt signal into the GIC.

The GIC generates a physical interrupt exception, either IRQ or FIQ, which gets routed to
EL2 by the configuration of HCR_EL2.IMO/FMO. The hypervisor identifies the peripheral and
determines that it has been assigned to a VM. It checks which vCPU the interrupt should be
forwarded to.

The hypervisor configures the GIC to forward the physical interrupt as a virtual interrupt to the
vCPU. The GIC will then assert the vIRQ or vFIQ signal, but the processor will ignore this signal
while it is executing in EL2.

The hypervisor returns control to the vCPU.

Now that the processor is in the vCPU (ELO or EL1), the virtual interrupt from the GIC can be
taken. This virtual interrupt is subject to the PSTATE exception masks.

The example shows a physical interrupt being forwarded as a virtual interrupt. The example
matches the assigned peripheral model described in the section on stage 2 translation. For a virtual
peripheral, a hypervisor can create a virtual interrupt without linking it to a physical interrupt.

Interrupt masking and virtual interrupts

In the AArché4 Exception Model guide, we introduced the interrupt mask bits in PSTATE, PSTATE.|
for IRQs, PSTATE.F for FIQs and PSTATE.A for SErrors. When operating within a virtualized
environment, these masks work in a slightly different way.

For example, for IRQs we have already seen that setting HCR_EL2.IMO does two things:

Routes physical IRQs to EL2
Enables signaling of vIRQs in ELO and EL1
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This setting also changes the way that the PSTATE.I mask is applied. While in ELO and EL1, if
HCR_E2.IMO==1, PSTATE.| operates on vIRQs not pIRQs.
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7. Virtualizing the generic timers

The Arm architecture includes the Generic Timer, which is a standardized set of timers available

in each processor. The Generic Timer consists of a set of comparators that compare against a
common system count. A comparator generates an interrupt when its value is equal to or less than
the system count. In the following diagram, we can see the Generic Timer in a system (orange), and
its components of comparators and a counter module.

Figure 7-1: System counter module and per core comparators

Multi-core Processor Multi-core Processor
Core 0 Core 0
Core 0 Comparators | | Counter Module [T Comparators Core 0
Core 1l L Core 1 o
Core 1 Comparators Comparators Core1

The following diagram shows an example system with a hypervisor that hosts two virtual CPUs
(vCPUs):

Figure 7-2: System with a hypervisor that hosts two vCPUs

Scheduled
VCPU { vCPUO ) { VvCPUO )
Time

| [ | [ (ms)

In the example, we ignore the overhead of running the hypervisor to context switch
between the vCPUs.

After 4ms of physical time, or wall-clock time, each vCPU has run for 2ms. If vCPUO had set up
its comparator at T=0 to generate an interrupt after 3ms, would you expect the interrupt to have
fired?

Alternatively, do you want an interrupt after 2ms of virtual time, which is time experienced by the
vCPU, or after 2ms of wall-clock time?
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The Arm architecture provides the ability to do both, depending on what virtualization is being
used for. Let’s see how it does this.

Software running on a vCPU has access to two timers:

e EL1 Physical Timer

e EL1 Virtual Timer

The EL1 Physical Timer compares against the count generated by the system counter module.
Using this timer gives wall-clock time.

The EL1 Virtual Timer compares against a virtual count. The virtual count is the physical count
minus an offset. The hypervisor specifies the offset for the currently scheduled vCPU in a register.

This allows it to hide the passage of time while the vCPU was not scheduled to run:

Figure 7-3: How the virtual counter is generated

Physical Count Virtual Offest
(CNTPCT ELO) (CNTOFF_EL2)

Virtual Count
(CNTVCT ELO)

To illustrate this concept, we can extend the earlier example as shown in the following diagram:
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Figure 7-4: Example of using a Virtual Timer

Sc:f:gﬂed vCPUO vCPUO
Value of

physical count

offset
Value of
virtual count
_ Time
I (ms)

H—BBX'

Over a period of 6ms, each vCPU gets to run for 3ms. A hypervisor could use the offset register to
present a virtual count that only shows time the vCPU was running. Or the hypervisor could keep
the offset at O, which would mean that virtual time was the same as physical time.

