b RISC-V°

RISC-V Supervisor Binary
INnterface Specification

RISC-V Platform Specification Task Group

Version 1.0.0, March 22, 2022: Ratified

Table of Contents

Preamble
Copyright and license information
Change Log
Version 1.0.0
Version 1.0-rc3
Version 1.0-rc2
Version 1.0-rcl
Version 0.3.0
Version 0.3-rcl
Version 0.2
1. Introduction
2. Terms and Abbreviations
3. Binary Encoding
4. Base Extension (EID #0x10)
4.1. Function: Get SBI specification version (FID #0)
4.2. Function: Get SBI implementation ID (FID #1)
4.3. Function: Get SBI implementation version (FID #2)
4.4. Function: Probe SBI extension (FID #3)
4.5. Function: Get machine vendor ID (FID #4)
4.6. Function: Get machine architecture ID (FID #5)
4.7. Function: Get machine implementation ID (FID #6)
4.8. Function Listing
4.9. SBI Implementation IDs
5. Legacy Extensions (EIDs #0x00 - #0xOF)
5.1. Extension: Set Timer (EID #0x00)
5.2. Extension: Console Putchar (EID #0x01)
5.3. Extension: Console Getchar (EID #0x02)
5.4. Extension: Clear IPI (EID #0x03)
5.5. Extension: Send IPI (EID #0x04)
5.6. Extension: Remote FENCE.I (EID #0x05)
5.7. Extension: Remote SFENCE.VMA (EID #0x06)
5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
5.9. Extension: System Shutdown (EID #0x08)
5.10. Function Listing
6. Timer Extension (EID #0x54494D45 "TIME")
6.1. Function: Set Timer (FID #0)
6.2. Function Listing
7. IPI Extension (EID #0x735049 "sPI: s-mode IPI")
7.1. Function: Send IPI (FID #0)
(2. Function Listing

0 N U WWwWwWwWwWwWwWw W N -

e e [T T e o S S S S e == = = = =
oo IR OO nEDSED®NOmEZDZ=2EZ2O00O0 0 o0 0

8. RFENCE Extension (EID #0x52464E43 "RFNC")

8.1. Function: Remote FENCE.I (FID #0)

8.2. Function: Remote SFENCE.VMA (FID #1)

8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
8.5. Function: Remote HFENCE.GVMA (FID #4)

8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
8.7. Function: Remote HFENCE.VVMA (FID #6)

8.8. Function Listing

. Hart State Management Extension (EID #0x48534D "HSM")
9.1. Function: HART start (FID #0)

9.2. Function: HART stop (FID #1)

9.3. Function: HART get status (FID #2)

9.4. Function: HART suspend (FID #3)

9.5. Function Listing

10. System Reset Extension (EID #0x53525354 "SRST")

10.1. Function: System reset (FID #0)

10.2. Function Listing

11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")
11.1. Event: Hardware general events (Type #0)

11.2. Event: Hardware cache events (Type #1)

11.3. Event: Hardware raw events (Type #2)

114. Event: Firmware events (Type #15)

11.5. Function: Get number of counters (FID #0)

11.6. Function: Get details of a counter (FID #1)

11.7. Function: Find and configure a matching counter (FID #2)
11.8. Function: Start a set of counters (FID #3)

11.9. Function: Stop a set of counters (FID #4)

11.10. Function: Read a firmware counter (FID #5)

11.11. Function Listing

12. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF)
13. Vendor-Specific SBI Extension Space (EIDs #0x09000000 - #0x0O9FFFFFF)
14. Firmware Specific SBI Extension Space (EIDs #0xOA000000 - #0xOAFFFFFF)

19
19
19
20
20
21
21
22
22
23
24
25
26
26
28
29
29
30
31
31
32
33
34
35
35
36
37
38
38
39
40
41
42

Preamble | Page 1

Preamble

This document is in the Ratified state

No changes are allowed. Any desired or needed changes can be the subject of a follow-on
document with a revised version number consistent with the RISC-V versioning policy.

RISC-V Supervisor Binary Interface Specification | © RISC-V

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This RISC-V SBI specification is

© 2019 Palmer Dabbelt <palmer@sifive.com>
© 2019 Atish Patra <atish.patra@wdc.com>

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full
license text is available at creativecommons.org/licenses/by/4.0/.

RISC-V Supervisor Binary Interface Specification | © RISC-V

mailto:palmer@sifive.com
mailto:atish.patra@wdc.com
https://creativecommons.org/licenses/by/4.0/

Change Log

Version 1.0.0

- Updated the version for ratification

Version 1.0-rc3

- Updated the calling convention
- Fixed a typo in PMU extension
- Added a abbreviation table

Version 1.0-rc2

- Update to RISC-V formatting
- Improved the introduction

- Removed all references to RV32

Version 1.0-rc

- Atypo fix

Version 0.3.0

- Few typo fixes

Version 1.0.0 | Page 3

- Updated the LICENSE with detailed text instead of a hyperlink

Version 0.3-rcl

- Improved document styling and naming conventions

- Added SBI system reset extension

- Improved SBI introduction section

- Improved documentation of SBI hart state management extension

- Added suspend function to SBI hart state management extension

- Added performance monitoring unit extension

- Clarified that an SBI extension shall not be partially implemented

Version 0.2

- The entire vO.1 SBI has been moved to the legacy extension, which is now an optional extension.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Version 0.2 | Page 4

This is technically a backwards-incompatible change because the legacy extension is optional and
v0.1 of the SBI doesn’t allow probing, but it’s as good as we can do.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 1. Introduction | Page 5

Chapter 1. Introduction

This specification describes the RISC-V Supervisor Binary Interface, known from here on as SBI. The
SBI allows supervisor-mode (S-mode or VS-mode) software to be portable across all RISC-V
implementations by defining an abstraction for platform (or hypervisor) specific functionality. The
design of the SBI follows the general RISC-V philosophy of having a small core along with a set of
optional modular extensions.

SBI extensions as whole are optional but they shall not be partially implemented. If
sbi_probe_extension() signals that an extension is available, all functions present in the SBI version
reported by sbi_get_spec_version() must conform to that version of the SBI specification.

