
RISC-V External Debug Support

Version 0.13.2

d5029366d59e8563c08b6b9435f82573b603e48e

Editors:
Tim Newsome <tim@sifive.com>, SiFive, Inc.

Megan Wachs <megan@sifive.com>, SiFive, Inc.

Fri Mar 22 09:06:04 2019 -0700

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest cor-
rections): Bruce Ableidinger, Krste Asanović, Allen Baum, Mark Beal, Alex Bradbury, Chuanhua
Chang, Zhong-Ho Chen, Monte Dalrymple, Vyacheslav Dyachenko, Peter Egold, Markus Goehrle,
Robert Golla, John Hauser, Richard Herveille, Yung-ching Hsiao, Po-wei Huang, Scott Johnson,
Jean-Luc Nagel, Aram Nahidipour, Rishiyur Nikhil, Gajinder Panesar, Deepak Panwar, Antony
Pavlov, Klaus Kruse Pedersen, Ken Pettit, Joe Rahmeh, Gavin Stark, Wesley Terpstra, Jan-Willem
van de Waerdt, Stefan Wallentowitz, Ray Van De Walker, Andrew Waterman, Andy Wright, and
Bryan Wyatt.

Contents

1 Introduction 1

1.1 Terminology . 1

1.1.1 Context . 1

1.1.2 Versions . 2

1.2 About This Document . 2

1.2.1 Structure . 2

1.2.2 Register Definition Format . 2

1.2.2.1 Long Name (shortname, at 0x123) 2

1.3 Background . 3

1.4 Supported Features . 3

2 System Overview 5

3 Debug Module (DM) 7

3.1 Debug Module Interface (DMI) . 8

3.2 Reset Control . 8

3.3 Selecting Harts . 9

3.3.1 Selecting a Single Hart . 9

3.3.2 Selecting Multiple Harts . 9

3.4 Hart States . 9

3.5 Run Control . 10

3.6 Abstract Commands . 11

i

ii RISC-V External Debug Support Version 0.13.2

3.6.1 Abstract Command Listing . 12

3.6.1.1 Access Register . 12

3.6.1.2 Quick Access . 14

3.6.1.3 Access Memory . 14

3.7 Program Buffer . 16

3.8 Overview of States . 16

3.9 System Bus Access . 18

3.10 Minimally Intrusive Debugging . 18

3.11 Security . 19

3.12 Debug Module Registers . 19

3.12.1 Debug Module Status (dmstatus, at 0x11) 20

3.12.2 Debug Module Control (dmcontrol, at 0x10) 22

3.12.3 Hart Info (hartinfo, at 0x12) . 25

3.12.4 Hart Array Window Select (hawindowsel, at 0x14) 26

3.12.5 Hart Array Window (hawindow, at 0x15) . 26

3.12.6 Abstract Control and Status (abstractcs, at 0x16) 27

3.12.7 Abstract Command (command, at 0x17) . 28

3.12.8 Abstract Command Autoexec (abstractauto, at 0x18) 29

3.12.9 Configuration String Pointer 0 (confstrptr0, at 0x19) 29

3.12.10 Next Debug Module (nextdm, at 0x1d) . 30

3.12.11 Abstract Data 0 (data0, at 0x04) . 30

3.12.12 Program Buffer 0 (progbuf0, at 0x20) . 30

3.12.13 Authentication Data (authdata, at 0x30) . 31

3.12.14 Halt Summary 0 (haltsum0, at 0x40) . 31

3.12.15 Halt Summary 1 (haltsum1, at 0x13) . 31

3.12.16 Halt Summary 2 (haltsum2, at 0x34) . 32

3.12.17 Halt Summary 3 (haltsum3, at 0x35) . 32

3.12.18 System Bus Access Control and Status (sbcs, at 0x38) 32

RISC-V External Debug Support Version 0.13.2 iii

3.12.19 System Bus Address 31:0 (sbaddress0, at 0x39) 34

3.12.20 System Bus Address 63:32 (sbaddress1, at 0x3a) 35

3.12.21 System Bus Address 95:64 (sbaddress2, at 0x3b) 35

3.12.22 System Bus Address 127:96 (sbaddress3, at 0x37) 36

3.12.23 System Bus Data 31:0 (sbdata0, at 0x3c) . 36

3.12.24 System Bus Data 63:32 (sbdata1, at 0x3d) 37

3.12.25 System Bus Data 95:64 (sbdata2, at 0x3e) 37

3.12.26 System Bus Data 127:96 (sbdata3, at 0x3f) 38

4 RISC-V Debug 39

4.1 Debug Mode . 39

4.2 Load-Reserved/Store-Conditional Instructions . 40

4.3 Wait for Interrupt Instruction . 40

4.4 Single Step . 40

4.5 Reset . 41

4.6 dret Instruction . 41

4.7 XLEN . 41

4.8 Core Debug Registers . 41

4.8.1 Debug Control and Status (dcsr, at 0x7b0) 42

4.8.2 Debug PC (dpc, at 0x7b1) . 44

4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2) 45

4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3) 45

4.9 Virtual Debug Registers . 45

4.9.1 Privilege Level (priv, at virtual) . 45

5 Trigger Module 47

5.1 Native M-Mode Triggers . 48

5.2 Trigger Registers . 48

5.2.1 Trigger Select (tselect, at 0x7a0) . 49

iv RISC-V External Debug Support Version 0.13.2

5.2.2 Trigger Data 1 (tdata1, at 0x7a1) . 50

5.2.3 Trigger Data 2 (tdata2, at 0x7a2) . 50

5.2.4 Trigger Data 3 (tdata3, at 0x7a3) . 51

5.2.5 Trigger Info (tinfo, at 0x7a4) . 51

5.2.6 Trigger Control (tcontrol, at 0x7a5) . 51

5.2.7 Machine Context (mcontext, at 0x7a8) . 52

5.2.8 Supervisor Context (scontext, at 0x7aa) . 52

5.2.9 Match Control (mcontrol, at 0x7a1) . 53

5.2.10 Instruction Count (icount, at 0x7a1) . 58

5.2.11 Interrupt Trigger (itrigger, at 0x7a1) . 59

5.2.12 Exception Trigger (etrigger, at 0x7a1) . 60

5.2.13 Trigger Extra (RV32) (textra32, at 0x7a3) 60

5.2.14 Trigger Extra (RV64) (textra64, at 0x7a3) 61

6 Debug Transport Module (DTM) 62

6.1 JTAG Debug Transport Module . 62

6.1.1 JTAG Background . 62

6.1.2 JTAG DTM Registers . 63

6.1.3 IDCODE (at 0x01) . 63

6.1.4 DTM Control and Status (dtmcs, at 0x10) 64

6.1.5 Debug Module Interface Access (dmi, at 0x11) 65

6.1.6 BYPASS (at 0x1f) . 66

6.1.7 Recommended JTAG Connector . 67

A Hardware Implementations 69

A.1 Abstract Command Based . 69

A.2 Execution Based . 69

B Debugger Implementation 71

RISC-V External Debug Support Version 0.13.2 v

B.1 Debug Module Interface Access . 71

B.2 Checking for Halted Harts . 72

B.3 Halting . 72

B.4 Running . 72

B.5 Single Step . 72

B.6 Accessing Registers . 72

B.6.1 Using Abstract Command . 72

B.6.2 Using Program Buffer . 73

B.7 Reading Memory . 73

B.7.1 Using System Bus Access . 73

B.7.2 Using Program Buffer . 74

B.7.3 Using Abstract Memory Access . 75

B.8 Writing Memory . 76

B.8.1 Using System Bus Access . 76

B.8.2 Using Program Buffer . 76

B.8.3 Using Abstract Memory Access . 77

B.9 Triggers . 78

B.10 Handling Exceptions . 79

B.11 Quick Access . 79

C Bug Fixes 80

C.1 0.13.1 . 80

C.1.1 Resume ack bit is set after resuming . 80

C.1.2 aamsize does not affect Argument Width . 80

C.1.3 sbdata0 Reads Order of Operations . 80

C.1.4 Hart reset behavior when haltreq is set . 81

C.1.5 mte only applies when action=0 . 81

C.1.6 sselect applies to svalue . 81

vi RISC-V External Debug Support Version 0.13.2

C.1.7 Last trigger example . 81

C.2 0.13.2 . 81

Index 82

List of Figures

2.1 RISC-V Debug System Overview . 6

3.1 Run/Halt Debug State Machine . 17

vii

List of Tables

1.2 Register Access Abbreviations . 3

3.1 Use of Data Registers . 11

3.2 Meaning of cmdtype . 12

3.3 Abstract Register Numbers . 13

3.7 System Bus Data Bits . 18

3.8 Debug Module Debug Bus Registers . 20

4.1 Core Debug Registers . 42

4.3 Virtual address in DPC upon Debug Mode Entry . 44

4.4 Virtual Core Debug Registers . 45

4.5 Privilege Level Encoding . 46

5.1 action encoding . 49

5.2 Trigger Registers . 49

5.8 Suggested Breakpoint Timings . 53

6.1 JTAG DTM TAP Registers . 63

6.5 MIPI-10 Connector Diagram . 67

6.6 MIPI-20 Connector Diagram . 67

6.7 JTAG Connector Pinout . 68

viii

Chapter 1

Introduction

When a design progresses from simulation to hardware implementation, a user’s control and un-
derstanding of the system’s current state drops dramatically. To help bring up and debug low level
software and hardware, it is critical to have good debugging support built into the hardware. When
a robust OS is running on a core, software can handle many debugging tasks. However, in many
scenarios, hardware support is essential.

This document outlines a standard architecture for external debug support on RISC-V platforms.
This architecture allows a variety of implementations and tradeoffs, which is complementary to
the wide range of RISC-V implementations. At the same time, this specification defines common
interfaces to allow debugging tools and components to target a variety of platforms based on the
RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification
defines a standard interface for common functionality.

1.1 Terminology

A platform is a single integrated circuit consisting of one or more components. Some components
may be RISC-V cores, while others may have a different function. Typically they will all be
connected to a single system bus. A single RISC-V core contains one or more hardware threads,
called harts.

DXLEN of a hart is its widest supported XLEN, ignoring the current value of MXL in misa.

1.1.1 Context

This document is written to work with:

1. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2 (the
ISA Spec)

1

2 RISC-V External Debug Support Version 0.13.2

2. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 (the
Privileged Spec)

1.1.2 Versions

Version 0.13 of this document was ratified by the RISC-V Foundation’s board. Versions 0.13.x are
bug fix releases to that ratified specification.

Version 0.14 will be forwards and backwards compatible with Version 0.13.

1.2 About This Document

1.2.1 Structure

This document contains two parts. The main part of the document is the specification, which is
given in the numbered sections. The second part of the document is a set of appendices. The
information in the appendices is intended to clarify and provide examples, but is not part of the
actual specification.

1.2.2 Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows
which fields are in the register. The upper and lower bit indices are shown to the top left and top
right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses,
and reset value. The allowed accesses are listed in Table 1.2. The reset value is either a constant
or “Preset.” The latter means it is an implementation-specific legal value.

Names of registers and their fields are hyperlinks to their definition, and are also listed in the index
on page 82.

1.2.2.1 Long Name (shortname, at 0x123)

31 8 7 0

0 field

24 8

Field Description Access Reset

field Description of what this field is used for. R/W 15

RISC-V External Debug Support Version 0.13.2 3

Table 1.2: Register Access Abbreviations
R Read-only.

R/W Read/Write.

R/W1C Read/Write. For each bit in the field, writing 1 clears
that bit. Writing 0 has no effect.

W Write-only. When read this field returns 0.

W1 Write-only. Only writing 1 has an effect.

WARL Write any, read legal. A debugger may write any
value. If a value is unsupported, the implementation

converts the value to one that is supported.

1.3 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and with
an external connection. This specification addresses the use cases listed below. Implementations
can choose not to implement every feature, which means some use cases might not be supported.

• Debugging low-level software in the absence of an OS or other software.

• Debugging issues in the OS itself.

• Bootstrapping a system to test, configure, and program components before there is any
executable code path in the system.

• Accessing hardware on a system without a working CPU.

In addition, even without a hardware debugging interface, architectural support in a RISC-V
CPU can aid software debugging and performance analysis by allowing hardware triggers and
breakpoints.

1.4 Supported Features

The debug interface described in this specification supports the following features:

1. All hart registers (including CSRs) can be read/written.

2. Memory can be accessed either from the hart’s point of view, through the system bus directly,
or both.

3. RV32, RV64, and future RV128 are all supported.

4. Any hart in the platform can be independently debugged.

5. A debugger can discover almost1 everything it needs to know itself, without user configuration.

1Notable exceptions include information about the memory map and peripherals.

4 RISC-V External Debug Support Version 0.13.2

6. Each hart can be debugged from the very first instruction executed.

7. A RISC-V hart can be halted when a software breakpoint instruction is executed.

8. Hardware single-step can execute one instruction at a time.

9. Debug functionality is independent of the debug transport used.

10. The debugger does not need to know anything about the microarchitecture of the harts it is
debugging.

11. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)

12. Arbitrary instructions can be executed on a halted hart. That means no new debug function-
ality is needed when a core has additional or custom instructions or state, as long as there
exist programs that can move that state into GPRs. (Optional)

13. Registers can be accessed without halting. (Optional)

14. A running hart can be directed to execute a short sequence of instructions, with little overhead.
(Optional)

15. A system bus master allows memory access without involving any hart. (Optional)

16. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or
an instruction opcode. (Optional)

This document does not suggest a strategy or implementation for hardware test, debugging or error
detection techniqes. Scan, BIST, etc. are out of scope of this specification, but this specification
does not intend to limit their use in RISC-V systems.

It is possible to debug code that uses software threads, but there is no special debug support for
it.

Chapter 2

System Overview

Figure 2.1 shows the main components of External Debug Support. Blocks shown in dotted lines
are optional.

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. gdb). The
debugger communicates with a Debug Translator (e.g. OpenOCD, which may include a hardware
driver) to communicate with Debug Transport Hardware (e.g. Olimex USB-JTAG adapter). The
Debug Transport Hardware connects the Debug Host to the Platform’s Debug Transport Module
(DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug Module
Interface (DMI).

Each hart in the platform is controlled by exactly one DM. Harts may be heterogeneous. There
is no further limit on the hart-DM mapping, but usually all harts in a single core are controlled
by the same DM. In most platforms there will only be one DM that controls all the harts in the
platform.

DMs provide run control of their harts in the platform. Abstract commands provide access to
GPRs. Additional registers are accessible through abstract commands or by writing programs to
the optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mech-
anism can also be used to access memory. An optional system bus access block allows memory
accesses without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will
halt and inform the debug module that they have halted.