The example shows the frequency of the System Count as 1ms. In practice, this
frequency value is very unlikely. We recommend that you set the System Count to
use a frequency of between 1MHz and 50MHz.
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8. Virtualization host extensions

The following diagram shows a simplified version of the software stack and Exception level that we
looked at in the section on virtualizing exceptions:

Figure 8-1: Standalone hypervisor with Armv8-A Exception levels

ELO Appl(s) App(s)

EL1 Guest OS Guest OS

EL2 Hypervisor

EL3 Secure Monitor/Firmware

You can see how a standalone hypervisor maps to the Arm Exception levels. The hypervisor is
running at EL2 and the virtual machines (VMs) at ELO/1. This situation is more problematic for
hosted hypervisors, as shown in the following diagram:
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Figure 8-2: Hosted hypervisor pre VHE

ELO Appl(s) Appl(s)

EL1 Guest OS Host OS

Hypervisor

EL3 Secure Monitor / Firmware

Traditionally, kernels run at EL1, but the virtualization controls are in EL2. This means that most of
the Host OS is at EL1, with some stub code running in EL2 to access the virtualization controls.
This arrangement can be inefficient, because it may involve additional context switching.

The kernel will need to handle some differences between running at EL1 and EL2, but these are
restricted to a small number of subsystems, for example early boot.

o
* The DynamlQ processors (Cortex-A55, Cortex-A75 and Cortex-A76) support
Virtualization Host Extensions (VHES).

Note

Running the Host OS at EL2
VHE is controlled by two bits in HCR_EL2. These bits can be summarized as:

e E2H: Controls whether VHE is enabled.

e TGE: When VHE is enabled, controls whether ELO is Guest or Host.
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Executing in HCR_EL2: E2H TGE
Guest kernel (EL1) 1 0
Guest application (ELO) 1 0
Host kernel (EL2) 1 1
Host application (ELO) 1 1

*On an exception that exits from a VM into the hypervisor, TGE would initially be O. Software
would have to set the bit before running the main part of the host kernel.

You can see these typical settings in the following diagram:

Figure 8-3: E2H and TGE combinations

ELO

EL1

EL2

EL3

HCR_EL2.TGE==0

HCR_EL2.E2H==1

HCR_EL2.TGE==1

Guest App(s)

Guest App(s)

Host App(s)

Guest OS

Guest OS

__________________________________________________________________

Secure Monitor / Firmware

Virtual address space

The following diagram shows what the virtual address spaces of ELO/EL1 looked like before VHE
was introduced:
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Figure 8-4: The ELO1 and EL2 virtual address spaces pre VHE

Virtual Address Space Virtual Address Space
For ELO/EL1 For EL3 and EL2

OXFFFF_FFFF_FFFF_FFFF

Kernel space

0xXFFFO0_0000_0000_0000

0x000F_FFFF_FFFF_FFFF 0x000F_FFFF_FFFF_FFFF

User space Single space

0x0000_0000_0000_0000 0x0000_0000_0000_0000

As discussed in Memory Management, ELO/1 has two regions. By convention, the upper region is
referred to as kernel space, and the lower region is referred to as user space. However, EL2 only
has a single region at the bottom of the address range. This difference is because, traditionally,

a hypervisor would not host applications. This means that the hypervisor does not need a split
between kernel space and user space.

o
* The allocation of kernel space to the upper region, and user space to the lower
region, is simply a convention. It is not mandated by the Arm architecture.

Note

The ELO/1 virtual address space also supports Address Space Identifiers (ASID), but EL2 does not.
This is because the hypervisor would not usually host applications.

To allow our Host OS to execute efficiently in EL2, we need to add the second region and ASID
support. Setting HCR_EL2.E2H addresses these issues, as you can see in the following diagram:
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Figure 8-5: ELO/2 virtual address space when E2H==1

Virtual Address Space

For ELO/EL1 and
ELO/EL2 when E2H=1

0XFFFF_FFFF_FFFF FFFF

Kernel space

0XFFFO0_0000_0000 0000

0x000F FFFF FFFF FFFF

User space

0x0000 0000 0000 0000

While in ELO, HCR_EL2.TGE controls which virtual address space is used: either the EL1 space or

the EL2 space. Which space is used depends on whether the application is running under the Host
OS (TGE==1) or the Guest OS (TGE==0).