The higher privilege software providing SBI interface to the supervisor-mode software is referred as an
SBI implementation or Supervisor Execution Environment (SEE). An SBI implementation (or SEE)
can be platform runtime firmware executing in machine-mode (M-mode) (see below Figure 1) or it can
be some hypervisor executing in hypervisor-mode (HS-mode) (see below Figure 2).

smoce R s
i System Calls
iSBI
Figure 1. RISC-V System without H-extension
Virtualized World Host / Hypervisor World
VU-mode _ | Host Applications U-mode
: System Calls
VVS-mode _ System Calls
¢SBI

HS-mode HS-mode

-

M-mode M-mode

Figure 2. RISC-V System with H-extension

The SBI specification doesn’t specify any method for hardware discovery. The supervisor software
must rely on the other industry standard hardware discovery methods (i.e. Device Tree or ACPI) for

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 1. Introduction | Page 6

that.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 2. Terms and Abbreviations | Page 7

Chapter 2. Terms and Abbreviations

This specification uses the following terms and abbreviations:

Term
SBI
SEE
EID
FID
HSM
PMU
[PI
ASID
VMID

Meaning

Supervisor Binary Interface
Supervisor Execution Environment
Extension ID

Function ID

Hart State Management
Performance Monitoring Unit
Inter Processor Interrupt

Address Space Identifier

Virtual Machine Identifier

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 3. Binary Encoding | Page 8

Chapter 3. Binary Encoding

All SBI functions share a single binary encoding, which facilitates the mixing of SBI extensions. The
SBI specification follows the below calling convention.

- An ECALL is used as the control transfer instruction between the supervisor and the SEE.

- a7 encodes the SBI extension 1D (EID),

- a6 encodes the SBI function ID (FID) for a given extension ID encoded in a7 for any SBI extension
defined in or after SBI vO.2.

- All registers except a0 & al must be preserved across an SBI call by the callee.

- SBI functions must return a pair of values in a0 and a1, with a0 returning an error code. This is
analogous to returning the C structure

struct sbiret {
long error;
long value;

};

In the name of compatibility, SBI extension IDs (EIDs) and SBI function IDs (FIDs) are encoded as
signed 32-bit integers. When passed in registers these follow the standard above calling convention
rules.

The Table 1 below provides a list of Standard SBI error codes.

Table 1. Standard SBI Errors

Error Type Value
SBI_SUCCESS @)
SBI_ERR_FAILED 1
SBI_ERR_NOT_SUPPORTED -2
SBI_ERR_INVALID _PARAM -3
SBI_ERR_DENIED 4
SBI_ERR_INVALID ADDRESS 5
SBI_ERR_ALREADY AVAILABLE 6
SBI_ERR_ALREADY_STARTED -7
SBI_ERR_ALREADY_STOPPED -8

An ECALL with an unsupported SBI extension ID (EID) or an unsupported SBI function ID (FID) must
return the error code SBI_ERR_NOT_SUPPORTED.

Every SBI function should prefer unsigned long as the data type. It keeps the specification simple
and easily adaptable for all RISC-V ISA types. In case the data is defined as 32bit wide, higher privilege
software must ensure that it only uses 32 bit data only.

If an SBI function needs to pass a list of harts to the higher privilege mode, it must use a hart mask as

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 3. Binary Encoding | Page 9

defined below. This is applicable to any extensions defined in or after vO.2.
Any function, requiring a hart mask, need to pass following two arguments.

- unsigned long hart_mask is a scalar bit-vector containing hartids

- unsigned long hart_mask_base is the starting hartid from which bit-vector must be computed.
In a single SBI function call, maximum number harts that can be set is always XLEN. If a lower
privilege mode needs to pass information about more than XLEN harts, it should invoke multiple

instances of the SBI function call. hart_mask_base can be set to -1 to indicate that hart_mask can be
ignored and all available harts must be considered.

Any function using hart mask may return error values listed in the Table 2 below which are in
addition to function specific error values.

Table 2. HART Mask Errors

Error code Description

SBI_ERR_INVALID_PARA Either hart_mask_base or any of the hartid from
M hart_mask is not valid i.e. either the hartid is not enabled by
the platform or is not available to the supervisor.

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.1. Function: Get SBI specification version (FID #0) | Page 10

Chapter 4. Base Extension (EID #0x10)

The base extension is designed to be as small as possible. As such, it only contains functionality for
probing which SBI extensions are available and for querying the version of the SBI. All functions in
the base extension must be supported by all SBI implementations, so there are no error returns

defined.

41. Function: Get SBI specification version (FID #0O)

struct sbiret sbi_get_spec_version(void);

Returns the current SBI specification version. This function must always succeed. The minor number
of the SBI specification is encoded in the low 24 bits, with the major number encoded in the next 7
bits. Bit 31 must be O and is reserved for future expansion.

4.2. Function: Get SBI implementation ID (FID #1)

struct sbiret sbi_get_impl_id(void);

Returns the current SBI implementation ID, which is different for every SBI implementation. It is
intended that this implementation ID allows software to probe for SBI implementation quirks.

4 3. Function: Get SBI implementation version
(FID #2)

struct sbiret sbi_get_impl_version(void);

Returns the current SBI implementation version. The encoding of this version number is specific to
the SBI implementation.

4 4 Function: Probe SBI extension (FID #3)

struct sbiret sbi_probe_extension(long extension_id);

Returns O if the given SBI extension ID (EID) is not available, or 1 if it is available unless defined as
any other non-zero value by the implementation.

45. Function: Get machine vendor ID (FID #4)

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.6. Function: Get machine architecture ID (FID #5) | Page 11

struct sbiret sbi_get_mvendorid(void);

Return a value that is legal for the mvendorid CSR and O is always a legal value for this CSR.

4 6. Function: Get machine architecture ID (FID
#5)

struct sbiret sbi_get_marchid(void);

Return a value that is legal for the marchid CSR and O is always a legal value for this CSR.