5

6 RISC-V External Debug Support Version 0.13.2

Figure 2.1: RISC-V Debug System Overview

Chapter 3

Debug Module (DM)

The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:

1. Give the debugger necessary information about the implementation. (Required)
2. Allow any individual hart to be halted and resumed. (Required)
3. Provide status on which harts are halted. (Required)
4. Provide abstract read and write access to a halted hart’s GPRs. (Required)
5. Provide access to a reset signal that allows debugging from the very first instruction after

reset. (Required)
6. Provide a mechanism to allow debugging harts immediately out of reset (regardless of the

reset cause). (Optional)
7. Provide abstract access to non-GPR hart registers. (Optional)
8. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)
9. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)

10. Allow memory access from a hart’s point of view. (Optional)
11. Allow direct System Bus Access. (Optional)

In order to be compliant with this specification an implementation must:

1. Implement all the required features listed above.
2. Implement at least one of Program Buffer, System Bus Access, or Abstract Access Memory

command mechanisms.

3. Do at least one of:

(a) Implement the Program Buffer.
(b) Implement abstract access to all registers that are visible to software running on the

hart including all the registers that are present on the hart and listed in Table 3.3.
(c) Implement abstract access to at least all GPRs, dcsr, and dpc, and advertise the imple-

mentation as conforming to the “Minimal RISC-V Debug Specification 0.13.2”, instead
of the “RISC-V Debug Specification 0.13.2”.

A single DM can debug up to 220 harts.

7

8 RISC-V External Debug Support Version 0.13.2

3.1 Debug Module Interface (DMI)

Debug Modules are slaves to a bus called the Debug Module Interface (DMI). The master of the
bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with
one master and one slave, or use a more full-featured bus like TileLink or the AMBA Advanced
Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. It supports read and write operations. The bottom
of the address space is used for the first (and usually only) DM. Extra space can be used for custom
debug devices, other cores, additional DMs, etc. If there are additional DMs on this DMI, the base
address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

3.2 Reset Control

The Debug Module controls a global reset signal, ndmreset (non-debug module reset), which can
reset, or hold in reset, every component in the platform, except for the Debug Module and Debug
Transport Modules. Exactly what is affected by this reset is implementation dependent, as long
as it is possible to debug programs from the first instruction executed. The Debug Module’s own
state and registers should only be reset at power-up and while dmactive in dmcontrol is 0. The
halt state of harts should be maintained across system reset provided that dmactive is 1, although
trigger CSRs may be cleared.

Due to clock and power domain crossing issues, it may not be possible to perform arbitrary DMI
accesses across system reset. While ndmreset or any external reset is asserted, the only supported
DM operation is accessing dmcontrol. The behavior of other accesses is undefined.

There is no requirement on the duration of the assertion of ndmreset. The implementation must
ensure that a write of ndmreset to 1 followed by a write of ndmreset to 0 triggers system reset. The
system may take an arbitrarily long time to come out of reset, as reported by allunavail, anyunavail.

Individual harts (or several at once) can be reset by selecting them, setting and then clearing
hartreset. In this case an implementation may reset more harts than just the ones that are selected.
The debugger can discover which other harts are reset (if any) by selecting them and checking
anyhavereset and allhavereset.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset
state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits
must be set regardless of the cause of the reset. The havereset bits for the selected harts can be
cleared by writing 1 to ackhavereset in dmcontrol. The havereset bits may or may not be cleared
when dmactive is low.

When a hart comes out of reset and haltreq or resethaltreq are set, the hart will immediately enter
Debug Mode. Otherwise it will execute normally.

RISC-V External Debug Support Version 0.13.2 9

3.3 Selecting Harts

Up to 220 harts can be connected to a single DM. The debugger selects a hart, and then subsequent
halt, resume, reset, and debugging commands are specific to that hart.

To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to
hartsel (assuming the maximum size) and reading back the value to see which bits were actually
set. Then it selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the
highest index (depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface
to read mhartid, or by reading the system’s configuration string.

3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing
its index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

3.3.2 Selecting Multiple Harts

Debug Modules may implement a Hart Array Mask register to allow selecting multiple harts at
once. The nth bit in the Hart Array Mask register applies to the hart with index n. If the bit is 1
then the hart is selected. Usually a DM will have a Hart Array Mask register exactly wide enough
to select all the harts it supports, but it’s allowed to tie any of these bits to 0.

The debugger can set bits in the hart array mask register using hawindowsel and hawindow, then
apply actions to all selected harts by setting hasel. If this feature is supported, multiple harts can
be halted, resumed, and reset simultaneously. The state of the hart array mask register is not
affected by setting or clearing hasel.

Only the actions initiated by dmcontrol can apply to multiple harts at once, Abstract Commands
apply only to the hart selected by hartsel.

3.4 Hart States

Every hart that can be selected is in exactly one of four states. Which state the selected harts are in
is reflected by allnonexistent, anynonexistent, allunavail, anyunavail, allrunning, anyrunning, allhalted,
and anyhalted.

Harts are nonexistent if they will never be part of this system, no matter how long a user waits.
E.g. in a simple single-hart system only one hart exists, and all others are nonexistent. Debuggers
may assume that a system has no harts with indexes higher than the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts
with higher indexes than this one. Harts may be unavailable for a variety of reasons including being

10 RISC-V External Debug Support Version 0.13.2

reset, temporarily powered down, and not being plugged into the system. Systems with very large
number of harts may permanently disable some during manufacturing, leaving holes in the otherwise
continuous hart index space. In order to let the debugger discover all harts, they must show up as
unavailable even if there is no chance of them ever becoming available.

Harts are running when they are executing normally, as if no debugger was attached. This includes
being in a low power mode or waiting for an interrupt, as long as a halt request will result in the
hart being halted.

Harts are halted when they are in Debug Mode, only performing tasks on behalf of the debugger.

Which states a hart that is reset goes through is implementation dependent. Harts may be un-
available while reset is asserted, and some time after reset is deasserted. They might transition
to running for some time after reset is deasserted. Finally they end up either running or halted,
depending on haltreq and resethaltreq.

3.5 Run Control

For every hart, the Debug Module tracks 4 conceptual bits of state: halt request, resume ack, halt-
on-reset request, and hart reset. (The hart reset and halt-on-reset request bits are optional.) These
4 bits reset to 0, except for resume ack, which may reset to either 0 or 1. The DM receives halted,
running, and havereset signals from each hart. The debugger can observe the state of resume ack in
allresumeack and anyresumeack, and the state of halted, running, and havereset signals in allhalted,
anyhalted, allrunning, anyrunning, allhavereset, and anyhavereset. The state of the other bits cannot
be observed directly.

When a debugger writes 1 to haltreq, each selected hart’s halt request bit is set. When a running
hart, or a hart just coming out of reset, sees its halt request bit high, it responds by halting,
deasserting its running signal, and asserting its halted signal. Halted harts ignore their halt request
bit.

When a debugger writes 1 to resumereq, each selected hart’s resume ack bit is cleared and each
selected, halted hart is sent a resume request. Harts respond by resuming, clearing their halted
signal, and asserting their running signal. At the end of this process the resume ack bit is set.
These status signals of all selected harts are reflected in allresumeack, anyresumeack, allrunning, and
anyrunning. Resume requests are ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavail-
able. (How this is implemented is not further specified. A few clock cycles will be a more typical
latency).

The DM can implement optional halt-on-reset bits for each hart, which it indicates by setting
hasresethaltreq to 1. This means the DM implements the setresethaltreq and clrresethaltreq bits.
Writing 1 to setresethaltreq sets the halt-on-reset request bit for each selected hart. When a hart’s
halt-on-reset request bit is set, the hart will immediately enter debug mode on the next deassertion
of its reset. This is true regardless of the reset’s cause. The hart’s halt-on-reset request bit remains
set until cleared by the debugger writing 1 to clrresethaltreq while the hart is selected, or by DM
reset.

RISC-V External Debug Support Version 0.13.2 11

3.6 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the
implementation, the debugger may be able to perform some abstract commands even when the
selected hart is not halted. Debuggers can only determine which abstract commands are supported
by a given hart in a given state by attempting them and then looking at cmderr in abstractcs

to see if they were successful. Commands may be supported with some options set, but not with
other options set. If a command has unsupported options set, the DM must set cmderr to 2 (not
supported).

Example: Every system must support the Access Register command, but may not support access-
ing CSRs. If the debugger requests to read a CSR in that case, the command will return “not
supported.”

Debuggers execute abstract commands by writing them to command. They can determine whether
an abstract command is complete by reading busy in abstractcs. After completion, cmderr in-
dicates whether the command was successful or not. Commands may fail because a hart is not
halted, not running, unavailable, or because they encounter an error during execution.

If the command takes arguments, the debugger must write them to the data registers before writing
to command. If a command returns results, the Debug Module must ensure they are placed in the
data registers before busy is cleared. Which data registers are used for the arguments is described
in Table 3.1. In all cases the least-significant word is placed in the lowest-numbered data register.
The argument width depends on the command being executed, and is DXLEN where not explicitly
specified.

Table 3.1: Use of Data Registers
Argument Width arg0/return value arg1 arg2

32 data0 data1 data2

64 data0, data1 data2, data3 data4, data5

128 data0–data3 data4–data7 data8–data11

The Abstract Command interface is designed to allow a debugger to write commands as fast as
possible, and then later check whether they completed without error. In the common case the
debugger will be much slower than the target and commands succeed, which allows for maximum
throughput. If there is a failure, the interface ensures that no commands execute after the failing
one. To discover which command failed, the debugger has to look at the state of the DM (e.g.
contents of data0) or hart (e.g. contents of a register modified by a Program Buffer program)
to determine which one failed.

Before starting an abstract command, a debugger must ensure that haltreq, resumereq, and
ackhavereset are all 0.

While an abstract command is executing (busy in abstractcs is high), a debugger must not change
hartsel, and must not write 1 to haltreq, resumereq, ackhavereset, setresethaltreq, or clrresethaltreq.

If an abstract command does not complete in the expected time and appears to be hung, the
following procedure can be attempted to abort the command: First the debugger resets the hart
(using hartreset or ndmreset), and then it resets the Debug Module (using dmactive).

12 RISC-V External Debug Support Version 0.13.2

If an abstract command is started while the selected hart is unavailable or if a hart becomes
unavailable while executing an abstract command, then the Debug Module may terminate the
abstract command, setting busy low, and cmderr to 4 (halt/resume). Alternatively, the command
could just appear to be hung (busy never goes low).

3.6.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be
interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the
kind of command. Table 3.2 lists all commands.

Table 3.2: Meaning of cmdtype
cmdtype Command Page

0 Access Register Command 12

1 Quick Access 14

2 Access Memory Command 14

3.6.1.1 Access Register

This command gives the debugger access to CPU registers and allows it to execute the Program
Buffer. It performs the following sequence of operations:

1. If write is clear and transfer is set, then copy data from the register specified by regno into the
arg0 region of data, and perform any side effects that occur when this register is read from
M-mode.

2. If write is set and transfer is set, then copy data from the arg0 region of data into the register
specified by regno, and perform any side effects that occur when this register is written from
M-mode.

3. If aarpostincrement is set, increment regno.
4. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it
reaches the step that would cause failure. If the failure is that the requested register does not exist
in the hart, cmderr must be set to 3 (exception).

Debug Modules must implement this command and must support read and write access to all GPRs
when the selected hart is halted. Debug Modules may optionally support accessing other registers,
or accessing registers when the hart is running. Each individual register (aside from GPRs) may
be supported differently across read, write, and halt status.

The encoding of aarsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when a register is read. The other data registers are not changed.

RISC-V External Debug Support Version 0.13.2 13

Table 3.3: Abstract Register Numbers
0x0000 – 0x0fff CSRs. The “PC” can be accessed here through dpc.

0x1000 – 0x101f GPRs

0x1020 – 0x103f Floating point registers

0xc000 – 0xffff Reserved for non-standard extensions and internal use.

31 24 23 22 20 19

cmdtype 0 aarsize aarpostincrement

8 1 3 1

18 17 16 15 0

postexec transfer write regno

1 1 1 16

Field Description

cmdtype This is 0 to indicate Access Register Command.

aarsize 2: Access the lowest 32 bits of the register.
3: Access the lowest 64 bits of the register.
4: Access the lowest 128 bits of the register.
If aarsize specifies a size larger than the register’s
actual size, then the access must fail. If a reg-
ister is accessible, then reads of aarsize less than
or equal to the register’s actual size must be sup-
ported.
This field controls the Argument Width as refer-
enced in Table 3.1.

aarpostincrement 0: No effect. This variant must be supported.
1: After a successful register access, regno is in-
cremented (wrapping around to 0). Supporting
this variant is optional.

postexec 0: No effect. This variant must be supported, and
is the only supported one if progbufsize is 0.
1: Execute the program in the Program Buffer
exactly once after performing the transfer, if any.
Supporting this variant is optional.

transfer 0: Don’t do the operation specified by write.
1: Do the operation specified by write.
This bit can be used to just execute the Pro-
gram Buffer without having to worry about plac-
ing valid values into aarsize or regno.

write When transfer is set: 0: Copy data from the spec-
ified register into arg0 portion of data.
1: Copy data from arg0 portion of data into the
specified register.

regno Number of the register to access, as described in
Table 3.3. dpc may be used as an alias for PC if
this command is supported on a non-halted hart.

14 RISC-V External Debug Support Version 0.13.2

3.6.1.2 Quick Access

Perform the following sequence of operations:

1. If the hart is halted, the command sets cmderr to “halt/resume” and does not continue.
2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets

cmderr to “halt/resume” and does not continue.
3. Execute the Program Buffer. If an exception occurs, cmderr is set to “exception” and the

program buffer execution ends, but the quick access command continues.
4. Resume the hart.

Implementing this command is optional.

This command does not touch the data registers.

31 24 23 0

cmdtype 0

8 24

Field Description

cmdtype This is 1 to indicate Quick Access command.

3.6.1.3 Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and
permissions as the selected hart has. This includes access to hart-local memory-mapped registers,
etc. The command performs the following sequence of operations:

1. Copy data from the memory location specified in arg1 into the arg0 portion of data, if write
is clear.

2. Copy data from the arg0 portion of data into the memory location specified in arg1, if write
is set.

3. If aampostincrement is set, increment arg1.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
access may only fail if the hart, running M-mode code, might encounter that same failure when it
attempts the same access. An implementation may detect an upcoming failure early, and fail the
overall command before it reaches the step that would cause failure.

Debug Modules may optionally implement this command and may support read and write access to
memory locations when the selected hart is running or halted. If this command supports memory
accesses while the hart is running, it must also support memory accesses while the hart is halted.