Re-directing register accesses

We saw in the section on Virtualizing generic timers that enabling VHE changes the layout of the
EL2 virtual address space. However, we still have a problem with the configuration of the MMU.
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This is because our kernel will try to access _EL1 registers, such as TTBRO_EL1, rather than _EL2
registers such as TTBRO_EL2.

To run the same binary at EL2, we need to redirect the accesses from the EL1 registers to the EL2
equivalents. Setting E2H will do this, so that accesses to _EL1 system registers are redirected to
their EL2 equivalents. This redirection illustrated in the following diagram:

Figure 8-6: The effect of E2H on system registers access at EL2

E2H==1 I - TTBRO_ EL2

EL2: MSR TTBRO_EL1l, x0 —=<7

TTBRO_EL1

However, this redirection leaves us with a new problem. A hypervisor still needs access to the real
_EL1 registers, so that it can implement task switching. To resolve this, a new set of register aliases
are introduced with an _EL12 or _ELO2 suffix. When used at EL2, with E2H==1, these give access
to the EL1 register for context switching. You can see this in the following diagram:

Figure 8-7: Access EL1 registers from EL2 when E2H==1

EL2: MSR TTBRO_EL12, X0 =-=----cccccmcacananan- > TTBRO_EL1

Exceptions

Usually, the HCR_EL2.IMO/FMO/AMO bits control whether physical exceptions are routed to EL1
or EL2. When executing in ELO with TGE==1, all physical exceptions are routed to EL2, unless they
are routed to EL3 by SCR_ELS3. This is the case regardless of the actual values of the HCR_EL2
routing bits. This is because the application is executing as a child of the Host OS, and not a Guest
OS. Therefore, any exceptions should be routed to the Host OS that is running in EL2.
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9. Nested virtualization

In theory, a hypervisor can be run within a virtual machine (VM). This concept is called nested

virtualization:

Figure 9-1: Nested virtualization block diagram
: VM

;' Guest’s App Guest’s Guest App(s)

: Guest’s Guest OS

'.‘ Guest Hypervisor
ELO

VM VM Guest OS

EL1

EL2 Host Hypervisor

We refer to the first hypervisor as the Host Hypervisor, and the hypervisor within the VM as the

Guest Hypervisor.
Before the release of Armv8.3-A, it was possible to run a Guest Hypervisor in a VM by running

the Guest Hypervisor in ELO. However, this required a significant amount of software emulation,
and was both complicated to implement and resulted in poor performance. With the features
added in Armv8.3-A, it is possible to run the Guest Hypervisor in EL1. With the features added

in Armv8.4-A, this process is even more efficient, although it still involves extra intelligence in the

Host Hypervisor.

Guest Hypervisor access to virtualization controls
We do not want to give a Guest Hypervisor direct access to the virtualization controls. This is
because giving direct access could potentially allow the VM to breach its sandbox, or to discover

information about the host platform. This potential problem is similar to the issues demonstrated in
the previous examples on trapping and emulating.

Guest Hypervisors run at EL1. New controls in HCR_EL2 allow the Host Hypervisor to trap the
attempts of the Guest Hypervisor to access the virtualization controls:

HCR_EL2.NV Enables hardware support for nested virtualization
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e HCR_EL2.NV1 Enables an extra set of traps

e HCR_EL2.NV2 Enables re-direction to memory

e VNCR_EL2 When NV2==1, points to a structure in memory

Armv8.3-A added the NV and NV1 controls. Accesses to _EL2 registers from EL1 are usually
undefined, and accesses would cause an exception to EL1. The NV and NV1 bits cause EL1

accesses to _EL2 registers to trap to EL2 instead. This allows a Guest Hypervisor to run at EL1,
with the Host Hypervisor at EL2 emulating some of its operations. NV also traps ERETs from EL1.