47. Function: Get machine implementation |D
(FID #0)

struct sbiret sbi_get_mimpid(void);

Return a value that is legal for the mimpid CSR and O is always a legal value for this CSR.

4. 8. Function Listing

Table 3. Base Function List

Function Name SBI Version FID EID

sbi_get_sbi_spec_version 0.2 0 0x10

sbi_get_sbi_impl_id 0.2 1 0x10

sbi_get_sbi_impl_version 0.2 2 0x10

sbi_probe_extension 0.2 3 0x10

sbi_get_mvendorid 0.2 4 0x10

sbi_get_marchid 0.2 5 0x10

sbi_get_mimpid 0.2 6 0x10
49. SBI Implementation IDs

Table 4. SBI Implementation IDs

Implementation ID Name

0 Berkeley Boot Loader (BBL)

1 OpenSBI

2 Xvisor

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.9. SBI Implementation IDs | Page 12

Implementation ID Name

3 KVM

4 RustSBI
5 Diosix
6 Coffer

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.1. Extension: Set Timer (EID #0x00) | Page 13

Chapter 5. Legacy Extensions (EIDs #0x00
- #OxOF)

The legacy SBI extensions follow a slightly different calling convention as compared to the SBI vO.2
(or higher) specification where:

- The SBI function ID field in a6 register is ignored because these are encoded as multiple SBI
extension IDs.

- Nothing is returned in a1 register.
- All registers except a0 must be preserved across an SBI call by the callee.

- The value returned in a0 register is SBI legacy extension specific.

The page and access faults taken by the SBI implementation while accessing memory on behalf of the
supervisor are redirected back to the supervisor with sepc CSR pointing to the faulting ECALL
instruction.

The legacy SBI extensions is deprecated in favor of the other extensions listed below. The legacy
console SBI functions (sbi_console_getchar () and sbi_console_putchar ()) are expected to be
deprecated; they have no replacement.

5.1. Extension: Set Timer (EID #0x00)

long sbi_set_timer(uint64_t stime_value)
Programs the clock for next event after stime_value time. This function also clears the pending timer
interrupt bit.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e., (uint64 _t)-1), or it can instead mask
the timer interrupt by clearing sie. STIE CSR bit.

This SBI call returns O upon success or an implementation specific negative error code.
5.2. Extension: Console Putchar (EID #0x0O1)

long sbi_console_putchar(int ch)

Write data present in ch to debug console.

Unlike sbi_console_getchar (), this SBI call will block if there remain any pending characters to be
transmitted or if the receiving terminal is not yet ready to receive the byte. However, if the console
doesn’t exist at all, then the character is thrown away.

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.3. Extension: Console Getchar (EID #0x02) | Page 14

5.3. Extension: Console Getchar (EID #0x02)

long sbi_console_getchar(void)

Read a byte from debug console.

The SBI call returns the byte on success, or -1 for failure.
54 Extension: Clear IPI (EID #0x03)

long sbi_clear_ipi(void)
Clears the pending IPIs if any. The IPI is cleared only in the hart for which this SBI call is invoked.
sbi_clear_ipi() is deprecated because S-mode code can clear sip.SSIP CSR bit directly.

This SBI call returns O if no IPI had been pending, or an implementation specific positive value if an
IPI had been pending.

55. Extension: Send IPI (EID #0x04)

long sbi_send_ipi(const unsigned long *hart_mask)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as Supervisor Software Interrupts.

hart_mask is a virtual address that points to a bit-vector of harts. The bit vector is represented as a
sequence of unsigned longs whose length equals the number of harts in the system divided by the
number of bits in an unsigned long, rounded up to the next integer.

This SBI call returns O upon success or an implementation specific negative error code.
5.6. Extension: Remote FENCE.| (EID #0x05)

long sbi_remote_fence_i(const unsigned long *hart_mask)

Instructs remote harts to execute FENCE. I instruction. The hart_mask is same as described in
sbi_send_ipi Q).

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.7. Extension: Remote SFENCE.VMA (EID #0x06) | Page 15

5.7. Extension: Remote SFENCE.VMA (EID #0x006)

long sbi_remote_sfence_vma(const unsigned long *hart_mask,
unsigned long start,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size.

This SBI call returns O upon success or an implementation specific negative error code.

5.8. Extension: Remote SFENCE.VMA with ASID
(EID #0x0O7)

long sbi_remote_sfence_vma_asid(const unsigned long *hart_mask,
unsigned long start,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size. This covers only the given ASID.

This SBI call returns O upon success or an implementation specific negative error code.
59. Extension: System Shutdown (EID #0x08)

void sbi_shutdown(void)

Puts all the harts to shutdown state from supervisor point of view.

This SBI call doesn’t return irrespective whether it succeeds or fails.

5.10. Function Listing

Table 5. Legacy Function List

Function Name SBI Version FID EID Replacement EID
sbi_set timer 01 0 0x00 0x54494D45
sbi_console _putchar 01 0 0x01 N/A
sbi_console_getchar 01 0 0x02 N/A
sbi_clear_ipi 01 0 0x03 N/A
sbi_send_ipi 0.1 0 0x04 0x735049

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.10. Function Listing | Page 16

Function Name

sbi_remote fence i
sbi_remote sfence vma
sbi_remote sfence vma _asid
sbi_shutdown

RESERVED

SBI Version
01
01
01
01

FID

S © o O

RISC-V Supervisor Binary Interface Specification | © RISC-V

EID

0x05
0x06
0x07
0x08
0x09-0x0F

Replacement EID
0x52464E43
0x52464E43
0x52464E43
0x53525354

6.1. Function: Set Timer (FID #0) | Page 17

Chapter 6. Timer Extension (EID
HOX54494D45 "TIME")

This replaces legacy timer extension (EID #0x00). It follows the new calling convention defined in
v0.2.

o.1. Function: Set Timer (FID #0)

struct sbiret sbi_set_timer(uint64_t stime_value)
Programs the clock for next event after stime_value time. stime_value is in absolute time. This
function must clear the pending timer interrupt bit as well.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e,, (uint64_t)-1), or it can instead mask
the timer interrupt by clearing sie.STIE CSR bit.