RISC-V External Debug Support Version 0.13.2 15

The encoding of aamsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when memory is read. It modifies arg1 only if aampostincrement
is set. The other data registers are not changed.

31 24 23 22 20 19

cmdtype aamvirtual aamsize aampostincrement

8 1 3 1

18 17 16 15 14 13 0

0 write target-specific 0

2 1 2 14

Field Description

cmdtype This is 2 to indicate Access Memory Command.

aamvirtual An implementation does not have to implement
both virtual and physical accesses, but it must
fail accesses that it doesn’t support.
0: Addresses are physical (to the hart they are
performed on).
1: Addresses are virtual, and translated the way
they would be from M-mode, with MPRV set.

aamsize 0: Access the lowest 8 bits of the memory loca-
tion.
1: Access the lowest 16 bits of the memory loca-
tion.
2: Access the lowest 32 bits of the memory loca-
tion.
3: Access the lowest 64 bits of the memory loca-
tion.
4: Access the lowest 128 bits of the memory loca-
tion.

aampostincrement After a memory access has completed, if this bit
is 1, increment arg1 (which contains the address
used) by the number of bytes encoded in aamsize.

write 0: Copy data from the memory location specified
in arg1 into arg0 portion of data.
1: Copy data from arg0 portion of data into the
memory location specified in arg1.

target-specific These bits are reserved for target-specific uses.

16 RISC-V External Debug Support Version 0.13.2

3.7 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Pro-
gram Buffer that a debugger can write small programs to. Systems that support all necessary
functionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once
with the Access Register Abstract Command, setting the postexec bit in command. The debugger
can write whatever program it likes (including jumps out of the Program Buffer), but the program
must end with ebreak or c.ebreak. An implementation may support an implied ebreak that is
executed when a hart runs off the end of the Program Buffer. This is indicated by impebreak. With
this feature, a Program Buffer of just 2 32-bit words can offer efficient debugging.

If progbufsize is 1, impebreak must be 1. It is possible that the Program Buffer can hold only one 32-
or 16-bit instruction, so the debugger must only write a single instruction in this case, regardless
of its size. This instruction can be a 32-bit instruction, or a compressed instruction in the lower 16
bits accompanied by a compressed nop in the upper 16 bits.

The slightly inconsistent behavior with a Program Buffer of size 1 is to accommodate hardware
designs that prefer to stuff instructions directly into the pipeline when halted, instead of having
the Program Buffer exist in the address space somewhere.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If
an exception is encountered during execution of the Program Buffer, no more instructions are
executed, the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the
debugger executes a program that doesn’t terminate with an ebreak instruction, the hart will
remain in Debug Mode and the debugger will lose control of the hart.

Executing the Program Buffer may clobber dpc. If that is the case, it must be possible to read/write
dpc using an abstract command with postexec not set. The debugger must attempt to save dpc

between halting and executing a Program Buffer, and then restore dpc before leaving Debug Mode.

Allowing Program Buffer execution to clobber dpc allows for direct implementations that don’t
have a separate PC register, and do need to use the PC when executing the Program Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart. A debugger
can determine if this is the case by executing small programs that attempt to write and read back
relative to pc while executing from the Program Buffer. If so, the debugger has more flexibility in
what it can do with the program buffer.

3.8 Overview of States

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging
as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

RISC-V External Debug Support Version 0.13.2 17

Figure 3.1: Run/Halt Debug State Machine for single-hart systems. As only a small amount of
state is visibile to the debugger, the states and transitions are conceptual.

18 RISC-V External Debug Support Version 0.13.2

3.9 System Bus Access

A debugger can access memory from a hart’s point of view using a Program Buffer or the Abstract
Access Memory command. (Both these features are optional.) A Debug Module may also include a
System Bus Access block to provide memory access without involving a hart, regardless of whether
Program Buffer is implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 3.7 shows
which bits in sbdata are used for each access size.

Table 3.7: System Bus Data Bits
Access Size Data Bits

8 sbdata0 bits 7:0

16 sbdata0 bits 15:0

32 sbdata0

64 sbdata1, sbdata0

128 sbdata3, sbdata2, sbdata1, sbdata0

Depending on the microarchitecture, data accessed through System Bus Access may not always
be coherent with that observed by each hart. It is up to the debugger to enforce coherency if the
implementation does not. This specification does not define a standard way to do this. Possibilities
may include writing to special memory-mapped locations, or executing special instructions via the
Program Buffer.

Implementing a System Bus Access block has several benefits even when a Debug Module also
implements a Program Buffer. First, it is possible to access memory in a running system with
minimal impact. Second, it may improve performance when accessing memory. Third, it may
provide access to devices that a hart does not have access to.

3.10 Minimally Intrusive Debugging

Depending on the task it is performing, some harts can only be halted very briefly. There are
several mechanisms that allow accessing resources in such a running system with a minimal impact
on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents
of the Program Buffer, and let the hart run again. Combined with instructions that allow Program
Buffer code to access the data registers, as described in 3.12.3, this can be used to quickly perform
a memory or register access. For some systems this will be too intrusive, but many systems that
can’t be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to
access system memory.

RISC-V External Debug Support Version 0.13.2 19

3.11 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow
access during a manufacturing process and not afterwards, a reasonable solution could be to add a
fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology
specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Between
authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be sup-
ported. When authenticated is clear, the DM must not interact with the rest of the platform, nor
expose details about the harts connected to the DM. All DM registers should read 0, while writes
should be ignored, with the following mandatory exceptions:

1. authenticated in dmstatus is readable.
2. authbusy in dmstatus is readable.
3. version in dmstatus is readable.
4. dmactive in dmcontrol is readable and writable.
5. authdata is readable and writable.

3.12 Debug Module Registers

The registers described in this section are accessed over the DMI bus. Each DM has a base address
(which is 0 for the first DM). The register addresses below are offsets from this base address.

When read, unimplemented Debug Module DMI Registers return 0. Writing them has no effect.

For each register it is possible to determine that it is implemented by reading it and getting a
non-zero value (e.g. sbcs), or by checking bits in another register (e.g. progbufsize).

20 RISC-V External Debug Support Version 0.13.2

Table 3.8: Debug Module Debug Bus Registers
Address Name Page

0x04 Abstract Data 0 (data0) 30
0x0f Abstract Data 11 (data11)
0x10 Debug Module Control (dmcontrol) 22
0x11 Debug Module Status (dmstatus) 20
0x12 Hart Info (hartinfo) 25
0x13 Halt Summary 1 (haltsum1) 31
0x14 Hart Array Window Select (hawindowsel) 26
0x15 Hart Array Window (hawindow) 26
0x16 Abstract Control and Status (abstractcs) 27
0x17 Abstract Command (command) 28
0x18 Abstract Command Autoexec (abstractauto) 29
0x19 Configuration String Pointer 0 (confstrptr0) 29
0x1a Configuration String Pointer 1 (confstrptr1)
0x1b Configuration String Pointer 2 (confstrptr2)
0x1c Configuration String Pointer 3 (confstrptr3)
0x1d Next Debug Module (nextdm) 30
0x20 Program Buffer 0 (progbuf0) 30
0x2f Program Buffer 15 (progbuf15)
0x30 Authentication Data (authdata) 31
0x34 Halt Summary 2 (haltsum2) 32
0x35 Halt Summary 3 (haltsum3) 32
0x37 System Bus Address 127:96 (sbaddress3) 36
0x38 System Bus Access Control and Status (sbcs) 32
0x39 System Bus Address 31:0 (sbaddress0) 34
0x3a System Bus Address 63:32 (sbaddress1) 35
0x3b System Bus Address 95:64 (sbaddress2) 35
0x3c System Bus Data 31:0 (sbdata0) 36
0x3d System Bus Data 63:32 (sbdata1) 37
0x3e System Bus Data 95:64 (sbdata2) 37
0x3f System Bus Data 127:96 (sbdata3) 38
0x40 Halt Summary 0 (haltsum0) 31

3.12.1 Debug Module Status (dmstatus, at 0x11)

This register reports status for the overall Debug Module as well as the currently selected harts, as
defined in hasel. Its address will not change in the future, because it contains version.

This entire register is read-only.

31 23 22 21 20 19 18

0 impebreak 0 allhavereset anyhavereset

9 1 2 1 1

RISC-V External Debug Support Version 0.13.2 21

17 16 15 14 13

allresumeack anyresumeack allnonexistent anynonexistent allunavail

1 1 1 1 1

12 11 10 9 8

anyunavail allrunning anyrunning allhalted anyhalted

1 1 1 1 1

7 6 5 4 3 0

authenticated authbusy hasresethaltreq confstrptrvalid version

1 1 1 1 4

Field Description Access Reset

impebreak If 1, then there is an implicit ebreak instruction
at the non-existent word immediately after the
Program Buffer. This saves the debugger from
having to write the ebreak itself, and allows the
Program Buffer to be one word smaller.
This must be 1 when progbufsize is 1.

R Preset

allhavereset This field is 1 when all currently selected harts
have been reset and reset has not been acknowl-
edged for any of them.

R -

anyhavereset This field is 1 when at least one currently selected
hart has been reset and reset has not been ac-
knowledged for that hart.

R -

allresumeack This field is 1 when all currently selected harts
have acknowledged their last resume request.

R -

anyresumeack This field is 1 when any currently selected hart
has acknowledged its last resume request.

R -

allnonexistent This field is 1 when all currently selected harts do
not exist in this platform.

R -

anynonexistent This field is 1 when any currently selected hart
does not exist in this platform.

R -

allunavail This field is 1 when all currently selected harts
are unavailable.

R -

anyunavail This field is 1 when any currently selected hart is
unavailable.

R -

allrunning This field is 1 when all currently selected harts
are running.

R -

anyrunning This field is 1 when any currently selected hart is
running.

R -

allhalted This field is 1 when all currently selected harts
are halted.

R -

anyhalted This field is 1 when any currently selected hart is
halted.

R -

Continued on next page

22 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

authenticated 0: Authentication is required before using the
DM.
1: The authentication check has passed.
On components that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

authbusy 0: The authentication module is ready to process
the next read/write to authdata.
1: The authentication module is busy. Accessing
authdata results in unspecified behavior.
authbusy only becomes set in immediate response
to an access to authdata.

R 0

hasresethaltreq 1 if this Debug Module supports halt-on-reset
functionality controllable by the setresethaltreq
and clrresethaltreq bits. 0 otherwise.

R Preset

confstrptrvalid 0: confstrptr0–confstrptr3 hold information
which is not relevant to the configuration string.
1: confstrptr0–confstrptr3 hold the address
of the configuration string.

R Preset

version 0: There is no Debug Module present.
1: There is a Debug Module and it conforms to
version 0.11 of this specification.
2: There is a Debug Module and it conforms to
version 0.13 of this specification.
15: There is a Debug Module but it does not con-
form to any available version of this spec.

R 2

3.12.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall Debug Module as well as the currently selected harts, as defined
in hasel.

Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the
spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The
actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger
should discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading
back the value to see which bits were actually set. Debuggers must not change hartsel while an
abstract command is executing.

There are separate setresethaltreq and clrresethaltreq bits so that it is possible to write dmcontrol

without changing the halt-on-reset request bit for each selected hart, when not all selected harts
have the same configuration.

On any given write, a debugger may only write 1 to at most one of the following bits: resumereq,
hartreset, ackhavereset, setresethaltreq, and clrresethaltreq. The others must be written 0.

RISC-V External Debug Support Version 0.13.2 23

resethaltreq is an optional internal bit of per-hart state that cannot be read, but can be written
with setresethaltreq and clrresethaltreq.

31 30 29 28 27 26 25 16

haltreq resumereq hartreset ackhavereset 0 hasel hartsello

1 1 1 1 1 1 10

15 6 5 4 3 2 1 0

hartselhi 0 setresethaltreq clrresethaltreq ndmreset dmactive

10 2 1 1 1 1

Field Description Access Reset

haltreq Writing 0 clears the halt request bit for all cur-
rently selected harts. This may cancel outstand-
ing halt requests for those harts.
Writing 1 sets the halt request bit for all currently
selected harts. Running harts will halt whenever
their halt request bit is set.
Writes apply to the new value of hartsel and hasel.

W -

resumereq Writing 1 causes the currently selected harts to
resume once, if they are halted when the write
occurs. It also clears the resume ack bit for those
harts.
resumereq is ignored if haltreq is set.
Writes apply to the new value of hartsel and hasel.

W1 -

hartreset This optional field writes the reset bit for all the
currently selected harts. To perform a reset the
debugger writes 1, and then writes 0 to deassert
the reset signal.
While this bit is 1, the debugger must not change
which harts are selected.
If this feature is not implemented, the bit always
stays 0, so after writing 1 the debugger can read
the register back to see if the feature is supported.
Writes apply to the new value of hartsel and hasel.

R/W 0

ackhavereset 0: No effect.
1: Clears havereset for any selected harts.
Writes apply to the new value of hartsel and hasel.

W1 -

Continued on next page

24 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

hasel Selects the definition of currently selected harts.
0: There is a single currently selected hart, that
is selected by hartsel.
1: There may be multiple currently selected harts
– the hart selected by hartsel, plus those selected
by the hart array mask register.
An implementation which does not implement the
hart array mask register must tie this field to 0.
A debugger which wishes to use the hart array
mask register feature should set this bit and read
back to see if the functionality is supported.

R/W 0

hartsello The low 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

R/W 0

hartselhi The high 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

R/W 0

setresethaltreq This optional field writes the halt-on-reset re-
quest bit for all currently selected harts, unless
clrresethaltreq is simultaneously set to 1. When
set to 1, each selected hart will halt upon the next
deassertion of its reset. The halt-on-reset request
bit is not automatically cleared. The debugger
must write to clrresethaltreq to clear it.
Writes apply to the new value of hartsel and hasel.
If hasresethaltreq is 0, this field is not imple-
mented.

W1 -

clrresethaltreq This optional field clears the halt-on-reset request
bit for all currently selected harts.
Writes apply to the new value of hartsel and hasel.

W1 -

ndmreset This bit controls the reset signal from the DM to
the rest of the system. The signal should reset
every part of the system, including every hart,
except for the DM and any logic required to access
the DM. To perform a system reset the debugger
writes 1, and then writes 0 to deassert the reset.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13.2 25

Field Description Access Reset

dmactive This bit serves as a reset signal for the Debug
Module itself.
0: The module’s state, including authentication
mechanism, takes its reset values (the dmactive bit
is the only bit which can be written to something
other than its reset value).
1: The module functions normally.
No other mechanism should exist that may result
in resetting the Debug Module after power up,
with the possible (but not recommended) excep-
tion of a global reset signal that resets the entire
platform.
A debugger may pulse this bit low to get the De-
bug Module into a known state.
Implementations may pay attention to this bit to
further aid debugging, for example by preventing
the Debug Module from being power gated while
debugging is active.