The following diagram shows a Guest Hypervisor setting up and entering a VM:

Figure 9-2: Guest hypervisor setting up and entering a VM

Guest’s Guest Guest’s Hypervisor
ELL 4|---}{ ERET —p| VPIDR EL2 |€—
A
3 1

Context switch | Guest’s guest
NV==0 &= NV== 2 config

EL2

Host Hypervisor

1. Accesses to _EL2 register by the Guest Hypervisor are trapped to EL2. The Host Hypervisor
records the configuration that the Guest Hypervisor is setting up.

2. The Guest Hypervisor attempts to enter its Guest VM (the Guest VM of the Guest), and the
ERET is trapped to EL2

3. The Host Hypervisor retrieves the configuration for the Guest of the Guest and loads this
configuration into the appropriate registers. Then the host hypervisor clears the NV bit and
enters the Guest of the Guest.

The problem with this approach is that each individual access to an EL2 register by the Guest
Hypervisor must be trapped. Many registers are accessed when task switching between two vCPUs
or VMs, and result in many traps. Each trap has the overhead of an exception entry and return.
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A better solution is to capture the configuration of the EL2 registers, and only trap to the Host
Hypervisor on the ERET. This solution is possible with Armv8.4-A. When NV2 is set, EL1 accesses
to _EL2 registers are redirected to a structure in memory. The Guest Hypervisor can read and write
the registers as many times as it needs to, without a single trap. The ERET still traps to EL2, at
which time the Host Hypervisor can re-retrieve the configuration from memory.

The following diagram illustrates this concept:

Figure 9-3: ERET still traps to EL2

Guest’s Guest Guest's Hypervisor
EL1 MSRVTTER ELZ2 1
A e
3 o b bl LD ERET pTmmsmmssssssss- ‘
2 ; Guest’s guest =
! config.VTTBR _EL2
e eeenn o H
Context su‘n:tch ¢ VNCR EL2 :
NV==0 &= NV==1 '
EL2 * _________________________________________ L]

Host Hypervisor

1. Accesses to _EL2 registers from the Guest Hypervisor in EL1 are redirected to a structure in
memory. The location of the structure is specified by Host Hypervisor using VNCR_EL2

2. The Guest Hypervisor attempts to enter its Guest VM, which is the Guest VM of the Guest,
and the ERET is trapped to EL2.

3. The Host Hypervisor retrieves the configuration for the Guest of the Guest, and loads them
into the appropriate registers. The host hypervisor then clears the NV bit and enters the Guest
of the Guest.

The advantage to this approach is that there are fewer traps, and therefore fewer entries into the
Host Hypervisor.
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10. Secure virtualization

Virtualization was introduced in Armv7-A. At that time, Hyp mode, which is the equivalent to EL2
in AArch32, was only available in Non-secure state. When Armv8.4-A was introduced, support for
EL2 in Secure state was added as an optional feature.

When a processor supports Secure EL2, the processor needs to be enabled from EL3 using the
SCR_EL3.EEL2 bit. Setting this bit enables entry into EL2, and enables use of the virtualization
features in Secure state.

Before Secure virtualization was available, EL3 was usually used to host a mixture of Security
state switching software and platform firmware. This is because we like to minimize the amount of
software in EL3, so that EL3 easier to secure. Secure virtualization allows us to move the platform
firmware into EL1. Virtualization provides separate secure partitions for the platform firmware and
trusted kernels. The following diagram illustrates this point:

Figure 10-1: Secure virtualization block diagram
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Secure EL2 and the two Intermediate Physical Address spaces

The Arm architecture defines two physical address spaces: Secure and Non-secure. In Non-
secure state, the output of the stage 1 translation of a virtual machine (VM) is always Non-secure.
Therefore, there is a single Intermediate Physical Address (IPA) space for stage 2 to handle.
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In Secure state, the stage 1 translation of a VM can output both Secure and Non-secure addresses.
The NS bit in the translation table descriptors controls whether the Secure or the Non-secure
address space is outputted. As shown in the following diagram, this means that there are two IPA
spaces for stage 2, Secure and Non-secure:

Figure 10-2: IPA spaces in Secure state
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Unlike the stage 1 tables, there is no NS bit in the stage 2 table entries. For a particular IPA space,
all translations result in either a Secure Physical Address or a Non-secure Physical Address. This
translation is controlled by a register bit. Typically, the Non-secure IPAs translate to Non-secure
PAs, and the Secure IPAs translate to Secure PAs.
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11. Costs of virtualization

The cost of virtualization is determined by the amount of time that is required to switch between
the virtual machine (VM) and the hypervisor whenever the hypervisor needs to service the VM. On
Arm systems, a lower bound for such a cost is:

o 31x 64-bit general purpose registers (X0..X30)
e 32x 128-bit floating point/SIMD registers (VO.V31)
e Two stack pointers (SP_ELO, SP_EL1)

Using Lop and STP instructions, the hypervisor requires 33 instructions to save or restore these
registers.