6.2. Function Listing

Table 6. TIME Function List
Function Name SBI Version FID EID
sbi_set timer 0.2 0 0x54494D45

RISC-V Supervisor Binary Interface Specification | © RISC-V

7.1. Function: Send IPI (FID #0) | Page 18

Chapter 7. IPl Extension (EID #0x735049
"sPIl: s-mode IP1")

This extension replaces the legacy extension (EID #0x04). The other IPI related legacy extension(0x3)
is deprecated now. All the functions in this extension follow the hart_mask as defined in the binary
encoding section.

7.1. Function: Send IPI (FID #0O)

struct sbiret sbi_send_ipi(unsigned long hart_mask,
unsigned long hart_mask_base)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as the supervisor software interrupts.

The possible error codes returned in sbiret.error are shown in the Table 7 below.

Table 7. IPI Send Errors
Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

/2. Function Listing

Table 8. IPI Function List
Function Name SBI Version FID EID
sbi_send_ipi 0.2 0 0x735049

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.1. Function: Remote FENCE.I (FID #0) | Page 19

Chapter 8. RFENCE Extension (EID
HOx52464E43 "RENC")

This extension defines all remote fence related functions and replaces the legacy extensions (EIDs
#0x05 - #0x07). All the functions follow the hart_mask as defined in binary encoding section. Any
function wishes to use range of addresses (i.e. start_addr and size), have to abide by the below
constraints on range parameters.

The remote fence function acts as a full TLB flush if

. start_addr and size are both O

- sizeisequal to 2" XLEN-1

8.1. Function: Remote FENCE.I (FID #0)

struct sbiret sbi_remote_fence_i(unsigned long hart_mask,
unsigned long hart_mask_base)

Instructs remote harts to execute FENCE. I instruction.
The possible error codes returned in sbiret.error are shown in the Table 9 below.

Table 9. RFENCE Remote FENCE.I Errors
Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

8.2. Function: Remote SFENCE.VMA (FID #1)

struct sbiret sbi_remote_sfence_vma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size.

The possible error codes returned in sbiret.error are shown in the Table 10 below.

Table 10. RFENCE Remote SFENCE.VMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI_ERR_INVALID _ADDRESS start_addr or size is not valid.

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.3. Function: Remote SFENCE.VMA with ASID (FID #2) | Page 20

8.3. Function: Remote SFENCE.VMA with ASID
(FID #2)

struct sbiret sbi_remote_sfence_vma_asid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size. This covers only the given ASID.

The possible error codes returned in sbiret.error are shown in the Table 11 below.

Table 11. RFENCE Remote SFENCE.VMA with ASID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI _ERR_INVALID ADDRESS start_addr or size is not valid

8.4. Function: Remote HFENCE.GVMA with VMID
(FID #3)

struct sbiret sbi_remote_hfence_gvma_vmid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long vmid)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of
guest physical addresses between start and size only for the given VMID. This function call is only valid
for harts implementing hypervisor extension.

The possible error codes returned in sbiret. error are shown in the Table 12 below.

Table 12. RFENCE Remote HFENCE.GVMA with VMID Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_ SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI _ERR_INVALID ADDRESS start_addr or size is not valid

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.5. Function: Remote HFENCE.GVMA (FID #4) | Page 21

8.5. Function: Remote HFENCE.GVMA (FID #4)

struct sbiret sbi_remote_hfence_gvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of
guest physical addresses between start and size for all the guests. This function call is only valid for
harts implementing hypervisor extension.

The possible error codes returned in sbiret . error are shown in the Table 13 below.

Table 13. RFENCE Remote HFENCE.GVMA Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI_ERR_INVALID ADDRESS start_addr or size is not valid

8.6. Function: Remote HFENCE. VWMA with ASID
(FID #5)

struct sbiret sbi_remote_hfence_vvma_asid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more HFENCE. VVMA instructions, covering the range of
guest virtual addresses between start and size for the given ASID and current VMID (in hgatp CSR) of
calling hart. This function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret . error are shown in the Table 14 below.

Table 14. RFENCE Remote HFENCE.VVMA with ASID Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI_ERR_INVALID ADDRESS start_addr or size is not valid

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.7. Function: Remote HFENCE.VVMA (FID #6) | Page 22

8.7. Function: Remote HFENCE.VVMA (FID #0)

struct sbiret sbi_remote_hfence_vvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . VVMA instructions, covering the range of
guest virtual addresses between start and size for current VMID (in hgatp CSR) of calling hart. This
function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret. error are shown in the Table 15 below.

Table 15. RFENCE Remote HFENCE.VVMA Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_ SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI _ERR_INVALID ADDRESS start_addr or size is not valid.

8.8. Function Listing

Table 16. RFENCE Function List

Function Name SBI Version FID EID

sbi_remote fence i 0.2 0 0x52464E43
sbi_remote sfence vma 0.2 1 0x52464E43
sbi remote sfence vma _asid 0.2 2 0x52464E43
sbi_remote_hfence_gvma_vmid 0.2 3 0x52464E43
sbi_remote_hfence_gvma 0.2 4 0x52464E43
sbi_remote hfence vvma_ asid 0.2 5 0x52464E43
sbi_remote hfence vvma 0.2 6 0x52464E43

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 9. Hart State Management Extension (EID #0x48534D "HSM") | Page 23

Chapter 9. Hart State Management
Extension (EID #0x48534D "HSM")

The Hart State Management (HSM) Extension introduces a set of hart states and a set of functions
which allow the supervisor-mode software to request a hart state change.

The Table 17 shown below describes all possible HSM states along with a unique HSM state id for

each state:

Table 17. HSM Hart States

State ID State Name

0 STARTED

1 STOPPED

2 START _PENDING

3 STOP_PENDING

4 SUSPENDED

5 SUSPEND PENDING
6 RESUME _PENDING

Description

The hart is physically powered-up and executing
normally.

The hart is not executing in supervisor-mode or any
lower privilege mode. It is probably powered-down by the
SBI implementation if the underlying platform has a
mechanism to physically power-down harts.