R/W 0

3.12.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs
which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

Field Description Access Reset

nscratch Number of dscratch registers available for the
debugger to use during program buffer execution,
starting from dscratch0. The debugger can make
no assumptions about the contents of these regis-
ters between commands.

R Preset

Continued on next page

26 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

dataaccess 0: The data registers are shadowed in the hart
by CSRs. Each CSR is DXLEN bits in size, and
corresponds to a single argument, per Table 3.1.
1: The data registers are shadowed in the hart’s
memory map. Each register takes up 4 bytes in
the memory map.

R Preset

datasize If dataaccess is 0: Number of CSRs dedicated to
shadowing the data registers.
If dataaccess is 1: Number of 32-bit words in the
memory map dedicated to shadowing the data

registers.
Since there are at most 12 data registers, the
value in this register must be 12 or smaller.

R Preset

dataaddr If dataaccess is 0: The number of the first CSR
dedicated to shadowing the data registers.
If dataaccess is 1: Signed address of RAM where
the data registers are shadowed, to be used to
access relative to zero.

R Preset

3.12.4 Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register (see Section 3.3.2)
is accessible in hawindow.

31 15 14 0

0 hawindowsel

17 15

Field Description Access Reset

hawindowsel The high bits of this field may be tied to 0, de-
pending on how large the array mask register is.
E.g. on a system with 48 harts only bit 0 of this
field may actually be writable.

R/W 0

3.12.5 Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register (see Sec-
tion 3.3.2). The position of the window is determined by hawindowsel. I.e. bit 0 refers to hart
hawindowsel ∗ 32, while bit 31 refers to hart hawindowsel ∗ 32 + 31.

RISC-V External Debug Support Version 0.13.2 27

Since some bits in the hart array mask register may be constant 0, some bits in this register may
be constant 0, depending on the current value of hawindowsel.

31 0

maskdata

32

3.12.6 Abstract Control and Status (abstractcs, at 0x16)

Writing this register while an abstract command is executing causes cmderr to be set to 1 (busy) if
it is 0.

datacount must be at least 1 to support RV32 harts, 2 to support RV64 harts, or 4 to support
RV128 harts.

31 29 28 24 23 13 12 11 10 8 7 4 3 0

0 progbufsize 0 busy 0 cmderr 0 datacount

3 5 11 1 1 3 4 4

Field Description Access Reset

progbufsize Size of the Program Buffer, in 32-bit words. Valid
sizes are 0 - 16.

R Preset

busy 1: An abstract command is currently being exe-
cuted.
This bit is set as soon as command is written, and
is not cleared until that command has completed.

R 0

Continued on next page

28 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

cmderr Gets set if an abstract command fails. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. No abstract command is started
until the value is reset to 0.
This field only contains a valid value if busy is 0.
0 (none): No error.
1 (busy): An abstract command was executing
while command, abstractcs, or abstractauto

was written, or when one of the data or progbuf
registers was read or written. This status is only
written if cmderr contains 0.
2 (not supported): The requested command is not
supported, regardless of whether the hart is run-
ning or not.
3 (exception): An exception occurred while ex-
ecuting the command (e.g. while executing the
Program Buffer).
4 (halt/resume): The abstract command couldn’t
execute because the hart wasn’t in the required
state (running/halted), or unavailable.
5 (bus): The abstract command failed due to a
bus error (e.g. alignment, access size, or timeout).
7 (other): The command failed for another rea-
son.

R/W1C 0

datacount Number of data registers that are implemented
as part of the abstract command interface. Valid
sizes are 1 – 12.

R Preset

3.12.7 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes cmderr to be set to 1 (busy) if
it is 0.

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance rea-
sons, send several commands to be executed in a row without checking cmderr in between. They
can safely do so and check cmderr at the end without worrying that one command failed but then
a later command (which might have depended on the previous one succeeding) passed.

RISC-V External Debug Support Version 0.13.2 29

31 24 23 0

cmdtype control

8 24

Field Description Access Reset

cmdtype The type determines the overall functionality of
this abstract command.

W 0

control This field is interpreted in a command-specific
manner, described for each abstract command.

W 0

3.12.8 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. A debugger can detect
whether it is support by setting bits and reading them back.

Writing this register while an abstract command is executing causes cmderr to be set to 1 (busy) if
it is 0.

31 16 15 12 11 0

autoexecprogbuf 0 autoexecdata

16 4 12

Field Description Access Reset

autoexecprogbuf When a bit in this field is 1, read or write ac-
cesses to the corresponding progbuf word cause
the command in command to be executed again.

R/W 0

autoexecdata When a bit in this field is 1, read or write ac-
cesses to the corresponding data word cause the
command in command to be executed again.

R/W 0

3.12.9 Configuration String Pointer 0 (confstrptr0, at 0x19)

When confstrptrvalid is set, reading this register returns bits 31:0 of the configuration string pointer.
Reading the other confstrptr registers returns the upper bits of the address.

When system bus mastering is implemented, this must be an address that can be used with the
System Bus Access module. Otherwise, this must be an address that can be used to access the
configuration string from the hart with ID 0.

30 RISC-V External Debug Support Version 0.13.2

If confstrptrvalid is 0, then the confstrptr registers hold identifier information which is not further
specified in this document.

The configuration string itself is described in the Privileged Spec.

This entire register is read-only.

31 0

addr

32

3.12.10 Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the
next one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.

31 0

addr

32

3.12.11 Abstract Data 0 (data0, at 0x04)

data0 through data11 are basic read/write registers that may be read or changed by abstract
commands. datacount indicates how many of them are implemented, starting at data0, counting
up. Table 3.1 shows how abstract commands use these registers.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1
(busy) if it is 0.

Attempts to write them while busy is set does not change their value.

The values in these registers may not be preserved after an abstract command is executed. The
only guarantees on their contents are the ones offered by the command in question. If the command
fails, no assumptions can be made about the contents of these registers.

31 0

data

32

3.12.12 Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 provide read/write access to the optional program buffer. progbufsize
indicates how many of them are implemented starting at progbuf0, counting up.

RISC-V External Debug Support Version 0.13.2 31

Accessing these registers while an abstract command is executing causes cmderr to be set to 1
(busy) if it is 0.

Attempts to write them while busy is set does not change their value.

31 0

data

32

3.12.13 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to/from the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading
or writing this register. There is no separate mechanism to signal overflow/underflow.

31 0

data

32

3.12.14 Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not. Unavail-
able/nonexistent harts are not considered to be halted.

The LSB reflects the halt status of hart {hartsel[19:5],5’h0}, and the MSB reflects halt status of
hart {hartsel[19:5],5’h1f}.

This entire register is read-only.

31 0

haltsum0

32

3.12.15 Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 33 harts.

The LSB reflects the halt status of harts {hartsel[19:10],10’h0} through {hartsel[19:10],10’h1f}. The
MSB reflects the halt status of harts {hartsel[19:10],10’h3e0} through {hartsel[19:10],10’h3ff}.

This entire register is read-only.

32 RISC-V External Debug Support Version 0.13.2

31 0

haltsum1

32

3.12.16 Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 1025 harts.

The LSB reflects the halt status of harts {hartsel[19:15],15’h0} through {hartsel[19:15],15’h3ff}. The
MSB reflects the halt status of harts {hartsel[19:15],15’h7c00} through {hartsel[19:15],15’h7fff}.

This entire register is read-only.

31 0

haltsum2

32

3.12.17 Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 32769 harts.

The LSB reflects the halt status of harts 20’h0 through 20’h7fff. The MSB reflects the halt status
of harts 20’hf8000 through 20’hfffff.

This entire register is read-only.

31 0

haltsum3

32

3.12.18 System Bus Access Control and Status (sbcs, at 0x38)

31 29 28 23 22 21 20

sbversion 0 sbbusyerror sbbusy sbreadonaddr

3 6 1 1 1

19 17 16 15 14 12 11 5

sbaccess sbautoincrement sbreadondata sberror sbasize

3 1 1 3 7

RISC-V External Debug Support Version 0.13.2 33

4 3 2 1 0

sbaccess128 sbaccess64 sbaccess32 sbaccess16 sbaccess8

1 1 1 1 1

Field Description Access Reset

sbversion 0: The System Bus interface conforms to mainline
drafts of this spec older than 1 January, 2018.
1: The System Bus interface conforms to this ver-
sion of the spec.
Other values are reserved for future versions.

R 1

sbbusyerror Set when the debugger attempts to read data
while a read is in progress, or when the debug-
ger initiates a new access while one is already in
progress (while sbbusy is set). It remains set until
it’s explicitly cleared by the debugger.
While this field is set, no more system bus accesses
can be initiated by the Debug Module.

R/W1C 0

sbbusy When 1, indicates the system bus master is busy.
(Whether the system bus itself is busy is related,
but not the same thing.) This bit goes high im-
mediately when a read or write is requested for
any reason, and does not go low until the access
is fully completed.
Writes to sbcs while sbbusy is high result in un-
defined behavior. A debugger must not write to
sbcs until it reads sbbusy as 0.

R 0

sbreadonaddr When 1, every write to sbaddress0 automatically
triggers a system bus read at the new address.

R/W 0

sbaccess Select the access size to use for system bus ac-
cesses.
0: 8-bit
1: 16-bit
2: 32-bit
3: 64-bit
4: 128-bit
If sbaccess has an unsupported value when the
DM starts a bus access, the access is not per-
formed and sberror is set to 4.

R/W 2

sbautoincrement When 1, sbaddress is incremented by the access
size (in bytes) selected in sbaccess after every sys-
tem bus access.

R/W 0

sbreadondata When 1, every read from sbdata0 automatically
triggers a system bus read at the (possibly auto-
incremented) address.

R/W 0

Continued on next page

34 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

sberror When the Debug Module’s system bus master en-
counters an error, this field gets set. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. While this field is non-zero, no
more system bus accesses can be initiated by the
Debug Module.
An implementation may report “Other” (7) for
any error condition.
0: There was no bus error.
1: There was a timeout.
2: A bad address was accessed.
3: There was an alignment error.
4: An access of unsupported size was requested.
7: Other.

R/W1C 0

sbasize Width of system bus addresses in bits. (0 indi-
cates there is no bus access support.)

R Preset

sbaccess128 1 when 128-bit system bus accesses are supported. R Preset

sbaccess64 1 when 64-bit system bus accesses are supported. R Preset

sbaccess32 1 when 32-bit system bus accesses are supported. R Preset

sbaccess16 1 when 16-bit system bus accesses are supported. R Preset

sbaccess8 1 when 8-bit system bus accesses are supported. R Preset

3.12.19 System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

1. Set sbbusy.
2. Perform a bus read from the new value of sbaddress.
3. If the read succeeded and sbautoincrement is set, increment sbaddress.
4. Clear sbbusy.

31 0

address

32

RISC-V External Debug Support Version 0.13.2 35

Field Description Access Reset

address Accesses bits 31:0 of the physical address in
sbaddress.

R/W 0

3.12.20 System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 63:32 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.12.21 System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 95:64 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

36 RISC-V External Debug Support Version 0.13.2

3.12.22 System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 127:96 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.12.23 System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

Any successful system bus read updates sbdata. If the width of the read access is less than the
width of sbdata, the contents of the remaining high bits may take on any value.

If sberror or sbbusyerror both aren’t 0 then accesses do nothing.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

Writes to this register start the following:

1. Set sbbusy.
2. Perform a bus write of the new value of sbdata to sbaddress.
3. If the write succeeded and sbautoincrement is set, increment sbaddress.
4. Clear sbbusy.

Reads from this register start the following:

1. “Return” the data.
2. Set sbbusy.
3. If sbreadondata is set, perform a system bus read from the address contained in sbaddress,

placing the result in sbdata.
4. If sbautoincrement is set, increment sbaddress.
5. Clear sbbusy.

RISC-V External Debug Support Version 0.13.2 37

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that
have buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata
registers.

31 0

data

32

Field Description Access Reset

data Accesses bits 31:0 of sbdata. R/W 0

3.12.24 System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 63:32 of sbdata (if the system bus
is that wide).

R/W 0

3.12.25 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

38 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

data Accesses bits 95:64 of sbdata (if the system bus
is that wide).

R/W 0

3.12.26 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 127:96 of sbdata (if the system bus
is that wide).

R/W 0

Chapter 4

RISC-V Debug

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special
execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

In order to be compliant with this specification an implementation must implement everything
described in this section that is not explicitly listed as optional.

4.1 Debug Mode

Debug Mode is a special processor mode used only when a hart is halted for external debugging.
How Debug Mode is implemented is not specified here.

When executing code from the optional Program Buffer, the hart stays in Debug Mode and the
following apply:

1. All operations are executed at machine mode privilege level, except that MPRV in mstatus

may be ignored according to mprven.
2. All interrupts (including NMI) are masked.
3. Exceptions don’t update any registers. That includes cause, epc, tval, dpc, and mstatus.

They do end execution of the Program Buffer.
4. No action is taken if a trigger matches.
5. Counters may be stopped, depending on stopcount in dcsr.
6. Timers may be stopped, depending on stoptime in dcsr.
7. The wfi instruction acts as a nop.
8. Almost all instructions that change the privilege level have undefined behavior. This includes

ecall, mret, sret, and uret. (To change the privilege level, the debugger can write prv in
dcsr). The only exception is ebreak. When that is executed in Debug Mode, it halts the
hart again but without updating dpc or dcsr.

9. Completing Program Buffer execution is considered output for the purpose of fence instruc-
tions.

10. All control transfer instructions may act as illegal instructions if their destination is in the
Program Buffer. If one such instruction acts as an illegal instruction, all such instructions

39

40 RISC-V External Debug Support Version 0.13.2

must act as an illegal instruction.
11. All control transfer instructions may act as illegal instructions if their destination is outside

the Program Buffer. If one such instruction acts as an illegal instruction, all such instructions
must act as an illegal instruction.

12. Instructions that depend on the value of the PC (e.g. auipc) may act as illegal instructions.
13. Effective XLEN is DXLEN.

In general, the debugger is expected to be able to simulate all the effects of MPRV. The exception
is the case of Sv32 systems, which need MPRV functionality in order to access 34-bit physical
addresses. Other systems are likely to tie mprven to 0.

4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering
Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug
Mode is entered between lr and sc pairs.

This is a behavior that debug users must be aware of. If they have a breakpoint set between a lr

and sc pair, or are stepping through such code, the sc may never succeed. Fortunately in general
use there will be very few instructions in such a sequence, and anybody debugging it will quickly
notice that the reservation is not occurring. The solution in that case is to set a breakpoint on
the first instruction after the sc and run to it. A higher level debugger may choose to automate
this.