The exact cost of virtualization for a project depends on both the platform and the design of the
hypervisor.
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12. Check your knowledge

Q: What is the difference between a Type 1 hypervisor and a Type 2 hypervisor?

A: Type 2 hypervisor runs on top of a host operating system, and a Type 1 hypervisor does not
have a host operating system.

Q: How many IPA spaces do Secure state and Non-secure state have?
A: Secure state has two |IPA spaces: Secure and Non-secure. Non-secure state has one IPA space.
Q: In which Exception levels can virtual interrupts be taken?

A: Virtual interrupts can only be taken while executing in ELO or EL1, and only if enabled by setting
the corresponding routing bit in HCR_ELZ2.

Q: What is an SMMU? How can you use an SMMU for virtualization?

A: An SMMU, or System MMU, provides address translation services to a non-processor master.
In virtualization, an SMMU can be used to give a master, for instance a DMA controller, the same
view of memory as the VM to which it is assigned.

Q: How does the HCR_EL2.E2H bit affect the execution of MSR TTBRO_EL1, xO at EL2?

A: When E2H==0, the instruction writes TTBRO _EL1. When E2H==1, the write is redirected to
TTBRO_EL2.

Q: What is a VMID and what is it used for?

A: AVMID is a virtual machine identifier. It is used to tag the TLB entries of a VM, so that TLB
entries from several VMs can coexist in the TLBs at the same time.

Q: What is a trap and how might it be used for virtualization?

A: A trap causes otherwise legal operations to trigger exceptions, trapping the operation to a piece
of software with a higher privilege. In virtualization, traps allow a hypervisor to detect when certain
operations are performed, and to emulate those operations.
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13. Related information

Here are some resources related to material in this guide:

Memory Management
Exception Model

Arm Virtualization: Performance and Architectural Implications (background reading on the
costs of virtualization on Arm based systems)

Arm community (Ask development questions, and find articles and blogs on specific topics from
Arm experts.)

Here are some resources related to topics in this guide:

Introduction to virtualization

o The Xen project

o General information on KVM hypervisors

Virtualizing exceptions

o GICv3/v4 Software Overview (detail on how the GIC virtualizes interrupts)
o https:/www.linux-kvm.org/page/Virtio (background reading on VirtlO)
Useful links to training:

o Introduction to Armv8-A

o Memory model overview

o AArché4 privilege and security model
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https://developer.arm.com/architectures/learn-the-architecture/memory-management
https://developer.arm.com/architectures/learn-the-architecture/exception-model
http://www.cs.columbia.edu/~cdall/pubs/isca2016-dall.pdf
https://community.arm.com/?_ga=2.62774511.2110475999.1543222480-958491181.1541088081
https://xenproject.org/developers/teams/hypervisor.html
https://www.linux-kvm.org/page/Main_Page
https://developer.arm.com/docs/dai0492/latest
https://www.linux-kvm.org/page/Virtio
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/394202
https://training.developer.arm.com/contents/393761
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14. Next steps

This guide has introduced the virtualization support provided by Armv8-A AArché4. This is useful
for anyone preparing to implement virtualization in their system.

After following this guide, you can explore a simple Bare metal example (coming soon). The
example demonstrates the use of some virtualization features. It runs two EL1 images in separate
virtual environments, and context switches between them using an interrupt. Although the example
is not a full hypervisor, it allows you to experiment with the processor features.

Alternatively, Spawn a Linux virtual machine on Arm using QEMU (KVM) takes you through setting
up the open source XEN and KVM hypervisors on the Arm Foundation model.

To learn more about security and virtualization, this Arm whitepaper discusses use cases for secure
virtualization.
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