Some other hart has requested to start (or power-up) the
hart from the STOPPED state and the SBI
implementation is still working to get the hart in the
STARTED state.

The hart has requested to stop (or power-down) itself
from the STARTED state and the SBI implementation is
still working to get the hart in the STOPPED state.

This hart is in a platform specific suspend (or low power)
state.

The hart has requested to put itself in a platform specific
low power state from the STARTED state and the SBI
implementation is still working to get the hart in the
platform specific SUSPENDED state.

An interrupt or platform specific hardware event has
caused the hart to resume normal execution from the
SUSPENDED state and the SBI implementation is still
working to get the hart in the STARTED state.

At any point in time, a hart should be in one of the above mentioned hart states. The hart state
transitions by the SBI implementation should follow the state machine shown below in the Figure 3.

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.1. Function: HART start (FID #0) | Page 24

STOPPED
sbi hart start()
SBI implementation called by some
stopping hart other hart
STOP_PENDING START_PENDING
. A . .
sbi_hart_stop() SBIl implementation
called b starting hart
hart itself
+—
STARTED
—P
sbi hart suspend()
SBI implementation called by
resuming hart hart itself
RESUME_PENDING SUSPEND_PENDING
Hart recieved SBIl implementation
an interrupt or suspending hart
platform event
SUSPENDED

Figure 3. SBI HSM State Machine

A platform can have multiple harts grouped into hierarchical topology groups (namely cores, clusters,
nodes, etc) with separate platform specific low-power states for each hierarchical group. These
platform specific low-power states of hierarchical topology groups can be represented as platform
specific suspend states of a hart. An SBI implementation can utilize the suspend states of higher
topology groups using one of the following approaches:

1. Platform-coordinated: In this approach, when a hart becomes idle the supervisor-mode power-
managment software will request deepest suspend state for the hart and higher topology groups.
An SBI implementation should choose a suspend state at higher topology group which is:

a. Not deeper than the specified suspend state
b. Wake-up latency is not higher than the wake-up latency of the specified suspend state

2. OS-inititated: In this approach, the supervisor-mode power-managment software will directly
request a suspend state for higher topology group after the last hart in that group becomes idle.
When a hart becomes idle, the supervisor-mode power-managment software will always select
suspend state for the hart itself but it will select a suspend state for a higher topology group only if
the hart is the last running hart in the group. An SBI implementation should:

a. Never choose a suspend state for higher topology group different from the specified suspend
state

b. Always prefer most recent suspend state requested for higher topology group
9.1. Function: HART start (FID #0)

struct sbiret sbi_hart_start(unsigned long hartid,
unsigned long start_addr,
unsigned long opaque)

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.2. Function: HART stop (FID #1) | Page 25

Request the SBI implementation to start executing the target hart in supervisor-mode at address
specified by start_addr parameter with specific registers values described in the Table 18 below.

Table 18. HSM Hart Start Register State

Register Name Register Value
satp @)

sstatus.SIE o)

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

This call is asynchronous — more specifically, the sbi_hart_start () may return before the target
hart starts executing as long as the SBI implementation is capable of ensuring the return code is
accurate. If the SBI implementation is a platform runtime firmware executing in machine-mode (M-
mode) then it MUST configure PMP and other M-mode state before transferring control to supervisor-
mode software.

The hartid parameter specifies the target hart which is to be started.

The start_addr parameter points to a runtime-specified physical address, where the hart can start
executing in supervisor-mode.

The opaque parameter is a XLEN-bit value which will be set in the a1 register when the hart starts
executing at start_addr.

The possible error codes returned in sbiret. error are shown in the Table 19 below.

Table 19. HSM Hart Start Errors

Error code Description
SBI_SUCCESS Hart was previously in stopped state. It will start executing from
start_addr.

SBI_ERR_INVALID_ADDRESS start_addr is not valid possibly due to following reasons:
* It is not a valid physical address.
* The address is prohibited by PMP to run in supervisor mode.

SBI_ERR_INVALID_PARAM hartid is not a valid hartid as corresponding hart cannot started
in supervisor mode.

SBI_ERR_ALREADY_AVAILAB The given hartid is already started.
LE

SBI_ERR_FAILED The start request failed for unknown reasons.

9.2. Function: HART stop (FID #1)

struct sbiret sbi_hart_stop(void)

Request the SBI implementation to stop executing the calling hart in supervisor-mode and return it’s

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.3. Function: HART get status (FID #2) | Page 26

ownership to the SBI implementation. This call is not expected to return under normal conditions.
The sbi_hart_stop() must be called with the supervisor-mode interrupts disabled.

The possible error codes returned in sbiret. error are shown in the Table 20 below.

Table 20. HSM Hart Stop Errors
Error code Description

SBI ERR_FAILED Failed to stop execution of the current hart

9.3. Function: HART get status (FID #2)

struct sbiret sbi_hart_get_status(unsigned long hartid)

Get the current status (or HSM state id) of the given hart in sbiret.value, or an error through

sbiret.error.

The hartid parameter specifies the target hart for which status is required.

The possible status (or HSM state id) values returned in sbiret.value are described in Table 17.
The possible error codes returned in sbiret. error are shown in the Table 21 below.

Table 21. HSM Hart Get Status Errors
Error code Description

SBI_ERR_INVALID_PARAM The given hartid is not valid

The harts may transition HSM states at any time due to any concurrent sbi_hart_start () or
sbi_hart_stop() or sbi_hart_suspend() calls, the return value from this function may not
represent the actual state of the hart at the time of return value verification.

9.4. Function: HART suspend (FID #3)

struct sbiret sbi_hart_suspend(uint32_t suspend_type,
unsigned long resume_addr,
unsigned long opaque)

Request the SBI implementation to put the calling hart in a platform specific suspend (or low power)
state specified by the suspend_type parameter. The hart will automatically come out of suspended
state and resume normal execution when it receives an interrupt or platform specific hardware event.