4.3 Wait for Interrupt Instruction

If halt is requested while wfi is executing, then the hart must leave the stalled state, completing
this instruction’s execution, and then enter Debug Mode.

4.4 Single Step

A debugger can cause a halted hart to execute a single instruction and then re-enter Debug Mode
by setting step before setting resumereq.

If executing or fetching that instruction causes an exception, Debug Mode is re-entered immediately
after the PC is changed to the exception handler and the appropriate tval and cause registers are
updated.

If executing or fetching the instruction causes a trigger to fire, Debug Mode is re-entered immedi-
ately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4 (single step).
Whether the instruction is executed or not depends on the specific configuration of the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction
fetch causes an exception, that exception does not occurr until the next time the hart is resumed.

RISC-V External Debug Support Version 0.13.2 41

Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that
instruction.

If the instruction being stepped over is wfi and would normally stall the hart, then instead the
instruction is treated as nop.

4.5 Reset

If the halt signal (driven by the hart’s halt request bit in the Debug Module) or resethaltreq are
asserted when a hart comes out of reset, the hart must enter Debug Mode before executing any
instructions, but after performing any initialization that would usually happen before the first
instruction is executed.

4.6 dret Instruction

To return from Debug Mode, a new instruction is defined: dret. It has an encoding of 0x7b200073.
On harts which support this instruction, executing dret in Debug Mode changes pc to the value
stored in dpc. The current privilege level is changed to that specified by prv in dcsr. The hart is
no longer in debug mode.

Executing dret outside of Debug Mode causes an illegal instruction exception.

It is not necessary for the debugger to know whether an implementation supports dret, as the
Debug Module will ensure that it is executed if necessary. It is defined in this specification only to
reserve the opcode and allow for reusable Debug Module implementations.

4.7 XLEN

While in Debug Mode, XLEN is DXLEN. It is up to the debugger to determine the XLEN during
normal program execution (by looking at misa) and to clearly communicate this to the user.

4.8 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged.
They are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug
commands.

These registers are only accessible from Debug Mode.

42 RISC-V External Debug Support Version 0.13.2

Table 4.1: Core Debug Registers
Address Name Page

0x7b0 Debug Control and Status (dcsr) 42
0x7b1 Debug PC (dpc) 44
0x7b2 Debug Scratch Register 0 (dscratch0) 45
0x7b3 Debug Scratch Register 1 (dscratch1) 45

4.8.1 Debug Control and Status (dcsr, at 0x7b0)

cause priorities are assigned such that the least predictable events have the highest priority.

31 28 27 16 15 14 13 12 11 10

xdebugver 0 ebreakm 0 ebreaks ebreaku stepie stopcount

4 12 1 1 1 1 1 1

9 8 6 5 4 3 2 1 0

stoptime cause 0 mprven nmip step prv

1 3 1 1 1 1 2

Field Description Access Reset

xdebugver 0: There is no external debug support.
4: External debug support exists as it is described
in this document.
15: There is external debug support, but it does
not conform to any available version of this spec.

R Preset

ebreakm 0: ebreak instructions in M-mode behave as de-
scribed in the Privileged Spec.
1: ebreak instructions in M-mode enter Debug
Mode.

R/W 0

ebreaks 0: ebreak instructions in S-mode behave as de-
scribed in the Privileged Spec.
1: ebreak instructions in S-mode enter Debug
Mode.

R/W 0

ebreaku 0: ebreak instructions in U-mode behave as de-
scribed in the Privileged Spec.
1: ebreak instructions in U-mode enter Debug
Mode.

R/W 0

stepie 0: Interrupts are disabled during single stepping.
1: Interrupts are enabled during single stepping.
Implementations may hard wire this bit to 0. In
that case interrupt behavior can be emulated by
the debugger.
The debugger must not change the value of this
bit while the hart is running.

WARL 0

Continued on next page

RISC-V External Debug Support Version 0.13.2 43

Field Description Access Reset

stopcount 0: Increment counters as usual.
1: Don’t increment any counters while in Debug
Mode or on ebreak instructions that cause en-
try into Debug Mode. These counters include the
cycle and instret CSRs. This is preferred for
most debugging scenarios.
An implementation may hardwire this bit to 0 or
1.

WARL Preset

stoptime 0: Increment timers as usual.
1: Don’t increment any hart-local timers while in
Debug Mode.
An implementation may hardwire this bit to 0 or
1.

WARL Preset

cause Explains why Debug Mode was entered.
When there are multiple reasons to enter Debug
Mode in a single cycle, hardware should set cause
to the cause with the highest priority.
1: An ebreak instruction was executed. (priority
3)
2: The Trigger Module caused a breakpoint ex-
ception. (priority 4, highest)
3: The debugger requested entry to Debug Mode
using haltreq. (priority 1)
4: The hart single stepped because step was set.
(priority 0, lowest)
5: The hart halted directly out of reset due to
resethaltreq. It is also acceptable to report 3 when
this happens. (priority 2)
Other values are reserved for future use.

R 0

mprven 0: MPRV in mstatus is ignored in Debug Mode.
1: MPRV in mstatus takes effect in Debug Mode.
Implementing this bit is optional. It may be tied
to either 0 or 1.

WARL Preset

nmip When set, there is a Non-Maskable-Interrupt
(NMI) pending for the hart.
Since an NMI can indicate a hardware error condi-
tion, reliable debugging may no longer be possible
once this bit becomes set. This is implementation-
dependent.

R 0

Continued on next page

44 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

step When set and not in Debug Mode, the hart will
only execute a single instruction and then enter
Debug Mode. If the instruction does not com-
plete due to an exception, the hart will immedi-
ately enter Debug Mode before executing the trap
handler, with appropriate exception registers set.
The debugger must not change the value of this
bit while the hart is running.

R/W 0

prv Contains the privilege level the hart was operating
in when Debug Mode was entered. The encoding
is described in Table 4.5. A debugger can change
this value to change the hart’s privilege level when
exiting Debug Mode.
Not all privilege levels are supported on all harts.
If the encoding written is not supported or the
debugger is not allowed to change to it, the hart
may change to any supported privilege level.

R/W 3

4.8.2 Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be
executed. The behavior is described in more detail in Table 4.3.

Table 4.3: Virtual address in DPC upon Debug Mode Entry
Cause Virtual Address in DPC

ebreak Address of the ebreak instruction

single step Address of the instruction that would be executed
next if no debugging was going on. Ie. pc + 4 for

32-bit instructions that don’t change program flow,
the destination PC on taken jumps/branches, etc.

trigger module If timing is 0, the address of the instruction which
caused the trigger to fire. If timing is 1, the address of
the next instruction to be executed at the time that

debug mode was entered.

halt request Address of the next instruction to be executed at the
time that debug mode was entered

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may
write dpc to change where the hart resumes.

RISC-V External Debug Support Version 0.13.2 45

DXLEN-1 0

dpc

DXLEN

4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

4.9 Virtual Debug Registers

A virtual register is one that doesn’t exist directly in the hardware, but that the debugger exposes
as if it does. Debug software should implement them, but hardware can skip this section. Virtual
registers exist to give users access to functionality that’s not part of standard debuggers without
requiring them to carefully modify debug registers while the debugger is also accessing those same
registers.

Table 4.4: Virtual Core Debug Registers
Address Name Page

virtual Privilege Level (priv) 45

4.9.1 Privilege Level (priv, at virtual)

Users can read this register to inspect the privilege level that the hart was running in when the
hart halted. Users can write this register to change the privilege level that the hart will run in
when it resumes.

This register contains prv from dcsr, but in a place that the user is expected to access. The user
should not access dcsr directly, because doing so might interfere with the debugger.

1 0

prv

2

46 RISC-V External Debug Support Version 0.13.2

Table 4.5: Privilege Level Encoding
Encoding Privilege Level

0 User/Application
1 Supervisor
3 Machine

Field Description Access Reset

prv Contains the privilege level the hart was operat-
ing in when Debug Mode was entered. The en-
coding is described in Table 4.5, and matches the
privilege level encoding from the Privileged Spec.
A user can write this value to change the hart’s
privilege level when exiting Debug Mode.

R/W 0

Chapter 5

Trigger Module

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having
to execute a special instruction. This makes them invaluable when debugging code from ROM.
They can trigger on execution of instructions at a given memory address, or on the address/data in
loads/stores. These are all features that can be useful without having the Debug Module present,
so the Trigger Module is broken out as a separate piece that can be implemented separately.

A hart can be compliant with this specification without implementing any trigger functionality at
all, but if it is implemented then it must conform to this section.

Triggers do not fire while in Debug Mode.

Each trigger may support a variety of features. A debugger can build a list of all triggers and their
features as follows:

1. Write 0 to tselect.
2. Read back tselect and check that it contains the written value. If not, exit the loop.
3. Read tinfo.
4. If that caused an exception, the debugger must read tdata1 to discover the type. (If type is

0, this trigger doesn’t exist. Exit the loop.)
5. If info is 1, this trigger doesn’t exist. Exit the loop.
6. Otherwise, the selected trigger supports the types discovered in info.
7. Repeat, incrementing the value in tselect.

The above algorithm reads back tselect so that implementations which have 2n triggers only
need to implement n bits of tselect.

The algorithm checks tinfo and type in case the implementation has m bits of tselect but
fewer than 2m triggers.

It is possible for a trigger with the “enter Debug Mode” action (1) and another trigger with the
“raise a breakpoint exception” action (0) to fire at the same time. The preferred behavior is to
have both actions take place. It is implementation-dependent which of the two happens first. This
ensures both that the presence of an external debugger doesn’t affect execution and that a trigger
set by user code doesn’t affect the external debugger. If this is not implemented, then the hart
must enter Debug Mode and ignore the breakpoint exception. In the latter case, hit of the trigger

47

48 RISC-V External Debug Support Version 0.13.2

whose action is 0 must still be set, giving a debugger an opportunity to handle this case. What
happens with trace actions when triggers with different actions are also firing is left to the trace
specification.

5.1 Native M-Mode Triggers

Triggers can be used for native debugging. On a fully featured system triggers will be set using
u or s, and when firing they can cause a breakpoint exception to trap to a more privileged mode.
It is possible to set triggers natively to fire in M mode as well. In that case there is no higher
privilege mode to trap to. When such a trigger causes a breakpoint exception while already in a
trap handler, this will leave the system unable to resume normal execution.

On full-featured systems this is a remote corner case that can probably be ignored. On systems
that only implement M mode, however, it is recommended to implement one of two solutions to
this problem. This way triggers can be useful for native debugging of even M mode code.

The simple solution is to have the hardware prevent triggers with action=0 from firing while in M
mode and while MIE in mstatus is 0. Its limitation is that interrupts might be disabled at other
times when a user might want triggers to fire.

A more complex solution is to implement mte and mpte in tcontrol. This solution has the benefit
that it only disables triggers during the trap handler.

A user setting M mode triggers that cause breakpoint exceptions will have to be aware of any
problems that might come up with the particular system they are working on.

5.2 Trigger Registers

These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using
abstract debug commands.

Most trigger functionality is optional. All tdata registers follow write-any-read-legal semantics. If a
debugger writes an unsupported configuration, the register will read back a value that is supported
(which may simply be a disabled trigger). This means that a debugger must always read back
values it writes to tdata registers, unless it already knows already what is supported. Writes to
one tdata register may not modify the contents of other tdata registers, nor the configuration of
any trigger besides the one that is currently selected.

The trigger registers are only accessible in machine and Debug Mode to prevent untrusted user
code from causing entry into Debug Mode without the OS’s permission.

In this section XLEN means MXLEN when in M-mode, and DXLEN when in Debug Mode. Note
that this makes several of the fields in tdata1 move around based on the current execution mode
and value of MXLEN.

RISC-V External Debug Support Version 0.13.2 49

Table 5.1: action encoding
Value Description

0 Raise a breakpoint exception. (Used when software
wants to use the trigger module without an external

debugger attached.)

1 Enter Debug Mode. (Only supported when the
trigger’s dmode is 1.)

2 – 5 Reserved for use by the trace specification.

other Reserved for future use.

Table 5.2: Trigger Registers
Address Name Page

0x7a0 Trigger Select (tselect) 49
0x7a1 Trigger Data 1 (tdata1) 50
0x7a1 Match Control (mcontrol) 53
0x7a1 Instruction Count (icount) 58
0x7a1 Interrupt Trigger (itrigger) 59
0x7a1 Exception Trigger (etrigger) 60
0x7a2 Trigger Data 2 (tdata2) 50
0x7a3 Trigger Data 3 (tdata3) 51
0x7a3 Trigger Extra (RV32) (textra32) 60
0x7a3 Trigger Extra (RV64) (textra64) 61
0x7a4 Trigger Info (tinfo) 51
0x7a5 Trigger Control (tcontrol) 51
0x7a8 Machine Context (mcontext) 52
0x7aa Supervisor Context (scontext) 52

5.2.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. The set of
accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different
value in this register than what was written. To verify that what they wrote is a valid index,
debuggers can read back the value and check that tselect holds what they wrote.

Since triggers can be used both by Debug Mode and M-mode, the debugger must restore this
register if it modifies it.

XLEN-1 0

index

XLEN

50 RISC-V External Debug Support Version 0.13.2

5.2.2 Trigger Data 1 (tdata1, at 0x7a1)

XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type dmode data

4 1 XLEN - 5

Field Description Access Reset

type 0: There is no trigger at this tselect.
1: The trigger is a legacy SiFive address match
trigger. These should not be implemented and
aren’t further documented here.
2: The trigger is an address/data match trig-
ger. The remaining bits in this register act as
described in mcontrol.
3: The trigger is an instruction count trigger. The
remaining bits in this register act as described in
icount.
4: The trigger is an interrupt trigger. The re-
maining bits in this register act as described in
itrigger.
5: The trigger is an exception trigger. The re-
maining bits in this register act as described in
etrigger.
15: This trigger exists (so enumeration shouldn’t
terminate), but is not currently available.
Other values are reserved for future use.

R/W Preset

dmode 0: Both Debug and M-mode can write the tdata

registers at the selected tselect.
1: Only Debug Mode can write the tdata regis-
ters at the selected tselect. Writes from other
modes are ignored.
This bit is only writable from Debug Mode.

R/W 0

data Trigger-specific data. R/W Preset

5.2.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data.

If XLEN is less than DXLEN, writes to this register are sign-extended.

XLEN-1 0

data

XLEN

RISC-V External Debug Support Version 0.13.2 51

5.2.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data.

If XLEN is less than DXLEN, writes to this register are sign-extended.

XLEN-1 0

data

XLEN

5.2.5 Trigger Info (tinfo, at 0x7a4)

This entire register is read-only.

XLEN-1 16 15 0

0 info

XLEN - 16 16

Field Description Access Reset

info One bit for each possible type enumerated in
tdata1. Bit N corresponds to type N. If the bit is
set, then that type is supported by the currently
selected trigger.
If the currently selected trigger doesn’t exist, this
field contains 1.
If type is not writable, this register may be unim-
plemented, in which case reading it causes an il-
legal instruction exception. In this case the de-
bugger can read the only supported type from
tdata1.

R Preset

5.2.6 Trigger Control (tcontrol, at 0x7a5)

This optional register is one solution to a problem regarding triggers with action=0 firing in M-mode
trap handlers. See Section 5.1 for more details.

XLEN-1 8 7 6 4 3 2 0

0 mpte 0 mte 0

XLEN - 8 1 3 1 3

52 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

mpte M-mode previous trigger enable field.
When a trap into M-mode is taken, mpte is set to
the value of mte.

R/W 0

mte M-mode trigger enable field.
0: Triggers with action=0 do not match/fire while
the hart is in M-mode.
1: Triggers do match/fire while the hart is in M-
mode.
When a trap into M-mode is taken, mte is set to
0. When mret is executed, mte is set to the value
of mpte.

R/W 0

5.2.7 Machine Context (mcontext, at 0x7a8)

This register is only writable in M mode and Debug Mode.

XLEN-1 0

mcontext

XLEN

Field Description Access Reset

mcontext Machine mode software can write a context num-
ber to this register, which can be used to set trig-
gers that only fire in that specific context.
An implementation may tie any number of upper
bits in this field to 0. It’s recommended to im-
plement no more than 6 bits on RV32, and 13 on
RV64.

R/W 0

5.2.8 Supervisor Context (scontext, at 0x7aa)

This register is only writable in S mode, M mode and Debug Mode.

XLEN-1 0

data

XLEN

RISC-V External Debug Support Version 0.13.2 53

Field Description Access Reset

data Supervisor mode software can write a context
number to this register, which can be used to set
triggers that only fire in that specific context.
An implementation may tie any number of high
bits in this field to 0. It’s recommended to imple-
ment no more than 16 bits on RV32, and 34 on
RV64.

R/W 0

5.2.9 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

Address and data trigger implementation are heavily dependent on how the processor core is imple-
mented. To accommodate various implementations, execute, load, and store address/data triggers
may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 5.8 suggests timings for the best user
experience.

Table 5.8: Suggested Breakpoint Timings
Match Type Suggested Trigger Timing

Execute Address Before
Execute Instruction Before

Execute Address+Instruction Before
Load Address Before

Load Data After
Load Address+Data After

Store Address Before
Store Data Before

Store Address+Data Before

This trigger type may be limited to address comparisons (select is always 0) only. If that is the
case, then tdata2 must be able to hold all valid virtual addresses but it need not be capable of
holding other values.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 23 22 21 20 19

type dmode maskmax 0 sizehi hit select

4 1 6 XLEN - 34 2 1 1

18 17 16 15 12 11 10 7 6 5

timing sizelo action chain match m 0

1 2 4 1 4 1 1

4 3 2 1 0

s u execute store load

1 1 1 1 1

54 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

maskmax Specifies the largest naturally aligned powers-of-
two (NAPOT) range supported by the hardware
when match is 1. The value is the logarithm base
2 of the number of bytes in that range. A value
of 0 indicates that only exact value matches are
supported (one byte range). A value of 63 corre-
sponds to the maximum NAPOT range, which is
263 bytes in size.

R Preset

sizehi This field only exists if XLEN is greater than 32.
In that case it extends size. If it does not exist
then hardware operates as if the field contains 0.

R/W 0

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. It is used to
determine which trigger(s) matched. If the bit is
not implemented, it is always 0 and writing it has
no effect.

R/W 0

select 0: Perform a match on the virtual address.
1: Perform a match on the data value loaded or
stored, or the instruction executed.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13.2 55

Field Description Access Reset

timing 0: The action for this trigger will be taken just be-
fore the instruction that triggered it is executed,
but after all preceding instructions are commit-
ted.
1: The action for this trigger will be taken af-
ter the instruction that triggered it is executed.
It should be taken before the next instruction is
executed, but it is better to implement triggers
and not implement that suggestion than to not
implement them at all.
Most hardware will only implement one timing or
the other, possibly dependent on select, execute,
load, and store. This bit primarily exists for the
hardware to communicate to the debugger what
will happen. Hardware may implement the bit
fully writable, in which case the debugger has a
little more control.
Data load triggers with timing of 0 will result in
the same load happening again when the debugger
lets the hart run. For data load triggers, debug-
gers must first attempt to set the breakpoint with
timing of 1.
A chain of triggers that don’t all have the same
timing value will never fire (unless consecutive in-
structions match the appropriate triggers).
If a trigger with timing of 0 matches, it is
implementation-dependent whether that prevents
a trigger with timing of 1 matching as well.

R/W 0

Continued on next page

56 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

sizelo This field contains the 2 low bits of size. The
high bits come from sizehi. The combined value
is interpreted as follows:
0: The trigger will attempt to match against an
access of any size. The behavior is only well-
defined if select = 0, or if the access size is XLEN.
1: The trigger will only match against 8-bit mem-
ory accesses.
2: The trigger will only match against 16-bit
memory accesses or execution of 16-bit instruc-
tions.
3: The trigger will only match against 32-bit
memory accesses or execution of 32-bit instruc-
tions.
4: The trigger will only match against execution
of 48-bit instructions.
5: The trigger will only match against 64-bit
memory accesses or execution of 64-bit instruc-
tions.
6: The trigger will only match against execution
of 80-bit instructions.
7: The trigger will only match against execution
of 96-bit instructions.
8: The trigger will only match against execution
of 112-bit instructions.
9: The trigger will only match against 128-bit
memory accesses or execution of 128-bit instruc-
tions.

R/W 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13.2 57

Field Description Access Reset

chain 0: When this trigger matches, the configured ac-
tion is taken.
1: While this trigger does not match, it prevents
the trigger with the next index from matching.
A trigger chain starts on the first trigger with
chain = 1 after a trigger with chain = 0, or simply
on the first trigger if that has chain = 1. It ends
on the first trigger after that which has chain = 0.
This final trigger is part of the chain. The action
on all but the final trigger is ignored. The action
on that final trigger will be taken if and only if all
the triggers in the chain match at the same time.
Because chain affects the next trigger, hardware
must zero it in writes to mcontrol that set dmode
to 0 if the next trigger has dmode of 1. In addition
hardware should ignore writes to mcontrol that
set dmode to 1 if the previous trigger has both
dmode of 0 and chain of 1. Debuggers must avoid
the latter case by checking chain on the previous
trigger if they’re writing mcontrol.
Implementations that wish to limit the maximum
length of a trigger chain (eg. to meet timing re-
quirements) may do so by zeroing chain in writes
to mcontrol that would make the chain too long.

R/W 0

match 0: Matches when the value equals tdata2.
1: Matches when the top M bits of the value
match the top M bits of tdata2. M is XLEN-1
minus the index of the least-significant bit con-
taining 0 in tdata2.
2: Matches when the value is greater than (un-
signed) or equal to tdata2.
3: Matches when the value is less than (unsigned)
tdata2.
4: Matches when the lower half of the value equals
the lower half of tdata2 after the lower half of the
value is ANDed with the upper half of tdata2.
5: Matches when the upper half of the value
equals the lower half of tdata2 after the upper
half of the value is ANDed with the upper half of
tdata2.
Other values are reserved for future use.

R/W 0

m When set, enable this trigger in M-mode. R/W 0

s When set, enable this trigger in S-mode. R/W 0

u When set, enable this trigger in U-mode. R/W 0

Continued on next page

58 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

execute When set, the trigger fires on the virtual address
or opcode of an instruction that is executed.

R/W 0

store When set, the trigger fires on the virtual address
or data of a store.

R/W 0

load When set, the trigger fires on the virtual address
or data of a load.

R/W 0

5.2.10 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

This trigger type is intended to be used as a single step that’s useful both for external debuggers
and for software monitor programs. For that case it is not necessary to support count greater
than 1. The only two combinations of the mode bits that are useful in those scenarios are u by
itself, or m, s, and u all set.

If the hardware limits count to 1, and changes mode bits instead of decrementing count, this
register can be implemented with just 2 bits. One for u, and one for m and s tied together.
If only the external debugger or only a software monitor needs to be supported, a single bit is
enough.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 25 24 23 10

type dmode 0 hit count

4 1 XLEN - 30 1 14

9 8 7 6 5 0

m 0 s u action

1 1 1 1 6

Field Description Access Reset

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. It is used to
determine which trigger(s) matched. If the bit is
not implemented, it is always 0 and writing it has
no effect.

R/W 0

count When count is decremented to 0, the trigger fires.
Instead of changing count from 1 to 0, it is also
acceptable for hardware to clear m, s, and u. This
allows count to be hard-wired to 1 if this register
just exists for single step.

R/W 1

m When set, every instruction completed or excep-
tion taken in M-mode decrements count by 1.

R/W 0

s When set, every instruction completed or excep-
tion taken in S-mode decrements count by 1.

R/W 0

u When set, every instruction completed or excep-
tion taken in U-mode decrements count by 1.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13.2 59

Field Description Access Reset

action The action to take when the trigger fires. The
values are explained in Table 5.1.

R/W 0

5.2.11 Interrupt Trigger (itrigger, at 0x7a1)

This register is accessible as tdata1 when type is 4.

This trigger may fire on any of the interrupts configurable in mie (described in the Privileged Spec).
The interrupts to fire on are configured by setting the same bit in tdata2 as would be set in mie

to enable the interrupt.

Hardware may only support a subset of interrupts for this trigger. A debugger must read back
tdata2 after writing it to confirm the requested functionality is actually supported.

The trigger only fires if the hart takes a trap because of the interrupt. (E.g. it does not fire when
a timer interrupt occurs but that interrupt is not enabled in mie.)

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested
action is taken just before the first instruction of the interrupt/exception handler is executed.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 10 9

type dmode hit 0 m

4 1 1 XLEN - 16 1

8 7 6 5 0

0 s u action

1 1 1 6

Field Description Access Reset

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. It is used to
determine which trigger(s) matched. If the bit is
not implemented, it is always 0 and writing it has
no effect.

R/W 0

m When set, enable this trigger for interrupts that
are taken from M mode.

R/W 0

s When set, enable this trigger for interrupts that
are taken from S mode.

R/W 0

u When set, enable this trigger for interrupts that
are taken from U mode.

R/W 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

R/W 0

60 RISC-V External Debug Support Version 0.13.2

5.2.12 Exception Trigger (etrigger, at 0x7a1)

This register is accessible as tdata1 when type is 5.

This trigger may fire on up to XLEN of the Exception Codes defined in mcause (described in the
Privileged Spec, with Interrupt=0). Those causes are configured by writing the corresponding bit
in tdata2. (E.g. to trap on an illegal instruction, the debugger sets bit 2 in tdata2.)

Hardware may support only a subset of exceptions. A debugger must read back tdata2 after
writing it to confirm the requested functionality is actually supported.

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested
action is taken just before the first instruction of the interrupt/exception handler is executed.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 10 9

type dmode hit 0 m

4 1 1 XLEN - 16 1

8 7 6 5 0

0 s u action

1 1 1 6

Field Description Access Reset

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. It is used to
determine which trigger(s) matched. If the bit is
not implemented, it is always 0 and writing it has
no effect.

R/W 0

m When set, enable this trigger for exceptions that
are taken from M mode.

R/W 0

s When set, enable this trigger for exceptions that
are taken from S mode.

R/W 0

u When set, enable this trigger for exceptions that
are taken from U mode.

R/W 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

R/W 0

5.2.13 Trigger Extra (RV32) (textra32, at 0x7a3)

This register is accessible as tdata3 when type is 2, 3, 4, or 5.

All functionality in this register is optional. The value bits may tie any number of upper bits to 0.
The select bits may only support 0 (ignore).

31 26 25 24 18 17 2 1 0

mvalue mselect 0 svalue sselect

6 1 7 16 2

RISC-V External Debug Support Version 0.13.2 61

Field Description Access Reset

mvalue Data used together with mselect. R/W 0

mselect 0: Ignore mvalue.
1: This trigger will only match if the low bits of
mcontext equal mvalue.

WARL 0

svalue Data used together with sselect. R/W 0

sselect 0: Ignore svalue.
1: This trigger will only match if the low bits of
scontext equal svalue.
2: This trigger will only match if ASID in satp

equals the lower ASIDMAX (defined in the Priv-
ileged Spec) bits of svalue.

WARL 0

5.2.14 Trigger Extra (RV64) (textra64, at 0x7a3)

This is the layout of textra if XLEN is 64. The fields are defined above, in textra32.

63 51 50 49 36

mvalue mselect 0

13 1 14

35 2 1 0

svalue sselect

34 2

Chapter 6

Debug Transport Module (DTM)

Debug Transport Modules provide access to the DM over one or more transports (e.g. JTAG or
USB).

There may be multiple DTMs in a single platform. Ideally every component that communicates
with the outside world includes a DTM, allowing a platform to be debugged through every transport
it supports. For instance a USB component could include a DTM. This would trivially allow any
platform to be debugged over USB. All that is required is that the USB module already in use also
has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does
not happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future
versions of this specification.

An implementation can be compliant with this specification without implementing any of this
section. In that case it must be advertised as conforming to “RISC-V Debug Specification 0.13.2,
with custom DTM.” If the JTAG DTM described here is implemented, it must be advertised as
conforming to the “RISC-V Debug Specification 0.13.2, with JTAG DTM.”

6.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG
TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction
register (IR), and then accessing it through the JTAG data register (DR).

6.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included
in an integrated circuit to test the interconnections between integrated circuits, test the integrated

62

RISC-V External Debug Support Version 0.13.2 63

circuit itself, and observe or modify circuit activity during the components normal operation. This
specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP)
that can be used to read and write a few custom registers, which can be used to communicate with
debug hardware in a component.

6.1.2 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their
encoding is in Table 6.1. If the IR actually has more than 5 bits, then the encodings in Table 6.1
should be extended with 0’s in their most significant bits. The only regular JTAG registers a
debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many
other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

Table 6.1: JTAG DTM TAP Registers

Address Name Description Page

0x00 BYPASS JTAG recommends this encoding
0x01 IDCODE JTAG recommends this encoding
0x10 DTM Control and Status (dtmcs) For Debugging 64
0x11 Debug Module Interface Access (dmi) For Debugging 65
0x12 Reserved (BYPASS) Reserved for future RISC-V debugging
0x13 Reserved (BYPASS) Reserved for future RISC-V debugging
0x14 Reserved (BYPASS) Reserved for future RISC-V debugging
0x15 Reserved (BYPASS) Reserved for future RISC-V standards
0x16 Reserved (BYPASS) Reserved for future RISC-V standards
0x17 Reserved (BYPASS) Reserved for future RISC-V standards
0x1f BYPASS JTAG requires this encoding

6.1.3 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as
defined in IEEE Std 1149.1-2013.