The platform specific suspend states for a hart can be either retentive or non-retentive in nature. A
retentive suspend state will preserve hart register and CSR values for all privilege modes whereas a
non-retentive suspend state will not preserve hart register and CSR values.

Resuming from a retentive suspend state is straight forward and the supervisor-mode software will see
SBI suspend call return without any failures. The resume_addr parameter is unused during retentive

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.4. Function: HART suspend (FID #3) | Page 27
suspend.

Resuming from a non-retentive suspend state is relatively more involved and requires software to
restore various hart registers and CSRs for all privilege modes. Upon resuming from non-retentive
suspend state, the hart will jump to supervisor-mode at address specified by resume_addr with
specific registers values described in the Table 22 below.

Table 22. HSM Hart Resume Register State

Register Name Register Value
satp 0

sstatus.SIE o)

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

The suspend_type parameter is 32 bits wide and the possible values are shown in Table 23 below.

Table 23. HSM Hart Suspend Types

Value Description

0x00000000 Default retentive suspend
0x00000001 - OxOFFFFFFF Reserved for future use
0x10000000 - Ox7FFFFFFF Platform specific retentive suspend

0x80000000 Default non-retentive suspend
0x80000001 - Ox8FFFFFFF Reserved for future use

0x90000000 - Platform specific non-retentive suspend
OxFFFFFFFF

> OxFFFFFFFF Reserved

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a non-retentive suspend.

The opaque parameter is a XLEN-bit value which will be set in the a1 register when the hart resumes
execution at resume_addr after a non-retentive suspend.

The possible error codes returned in sbiret. error are shown in the Table 24 below.

Table 24. HSM Hart Suspend Errors
Error code Description

SBI_SUCCESS Hart has suspended and resumed back successfully from a
retentive suspend state.

SBI_ERR_INVALID PARAM suspend_type is not valid.
SBI_ERR_NOT_SUPPORTED suspend_type is valid but not implemented.

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.5. Function Listing | Page 28

Error code Description

SBI_ERR_INVALID_ADDRESS resume_addr is not valid possibly due to following reasons:
* It is not a valid physical address.
* The address is prohibited by PMP to run in supervisor mode.

SBI_ERR_FAILED The suspend request failed for unknown reasons.

9.5. Function Listing

Table 25. HSM Function List

Function Name SBI Version FID EID

sbi_ hart start 0.2 0 0x48534D
sbi_hart_stop 0.2 1 0x48534D
sbi_hart_get_status 0.2 2 0x48534D
sbi_hart_suspend 0.3 3 0x48534D

RISC-V Supervisor Binary Interface Specification | © RISC-V

10.1. Function: System reset (FID #0) | Page 29

Chapter 10. System Reset Extension (EID
HOx53525354 "SRST")

The System Reset Extension provides a function that allow the supervisor software to request system-
level reboot or shutdown. The term "system" refers to the world-view of supervisor software and the
underlying SBI implementation could be machine mode firmware or hypervisor.

10.1. Function: System reset (FID #0)

struct sbiret sbi_system_reset(uint32_t reset_type, uint32_t reset_reason)

Reset the system based on provided reset_type and reset_reason. This is a synchronous call and
does not return if it succeeds.

The reset_type parameter is 32 bits wide and it’s possible values are shown in the Table 26 below.

Table 26. SRST System Reset Types

Value Description

0x00000000 Shutdown

0x00000001 Cold reboot

0x00000002 Warm reboot

0x00000003 - Reserved for future use

OxEFFFFFFF

O0xFO000000 - Vendor or platform specific reset type
OxFFFFFFFF

> OxFFFFFFFF Reserved

The reset_reason is an optional parameter representing the reason for system reset. This parameter
is 32 bits wide with possible values shown in the Table 27 below

Table 27. SRST System Reset Reasons

Value Description

0x00000000 No reason

0x00000001 System failure

0x00000002 - Reserved for future use

OxDFFFFFFF

OxEO000000 - SBI implementation specific reset reason
OxEFFFFFFF

0xFO000000 - Vendor or platform specific reset reason
OxFFFFFFFF

> OxFFFFFFFF Reserved

RISC-V Supervisor Binary Interface Specification | © RISC-V

10.2. Function Listing | Page 30

When supervisor software is running natively, the SBI implementation is machine mode firmware. In
this case, shutdown is equivalent to physical power down of the entire system and cold reboot is
equivalent to physical power cycle of the entire system. Further, warm reboot is equivalent to a power
cycle of main processor and parts of the system but not the entire system. For example, on a server
class system with a BMC (board management controller), a warm reboot will not power cycle the BMC
whereas a cold reboot will definitely power cycle the BMC.

When supervisor software is running inside a virtual machine, the SBI implementation is a
hypervisor. The shutdown, cold reboot and warm reboot will behave functionally the same as the
native case but might not result in any physical power changes.

The possible error codes returned in sbiret.error are shown in the Table 28 below.

Table 28. SRST System Reset Errors

Error code Description

SBI_ERR_INVALID PARAM reset_type or reset_reason is not valid.
SBI_ERR_NOT_SUPPORTED reset_type is valid but not implemented.

SBI_ERR_FAILED Reset request failed for unknown reasons.

10.2. Function Listing

Table 29. SRST Function List
Function Name SBI Version FID EID
sbi_system_reset 0.3 0 0x53525354

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.1. Event: Hardware general events (Type #0) | Page 31

Chapter 11. Performance Monitoring Unit
Extension (EID #0x504D55 "PMU")

The RISC-V hardware performance counters such as mcycle, minstret, and mhpmcounterX CSRs are
accessible as read-only from supervisor-mode using cycle, instret, and hpmcounterX CSRs. The SBI
performance monitoring unit (PMU) extension is an interface for supervisor-mode to configure and
use the RISC-V hardware performance counters with assistance from the machine-mode (or
hypervisor-mode). These hardware performance counters can only be started, stopped, or configured
from machine-mode using mcountinhibit and mhpmeventX CSRs. Due to this, a machine-mode SBI
implementation may choose to disallow SBI PMU extension if mcountinhibit CSR is not
implemented by the RISC-V platform.

A RISC-V platform generally supports monitoring of various hardware events using a limited number
of hardware performance counters which are up to 64 bits wide. In addition, a SBI implementation
can also provide firmware performance counters which can monitor firmware events such as number
of misaligned load/store instructions, number of RFENCESs, number of IPIs, etc. The firmware
counters are always 64 bits wide.

The SBI PMU extension provides:

1. An interface for supervisor-mode software to discover and configure per-HART
hardware/firmware counters
2. Atypical perf compatible interface for hardware/firmware performance counters and events
3. Full access to microarchitecture’s raw event encodings
To define SBI PMU extension calls, we first define important entities counter_idx, event_idx, and
event_data. The counter_idx is a logical number assigned to each hardware/firmware counter. The

event_idx represents a hardware (or firmware) event whereas the event_data is 64 bits wide and
represents additional configuration (or parameters) for a hardware (or firmware) event.

The event_idx is a 20 bits wide number encoded as follows:

event_idx[19:16] = type
event_idx[15:0] = code

11.1. Event: Hardware general events (Type #0)

The event_idx.type (i.e. event type) should be 0x0 for all hardware general events and each

hardware general event is identified by an unique event_idx.code (i.e. event code) described in the
Table 30 below.

Table 30. PMU Hardware Events

General Event Name Code Description

SBI PMU_ HW _ NO_ EVENT 0 Unused event because event_idx
cannot be zero

RISC-V Supervisor Binary Interface Specification | © RISC-V

https://en.wikipedia.org/wiki/Perf_(Linux)

11.2. Event: Hardware cache events (Type #1) | Page 32

General Event Name Code Description

SBI _PMU_HW_CPU_CYCLES 1 Event for each CPU cycle

SBI _PMU_HW _INSTRUCTIONS 2 Event for each completed
instruction

SBI_PMU_HW_CACHE_REFERENCES Event for cache hit

SBI_PMU_HW_ CACHE_MISSES Event for cache miss
SBI_PMU_HW _BRANCH INSTRUCTIONS
SBI_PMU_HW _BRANCH MISSES

SBI_PMU_HW_BUS_CYCLES

Event for a branch instruction
Event for a branch misprediction

Event for each BUS cycle

o N oo g > W

SBI PMU HW STALLED CYCLES FRONTEND Event for a stalled cycle in

microarchitecture frontend

SBI PMU_ HW STALLED CYCLES BACKEND 9 Event for a stalled cycle in
microarchitecture backend

SBI_PMU_HW _ REF_ CPU_CYCLES 10 Event for each reference CPU
cycle

NOTE: The event_data (i.e. event data) is unused for hardware general events and all non-zero
values of event_data are reserved for future use.

NOTE: A RISC-V platform might halt the CPU clock when it enters WAIT state using the WFI
instruction or enters platform specific SUSPEND state using the SBI HSM HART suspend call.

NOTE: The SBI_PMU_HW _CPU_CYCLES event counts CPU clock cycles as counted by the cycle
CSR. These may be variable frequency cycles, and are not counted when the CPU clock is halted.

NOTE: The SBI_PMU_HW _REF_CPU_CYCLES counts fixed-frequency clock cycles while the CPU
clock is not halted. The fixed-frequency of counting might, for example, be the same frequency at
which the time CSR counts.

NOTE: The SBI_PMU_HW _BUS_CYCLES counts fixed-frequency clock cycles. The fixed-frequency
of counting might be the same frequency at which the time CSR counts, or may be the frequency of
the clock at the boundary between the HART (and it’s private caches) and the rest of the system.

11.2. Event: Hardware cache events (Type #1)

The event_idx.type (i.e. event type) should be 0x1 for all hardware cache events and each hardware
cache event is identified by an unique event_idx. code (i.e. event code) which is encoded as follows:

event_idx.code[15:3] = cache_id
event_idx.code[2:1] = op_id
event_idx.code[0:0]

result_id

Below tables show possible values of: event_idx.code.cache_id (i.e. cache eventid),
event_idx.code.op_id (i.e. cache operation id) and event_idx.code.result_id (i.e. cache result

id).

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.3. Event: Hardware raw events (Type #2) | Page 33

Table 31. PMU Cache Event ID

Cache Event Name Event ID Description

SBI _PMU_HW _ CACHE_L1D 0 Levell data cache event
SBI _PMU_HW _CACHE LIl 1 Levell instruction cache event
SBI PMU_ HW CACHE LL 2 Last level cache event

SBI PMU HW CACHE DTLB 3 Data TLB event

SBI PMU_HW _ CACHE ITLB 4 Instruction TLB event

SBI _PMU_HW _CACHE_ BPU 5 Branch predictor unit event
SBI _PMU_HW _ CACHE_ NODE 6 NUMA node cache event
Table 32. PMU Cache Operation ID

Cache Operation Name Operation ID Description

SBI _PMU_HW _CACHE_OP_READ 0 Read cache line

SBI _PMU_HW _ CACHE_OP_WRITE 1 Write cache line

SBI _PMU_HW _ CACHE_ OP_PREFETCH 2 Prefetch cache line

Table 33. PMU Cache Operation Result ID

Cache Result Name Result ID Description

SBI PMU_HW _ CACHE_ RESULT_ACCESS O Cache access

SBI PMU_ HW _ CACHE_ RESULT_MISS 1 Cache miss

NOTE: The event_data (i.e. event data) is unused for hardware cache events and all non-zero values
of event_data are reserved for future use.

11.3. Event: Hardware raw events (Type #2)

The event_idx.type (i.e. event type) should be 0x2 for all hardware raw events and event_idx. code
(i.e. event code) should be zero.

On RISC-V platform with 32 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 32-bit value to to be programmed in the mhpmeventX CSR.

On RISC-V platform with 64 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 48-bit value to to be programmed in the lower 48-bits of mhpmeventX CSR
and the SBI implementation shall determine the value to be programmed in the upper 16 bits of
mhpmeventX CSR.

Note: The RISC-V platform hardware implementation may choose to define the expected value to be
written to mhpmeventX CSR for a hardware event. In case of hardware general/cache events, the RISC-
V platform hardware implementation may use the zero-extended event_idx as the expected value for
simplicity.