This entire register is read-only.

31 28 27 12 11 1 0

Version PartNumber ManufId 1

4 16 11 1

Field Description Access Reset

Version Identifies the release version of this part. R Preset

Continued on next page

64 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

PartNumber Identifies the designer’s part number of this part. R Preset

ManufId Identifies the designer/manufacturer of this part.
Bits 6:0 must be bits 6:0 of the designer/manufac-
turer’s Identification Code as assigned by JEDEC
Standard JEP106. Bits 10:7 contain the modulo-
16 count of the number of continuation characters
(0x7f) in that same Identification Code.

R Preset

6.1.4 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always
determine the version of the DTM.

31 18 17 16 15

0 dmihardreset dmireset 0

14 1 1 1

14 12 11 10 9 4 3 0

idle dmistat abits version

3 2 6 4

Field Description Access Reset

dmihardreset Writing 1 to this bit does a hard reset of the DTM,
causing the DTM to forget about any outstand-
ing DMI transactions. In general this should only
be used when the Debugger has reason to expect
that the outstanding DMI transaction will never
complete (e.g. a reset condition caused an inflight
DMI transaction to be cancelled).

W1 -

dmireset Writing 1 to this bit clears the sticky error state
and allows the DTM to retry or complete the pre-
vious transaction.

W1 -

idle This is a hint to the debugger of the minimum
number of cycles a debugger should spend in Run-
Test/Idle after every DMI scan to avoid a ‘busy’
return code (dmistat of 3). A debugger must still
check dmistat when necessary.
0: It is not necessary to enter Run-Test/Idle at
all.
1: Enter Run-Test/Idle and leave it immediately.
2: Enter Run-Test/Idle and stay there for 1 cycle
before leaving.
And so on.

R Preset

Continued on next page

RISC-V External Debug Support Version 0.13.2 65

Field Description Access Reset

dmistat 0: No error.
1: Reserved. Interpret the same as 2.
2: An operation failed (resulted in op of 2).
3: An operation was attempted while a DMI ac-
cess was still in progress (resulted in op of 3).

R 0

abits The size of address in dmi. R Preset

version 0: Version described in spec version 0.11.
1: Version described in spec version 0.13.
15: Version not described in any available version
of this spec.

R 1

6.1.5 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in
op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the
current op isn’t sticky.

See Section B.1 and Table ?? for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number of
scans, which must all be executed or stop as soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes
fails but the execution continues, then the Debug Program may hang or have other unexpected
side effects.

abits+33 34 33 2 1 0

address data op

abits 32 2

Field Description Access Reset

address Address used for DMI access. In Update-DR this
value is used to access the DM over the DMI.

R/W 0

data The data to send to the DM over the DMI during
Update-DR, and the data returned from the DM
as a result of the previous operation.

R/W 0

Continued on next page

66 RISC-V External Debug Support Version 0.13.2

Field Description Access Reset

op When the debugger writes this field, it has the
following meaning:
0: Ignore data and address. (nop)
Don’t send anything over the DMI during
Update-DR. This operation should never result in
a busy or error response. The address and data
reported in the following Capture-DR are unde-
fined.
1: Read from address. (read)
2: Write data to address. (write)
3: Reserved.
When the debugger reads this field, it means the
following:
0: The previous operation completed successfully.
1: Reserved.
2: A previous operation failed. The data scanned
into dmi in this access will be ignored. This status
is sticky and can be cleared by writing dmireset in
dtmcs.
This indicates that the DM itself responded with
an error. There are no specified cases in which
the DM would respond with an error, and DMI is
not required to support returning errors.
3: An operation was attempted while a DMI re-
quest is still in progress. The data scanned into
dmi in this access will be ignored. This status is
sticky and can be cleared by writing dmireset in
dtmcs. If a debugger sees this status, it needs to
give the target more TCK edges between Update-
DR and Capture-DR. The simplest way to do that
is to add extra transitions in Run-Test/Idle.

R/W 0

6.1.6 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with
this TAP.

This entire register is read-only.

0

0

1

RISC-V External Debug Support Version 0.13.2 67

6.1.7 Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible
with the MIPI-10 .05 inch connector specification, as described in the MIPI Alliance Recommen-
dation for Debug and Trace Connectors, Version 1.10.00, 16 March 2011.

The connector has .05 inch spacing, gold-plated male header with .016 inch thick hardened copper or
beryllium bronze square posts (SAMTEC FTSH or equivalent). Female connectors are compatible
20µm gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as
it does in Table 6.5. The function of each pin is described in Table 6.7.

Table 6.5: MIPI-10 Connector Diagram
VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI

GND 9 10 nRESET

If a platform requires nTRST then it is permissible to reuse the nRESET pin as the nTRST signal.
If a platform requires both system reset and TAP reset, the MIPI-20 connector should be used. Its
physical connector is virtually identical to MIPI-10, except that it’s twice as long, supporting twice
as many pins. Its connector is show in Table 6.6.

Table 6.6: MIPI-20 Connector Diagram
VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI

GND 9 10 nRESET

GND 11 12 RTCK

GND 13 14 nTRST PD

GND 15 16 nTRST

GND 17 18 DBGRQ

GND 19 20 DBGACK

The same connectors can be used for 2-wire cJTAG. In that case TMS is used for TMSC, and TCK
is used for TCKC.

68 RISC-V External Debug Support Version 0.13.2

Table 6.7: JTAG Connector Pinout
1 VREF DEBUG Reference voltage for logic high.

2 TMS JTAG TMS signal, driven by the debug adapter.

4 TCK JTAG TCK signal, driven by the debug adapter.

6 TDO JTAG TDO signal, driven by the target.

7 GND or KEY This pin may be cut on the male and plugged on the
female header to ensure the header is always plugged
in correctly. It is, however, recommended to use this
pin as an additional ground, to allow for fastest TCK

speeds. A shrouded connector should be used to
prevent the cable from being plugged in incorrectly.

8 TDI JTAG TDI signal, driven by the debug adapter.

10 nRESET Active-low reset signal, driven by the debug adapter.
Asserting reset should reset any RISC-V cores as well
as any other peripherals on the PCB. It should not

reset the debug logic. This pin is optional but
strongly encouraged.

If necessary, this pin could be used as nTRST instead.
nRESET should never be connected to the TAP reset,

otherwise the debugger might not be able to debug
through a reset to discover the cause of a crash or to

maintain execution control after the reset.

12 RTCK Return test clock, driven by the target. A target may
relay the TCK signal here once it has processed it,
allowing a debugger to adjust its TCK frequency in

response.

14 nTRST PD Test reset pull-down (optional), driven by the debug
adapter. Same function as nTRST, but with

pull-down resistor on target.

16 nTRST Test reset (optional), driven by the debug adapter.
Used to reset the JTAG TAP Controller.

18 TRIGIN Not used, driven low by the debug adapter.

20 TRIGOUT Not used, driven by the target.

Appendix A

Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up
with their own design.

A.1 Abstract Command Based

Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract
command.

Memory is accessed using the Abstract Access Memory command or through System Bus Access.

This implementation could allow a debugger to collect information from the hart even when that
hart is unable to execute instructions.

A.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted
hart, and relies on the Program Buffer for all other operations. It uses the hart’s existing pipeline
and ability to execute from arbitrary memory locations to avoid modifications to a hart’s datapath.

When the halt request bit is set, the Debug Module raises a special interrupt to the selected harts.
This interrupt causes each hart to enter Debug Mode and jump to a defined memory region that is
serviced by the DM. When taking this exception, pc is saved to dpc and cause is updated in dcsr.

The code in the Debug Module causes the hart to execute a “park loop.” In the park loop the hart
writes its mhartid to a memory location within the Debug Module to indicate that it is halted.
To allow the DM to individually control one out of several halted harts, each hart polls for flags
in a DM-controlled memory location to determine whether the debugger wants it to execute the
Program Buffer or perform a resume.

69

70 RISC-V External Debug Support Version 0.13.2

To execute an abstract command, the DM first populates some internal words of program buffer
according to command. When transfer is set, the DM populates these words with lw <gpr>,

0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and lq/sq respec-
tively. If transfer is not set, the DM populates these instructions as nops. If execute is set, execution
continues to the debugger-controlled Program Buffer, otherwise the DM causes a ebreak to execute
immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to its
park loop. If an exception is encountered, the hart jumps to a debug exception address within
the Debug Module. The code at that address causes the hart to write to an address in the Debug
Module which indicates exception. This address is considered I/O for fence instructions (see #9
on page 39). Then the hart jumps back to the park loop. The DM infers from the write that there
was an exception, and sets cmderr appropriately.

To resume execution, the debug module sets a flag which causes the hart to execute a dret. When
dret is executed, pc is restored from dpc and normal execution resumes at the privilege set by prv.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm.
The exact address is an implementation detail that a debugger must not rely on. For example, the
data registers might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding
data0, in order to form a contiguous region of memory which can be used for either program
execution or data transfer.

Appendix B

Debugger Implementation

This section details how an external debugger might use the described debug interface to perform
some common operations on RISC-V cores using the JTAG DTM described in Section 6.1. All
these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit
cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete
faster than the debugger can perform the next access. This will be the case in a typical JTAG
setup. However, the debugger must always check the sticky error status bits after performing a
sequence of actions. If it sees any that are set, then it should attempt the same actions again,
possibly while adding in some delay, or explicit checks for status bits.

B.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1,
and address set to the desired register address. In Update-DR the operation will start, and in
Capture-DR its results will be captured into data. If the operation didn’t complete in time, op
will be 3 and the value in data must be ignored. The busy condition must be cleared by writing
dmireset in dtmcs, and then the second scan scan must be performed again. This process must be
repeated until op returns 0. In later operations the debugger should allow for more time between
Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and
address and data set to the desired register address and data respectively. From then on everything
happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical
JTAG use.

71

72 RISC-V External Debug Support Version 0.13.2

B.2 Checking for Halted Harts

A user will want to know as quickly as possible when a hart is halted (e.g. due to a breakpoint).
To efficiently determine which harts are halted when there are many harts, the debugger uses the
haltsum registers. Assuming the maximum number of harts exist, first it checks haltsum3. For
each bit set there, it writes hartsel, and checks haltsum2. This process repeats through haltsum1

and haltsum0. Depending on how many harts exist, the process should start at one of the lower
haltsum registers.

B.3 Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to
indicate the harts are halted. Then it can clear haltreq to 0, or leave it high to catch a hart that
resets while halted.

B.4 Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected
harts run by setting resumereq. Once allresumeack is set, the debugger knows the hart has resumed,
and it can clear resumereq. Harts might halt very quickly after resuming (e.g. by hitting a software
breakpoint) so the debugger cannot use allhalted/anyhalted to check whether the hart resumed.

B.5 Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just
sets step in dcsr before letting the hart run. The hart behaves exactly as in the running case,
except that interrupts may be disabled (depending on stepie) and it only fetches and executes a
single instruction before re-entering Debug Mode.

B.6 Accessing Registers

B.6.1 Using Abstract Command

Read s0 using abstract command:

Op Address Value Comment

Write command aarsize = 2, transfer, regno =
0x1008

Read s0

Read data0 - Returns value that was in s0

RISC-V External Debug Support Version 0.13.2 73

Write mstatus using abstract command:

Op Address Value Comment

Write data0 new value

Write command aarsize = 2, transfer, write,
regno = 0x300

Write mstatus

B.6.2 Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers
can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op Address Value Comment

Write progbuf0 csrw s0, MSTATUS

Write progbuf1 ebreak

Write data0 new value

Write command aarsize = 2, postexec, transfer,
write, regno = 0x1008

Write s0, then execute pro-
gram buffer

Read f1 using program buffer:

Op Address Value Comment

Write progbuf0 fmv.x.s s0, f1

Write progbuf1 ebreak

Write command postexec Execute program buffer

Write command transfer, regno = 0x1008 read s0

Read data0 - Returns the value that was in
f1

B.7 Reading Memory

B.7.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Read a word from memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr Setup

Write sbaddress0 address

Read sbdata0 - Value read from memory

Read block of memory using system bus access:

74 RISC-V External Debug Support Version 0.13.2

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr,
sbreadondata, sbautoincrement

Turn on autoread and autoincrement

Write sbaddress0 address Writing address triggers read and increment

Read sbdata0 - Value read from memory

Read sbdata0 - Next value read from memory

...

Write sbcs 0 Disable autoread

Read sbdata0 - Get last value read from memory.

B.7.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or
virtual (depending on mprven and other system configuration).

Read a word from memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s0, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, postexec, regno =
0x1008

Write s0, then execute pro-
gram buffer

Write command regno = 0x1008 Read s0

Read data0 - Value read from memory

Read block of memory using program buffer:

RISC-V External Debug Support Version 0.13.2 75

Op Address Value Comment

Write progbuf0 lw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, postexec, regno =
0x1008

Write s0, then execute pro-
gram buffer

Write command postexec, regno = 0x1009 Read s1, then execute pro-
gram buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Read data0 - Get value read from memory,
then execute program buffer

Read data0 - Get next value read from
memory, then execute pro-
gram buffer

...

Write abstractauto 0 Clear autoexecdata [0]

Read data0 - Get last value read from
memory.

B.7.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implemen-
tation may differ.

Read a word from memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write command cmdtype=2, aamsize =2

Read data0 - Value read from memory

Read block of memory using abstract memory access:

Op Address Value Comment

Write abstractauto 1 Re-execute the command
when data0 is accessed

Write data1 address

Write command cmdtype=2, aamsize =2,
aampostincrement =1

Read data0 - Read value, and trigger read-
ing of next address

...

Write abstractauto 0 Disable auto-exec

Read data0 - Get last value read from
memory.

76 RISC-V External Debug Support Version 0.13.2

B.8 Writing Memory

B.8.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Write a word to memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbdata0 value

Write a block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbautoincrement Turn on autoincrement

Write sbaddress0 address

Write sbdata0 value0

Write sbdata0 value1

...

Write sbdata0 valueN

B.8.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or
virtual (depending on mprven and other system configuration).

Write a word to memory using program buffer:

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, regno = 0x1008 Write s0

Write data0 value

Write command write, postexec, regno =
0x1009

Write s1, then execute pro-
gram buffer

Write block of memory using program buffer:

RISC-V External Debug Support Version 0.13.2 77

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, regno = 0x1008 Write s0

Write data0 value0

Write command write, postexec, regno =
0x1009

Write s1, then execute pro-
gram buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Write data0 value1

...

Write data0 valueN

Write abstractauto 0 Clear autoexecdata [0]

B.8.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implemen-
tation may differ.

Write a word to memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write data0 value

Write command cmdtype=2, aamsize =2,
write=1

Write a block of memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write data0 value0

Write command cmdtype=2, aamsize =2,
write=1, aampostincrement
=1

Write abstractauto 1 Re-execute the command
when data0 is accessed

Write data0 value1

Write data0 value2

...

Write data0 valueN

Write abstractauto 0 Disable auto-exec

78 RISC-V External Debug Support Version 0.13.2

B.9 Triggers

A debugger can use hardware triggers to halt a hart when a certain event occurs. Below are some
examples, but as there is no requirement on the number of features of the triggers implemented by
a hart, these examples may not be applicable to all implementations. When a debugger wants to
set a trigger, it writes the desired configuration, and then reads back to see if that configuration is
supported.

Enter Debug Mode just before the instruction at 0x80001234 is executed, to be used as an instruc-
tion breakpoint in ROM:

tdata1 0x105c action=1, match=0, m=1, s=1, u=1, execute=1

tdata2 0x80001234 address

Enter Debug Mode right after the value at 0x80007f80 is read:

tdata1 0x4159 timing=1, action=1, match=0, m=1, s=1, u=1,
load=1

tdata2 0x80007f80 address

Enter Debug Mode right before a write to an address between 0x80007c80 and 0x80007cef (inclu-
sive):

tdata1 0 0x195a action=1, chain=1, match=2, m=1, s=1, u=1,
store=1

tdata2 0 0x80007c80 start address (inclusive)

tdata1 1 0x11da action=1, match=3, m=1, s=1, u=1, store=1

tdata2 1 0x80007cf0 end address (exclusive)

Enter Debug Mode right before a write to an address between 0x81230000 and 0x8123ffff (inclusive):

tdata1 0x10da action=1, match=1, m=1, s=1, u=1, store=1

tdata2 0x81237fff 16 bits to match exactly, then 0, then all ones.

Enter Debug Mode right after a read from an address between 0x86753090 and 0x8675309f or
between 0x96753090 and 0x9675309f (inclusive):

tdata1 0 0x41a59 timing=1, action=1, chain=1, match=4, m=1, s=1,
u=1, load=1

tdata2 0 0xfff03090 Mask for low half, then match for low half

tdata1 1 0x412d9 timing=1, action=1, match=5, m=1, s=1, u=1,
load=1

tdata2 1 0xefff8675 Mask for high half, then match for high half

RISC-V External Debug Support Version 0.13.2 79

B.10 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Some-
times they are unavoidable though, e.g. if the user asks to access memory or a CSR that is not
implemented. A typical debugger will not know enough about the platform to know what’s going
to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger
can check this field to see whether a program encountered an exception. If there was an exception,
it’s left to the debugger to know what must have caused it.

B.11 Quick Access

There are a variety of instructions to transfer data between GPRs and the data registers. They
are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified
in hartinfo. The examples here use the pseudo-op transfer dest, src to represent all these
options.

Halt the hart for a minimum amount of time to perform a single memory write:

Op Address Value Comment

Write progbuf0 transfer arg2, s0 Save s0

Write progbuf1 transfer s0, arg0 Read first argument (address)

Write progbuf2 transfer arg0, s1 Save s1

Write progbuf3 transfer s1, arg1 Read second argument (data)

Write progbuf4 sw s1, 0(s0)

Write progbuf5 transfer s1, arg0 Restore s1

Write progbuf6 transfer s0, arg2 Restore s0

Write progbuf7 ebreak

Write data0 address

Write data1 data

Write command 0x10000000 Perform quick access

This shows an example of setting the m bit in mcontrol to enable a hardware breakpoint in M-
mode. Similar quick access instructions could have been used previously to configure the trigger
that is being enabled here:

Op Address Value Comment

Write progbuf0 transfer arg0, s0 Save s0

Write progbuf1 li s0, (1 << 6) Form the mask for m bit

Write progbuf2 csrrs x0, tdata1, s0 Apply the mask to mcontrol

Write progbuf3 transfer s0, arg2 Restore s0

Write progbuf4 ebreak

Write command 0x10000000 Perform quick access

Appendix C

Bug Fixes

C.1 0.13.1

Since the ratification of 0.13, the following bugs have been fixed in 0.13.1:

C.1.1 Resume ack bit is set after resuming

The third paragraph of Section 3.5 has a mistake. At the end of the process described there, the
resume ack bit is set.

C.1.2 aamsize does not affect Argument Width

The Argument Width of the Access Memory abstract command defined in Section 3.7.1.3 is deter-
mined by DXLEN, and not by aamsize.

C.1.3 sbdata0 Reads Order of Operations

The order of operations listed in Section 3.12.23, describing reads from sbdata0, is incorrect. It
should read:

Reads from this register start the following:

1. “Return” the data.
2. Set sbbusy.
3. If sbreadondata is set, perform another system bus read.
4. If sbautoincrement is set, increment sbaddress.
5. Clear sbbusy.

80

RISC-V External Debug Support Version 0.13.2 81

C.1.4 Hart reset behavior when haltreq is set

When a hart comes out of reset and haltreq is set, the hart will immediately enter Debug Mode.

C.1.5 mte only applies when action=0

The definition of mte in Section 5.2.6 should state that mte only affects triggers whose action is 0.

C.1.6 sselect applies to svalue

In Section 5.2.13, when sselect is 0 it ignores svalue.

C.1.7 Last trigger example

In the last example in Section B.9, the value for tdata2 1 should be 0xefff8675.

C.2 0.13.2

Fixed a formatting issue that caused step 1 in the Quick Access description to be missing from the
document.

Index

aampostincrement, 15

aamsize, 15

aamvirtual, 15

aarpostincrement, 13

aarsize, 13

abits, 65

abstractauto, 29

abstractcs, 27

Access Memory, 14

Access Register, 12

ackhavereset, 23

action, 56, 59, 60

address, 35, 36, 65

allhalted, 21

allhavereset, 21

allnonexistent, 21

allresumeack, 21

allrunning, 21

allunavail, 21

anyhalted, 21

anyhavereset, 21

anynonexistent, 21

anyresumeack, 21

anyrunning, 21

anyunavail, 21

authbusy, 22

authdata, 31

authenticated, 22

autoexecdata, 29

autoexecprogbuf, 29

busy, 27

BYPASS, 66

cause, 43

chain, 57

clrresethaltreq, 24

cmderr, 28

cmdtype, 13–15, 29

command, 28

confstrptr0, 29
confstrptrvalid, 22
control, 29
count, 58

data, 37, 38, 50, 53, 65
data0, 30
dataaccess, 26
dataaddr, 26
datacount, 28
datasize, 26
dcsr, 42
dmactive, 25
dmcontrol, 22
dmi, 65
dmihardreset, 64
dmireset, 64
dmistat, 65
dmode, 50
dmstatus, 20
dpc, 44
dscratch0, 45
dscratch1, 45
dtmcs, 64

ebreakm, 42
ebreaks, 42
ebreaku, 42
etrigger, 60
execute, 58

field, 2

haltreq, 23
haltsum0, 31
haltsum1, 31
haltsum2, 32
haltsum3, 32
hartinfo, 25
hartreset, 23
hartsel, 22

82

RISC-V External Debug Support Version 0.13.2 83

hartselhi, 24
hartsello, 24
hasel, 24
hasresethaltreq, 22
hawindow, 26
hawindowsel, 26
hit, 54, 58–60

icount, 58
IDCODE, 63
idle, 64
impebreak, 21
info, 51
itrigger, 59

load, 58

m, 57–60
ManufId, 64
maskmax, 54
match, 57
mcontext, 52
mcontrol, 53
mprven, 43
mpte, 52
mselect, 61
mte, 52
mvalue, 61

ndmreset, 24
nextdm, 30
nmip, 43
nscratch, 25

op, 66

PartNumber, 64
postexec, 13
priv, 45
progbuf0, 30
progbufsize, 27
prv, 44, 46

Quick Access, 14

regno, 13
resethaltreq, 22
resumereq, 23

s, 57–60

sbaccess, 33
sbaccess128, 34
sbaccess16, 34
sbaccess32, 34
sbaccess64, 34
sbaccess8, 34
sbaddress0, 34
sbaddress1, 35
sbaddress2, 35
sbaddress3, 36
sbasize, 34
sbautoincrement, 33
sbbusy, 33
sbbusyerror, 33
sbcs, 32
sbdata0, 36
sbdata1, 37
sbdata2, 37
sbdata3, 38
sberror, 34
sbreadonaddr, 33
sbreadondata, 33
sbversion, 33
scontext, 52
select, 54
setresethaltreq, 24
shortname, 2
sizehi, 54
sizelo, 56
sselect, 61
step, 44
stepie, 42
stopcount, 43
stoptime, 43
store, 58
svalue, 61

target-specific, 15
tcontrol, 51
tdata1, 50
tdata2, 50
tdata3, 51
textra32, 60
textra64, 61
timing, 55
tinfo, 51
transfer, 13
tselect, 49

84 RISC-V External Debug Support Version 0.13.2

type, 50

u, 57–60

Version, 63
version, 22, 65

write, 13, 15

xdebugver, 42

	Introduction
	Terminology
	Context
	Versions

	About This Document
	Structure
	Register Definition Format
	Long Name (shortname, at 0x123)

	Background
	Supported Features

	System Overview
	Debug Module (DM)
	Debug Module Interface (DMI)
	Reset Control
	Selecting Harts
	Selecting a Single Hart
	Selecting Multiple Harts

	Hart States
	Run Control
	Abstract Commands
	Abstract Command Listing
	Access Register
	Quick Access
	Access Memory

	Program Buffer
	Overview of States
	System Bus Access
	Minimally Intrusive Debugging
	Security
	Debug Module Registers
	Debug Module Status (dmstatus, at 0x11)
	Debug Module Control (dmcontrol, at 0x10)
	Hart Info (hartinfo, at 0x12)
	Hart Array Window Select (hawindowsel, at 0x14)
	Hart Array Window (hawindow, at 0x15)
	Abstract Control and Status (abstractcs, at 0x16)
	Abstract Command (command, at 0x17)
	Abstract Command Autoexec (abstractauto, at 0x18)
	Configuration String Pointer 0 (confstrptr0, at 0x19)
	Next Debug Module (nextdm, at 0x1d)
	Abstract Data 0 (data0, at 0x04)
	Program Buffer 0 (progbuf0, at 0x20)
	Authentication Data (authdata, at 0x30)
	Halt Summary 0 (haltsum0, at 0x40)
	Halt Summary 1 (haltsum1, at 0x13)
	Halt Summary 2 (haltsum2, at 0x34)
	Halt Summary 3 (haltsum3, at 0x35)
	System Bus Access Control and Status (sbcs, at 0x38)
	System Bus Address 31:0 (sbaddress0, at 0x39)
	System Bus Address 63:32 (sbaddress1, at 0x3a)
	System Bus Address 95:64 (sbaddress2, at 0x3b)
	System Bus Address 127:96 (sbaddress3, at 0x37)
	System Bus Data 31:0 (sbdata0, at 0x3c)
	System Bus Data 63:32 (sbdata1, at 0x3d)
	System Bus Data 95:64 (sbdata2, at 0x3e)
	System Bus Data 127:96 (sbdata3, at 0x3f)

	RISC-V Debug
	Debug Mode
	Load-Reserved/Store-Conditional Instructions
	Wait for Interrupt Instruction
	Single Step
	Reset
	dret Instruction
	XLEN
	Core Debug Registers
	Debug Control and Status (dcsr, at 0x7b0)
	Debug PC (dpc, at 0x7b1)
	Debug Scratch Register 0 (dscratch0, at 0x7b2)
	Debug Scratch Register 1 (dscratch1, at 0x7b3)

	Virtual Debug Registers
	Privilege Level (priv, at virtual)

	Trigger Module
	Native M-Mode Triggers
	Trigger Registers
	Trigger Select (tselect, at 0x7a0)
	Trigger Data 1 (tdata1, at 0x7a1)
	Trigger Data 2 (tdata2, at 0x7a2)
	Trigger Data 3 (tdata3, at 0x7a3)
	Trigger Info (tinfo, at 0x7a4)
	Trigger Control (tcontrol, at 0x7a5)
	Machine Context (mcontext, at 0x7a8)
	Supervisor Context (scontext, at 0x7aa)
	Match Control (mcontrol, at 0x7a1)
	Instruction Count (icount, at 0x7a1)
	Interrupt Trigger (itrigger, at 0x7a1)
	Exception Trigger (etrigger, at 0x7a1)
	Trigger Extra (RV32) (textra32, at 0x7a3)
	Trigger Extra (RV64) (textra64, at 0x7a3)

	Debug Transport Module (DTM)
	JTAG Debug Transport Module
	JTAG Background
	JTAG DTM Registers
	IDCODE (at 0x01)
	DTM Control and Status (dtmcs, at 0x10)
	Debug Module Interface Access (dmi, at 0x11)
	BYPASS (at 0x1f)
	Recommended JTAG Connector

	Hardware Implementations
	Abstract Command Based
	Execution Based

	Debugger Implementation
	Debug Module Interface Access
	Checking for Halted Harts
	Halting
	Running
	Single Step
	Accessing Registers
	Using Abstract Command
	Using Program Buffer

	Reading Memory
	Using System Bus Access
	Using Program Buffer
	Using Abstract Memory Access

	Writing Memory
	Using System Bus Access
	Using Program Buffer
	Using Abstract Memory Access

	Triggers
	Handling Exceptions
	Quick Access

	Bug Fixes
	0.13.1
	Resume ack bit is set after resuming
	` `=`_`12{`"026B30D ``"026B30D [aamsize]aamsize` `=`_`12{`"026B30D ``"026B30D does not affect Argument Width
	[sbdata0]sbdata0 Reads Order of Operations
	Hart reset behavior when ` `=`_`12{`"026B30D ``"026B30D [haltreq]haltreq` `=`_`12{`"026B30D ``"026B30D is set
	` `=`_`12{`"026B30D ``"026B30D [mte]mte` `=`_`12{`"026B30D ``"026B30D only applies when action=0
	` `=`_`12{`"026B30D ``"026B30D [sselect]sselect` `=`_`12{`"026B30D ``"026B30D applies to ` `=`_`12{`"026B30D ``"026B30D [svalue]svalue` `=`_`12{`"026B30D ``"026B30D
	Last trigger example

	0.13.2

	Index