RISC-V Supervisor Binary Interface Specification | © RISC-V

114. Event: Firmware events (Type #15) | Page 34

11.4. Event: Firmware events (Type #15)

The event_idx. type (i.e. event type) should be 0xf for all firmware events and each firmware event
is identified by an unique event_idx.code (i.e. event code) described in the Table 34 below.
Table 34. PMU Firmware Events
Firmware Event Name Code Description
SBI_PMU_ FW_MISALIGNED LOAD 0 Misaligned load trap event
SBI_PMU_FW_MISALIGNED STORE

—_

Misaligned store trap event

SBI _PMU_ FwW_ ACCESS LOAD 2 Load access trap event

SBI PMU_ FW_ ACCESS STORE 3 Store access trap event

SBI_PMU_FW _ILLEGAL_ INSN 4 Illegal instruction trap event

SBI PMU_FwW _ SET_ TIMER 5 Set timer event

SBI _PMU_FW _ IPI_SENT 6 Sent IPI to other HART event

SBI _PMU_FW IPI _RECEIVED 7 Received IPI from other HART
event

SBI_ PMU_FW_FENCE I SENT 8 Sent FENCE.I request to other
HART event

SBI PMU_FW_ FENCE I RECEIVED 9 Received FENCE.I request from
other HART event

SBI PMU_FW_ SFENCE_ VMA SENT 10 Sent SFENCE.VMA request to
other HART event

SBI_PMU_FW_SFENCE VMA RECEIVED 11 Received SFENCE.VMA request
from other HART event

SBI PMU_ FW _ SFENCE VMA ASID SENT 12 Sent SFENCE.VMA with ASID
request to other HART event

SBI_PMU_FW_SFENCE VMA ASID RECEIVE 13 Received SFENCE.VMA with

D ASID request from other HART
event

SBI_PMU_FW_HFENCE GVMA SENT 14 Sent HFENCE.GVMA request to
other HART event

SBI _PMU_FW_ HFENCE_ GVMA_ RECEIVED 15 Received HFENCE.GVMA request
from other HART event

SBI_PMU_FW_HFENCE GVMA VMID SENT 16 Sent HFENCE.GVMA with VMID
request to other HART event

SBI PMU_FW_HFENCE_ GVMA _ VMID RECEI 17 Received HFENCE.GVMA with

VED VMID request from other HART
event

SBI_PMU_FW_ HFENCE VVMA SENT 18 Sent HFENCE.VVMA request to
other HART event

SBI _PMU_FW_ HFENCE VVMA RECEIVED 19 Received HFENCE.VVMA request

from other HART event

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.5. Function: Get number of counters (FID #0) | Page 35

Firmware Event Name Code Description

SBI_PMU_FW_ HFENCE VVMA ASID SENT 20 Sent HFENCE.VVMA with ASID
request to other HART event

SBI_PMU_FW_HFENCE_VVMA_ASID_RECEIV 21 Received HFENCE.VVMA with

ED ASID request from other HART
event

NOTE: the event_data (i.e. event data) is unused for firmware events and all non-zero values of

event_data are reserved for future use.

11.5. Function: Get number of counters (FID #0O)

struct sbiret sbi_pmu_num_counters()

Returns the number of counters (both hardware and firmware) in sbiret.value and always returns
SBI_SUCCESS in sbiret.error.

11.6. Function: Get details of a counter (FID #1)

struct sbiret sbi_pmu_counter_get_info(unsigned long counter_idx)
Get details about the specified counter such as underlying CSR number, width of the counter, type of
counter hardware/firmware, etc.
The counter_info returned by this SBI call is encoded as follows:
counter_info[11:0] = CSR (12bit CSR number)
counter_info[17:12] = Width (One less than number of bits in CSR)

counter_info [XLEN-2:18] = Reserved for future use
counter_info [XLEN-1] = Type (0 = hardware and 1 = firmware)

If counter_info.type == 1 then counter_info.csr and counter_info.width should be ignored.
Returns the counter_info described above in sbiret.value.
The possible error codes returned in sbiret.error are shown in the Table 35 below.

Table 35. PMU Counter Get Info Errors

Error code Description
SBI_SUCCESS counter_info read successfully.
SBI_ERR_INVALID PARAM counter_idx points to an invalid counter.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.7. Function: Find and configure a matching counter (FID #2) | Page 36

11.7. Function: Find and configure a matching
counter (FID #2)

struct sbiret sbi_pmu_counter_config _matching(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long config_flags,
unsigned long event_idx,
uint64_t event_data)

Find and configure a counter from a set of counters which is not started (or enabled) and can monitor
the specified event. The counter_idx_base and counter_idx_mask parameters represent the set of
counters whereas the event_idx represent the event to be monitored and event_data represents any
additional event configuration.

The config_flags parameter represent additional counter configuration and filter flags. The bit
definitions of the config_flags parameter are shown in the Table 36 below.

Table 36. PMU Counter Config Match Flags

Flag Name Bits Description

SBI _PMU_CFG_FLAG_SKIP_ MATCH 0:0 Skip the counter matching

SBI_PMU_CFG_FLAG_CLEAR_VALUE 1:1 Clear (or zero) the counter
value in counter
configuration

SBI _PMU_ CFG_FLAG AUTO_START 2:2 Start the counter after
configuring a matching
counter

SBI _PMU_CFG_FLAG_SET_VUINH 3:3 Event counting inhibited
in VU-mode

SBI_PMU_CFG_FLAG_SET_VSINH 4:4 Event counting inhibited
in VS-mode

SBI _PMU_CFG_FLAG_SET_UINH 5:5 Event counting inhibited
in U-mode

SBI _PMU_ CFG_FLAG_SET_ SINH 6:6 Event counting inhibited
in S-mode

SBI _PMU_ CFG_FLAG SET_ MINH 77 Event counting inhibited
in M-mode

RESERVED 8:(XLEN-1) All non-zero values are

reserved for future use

NOTE: When SBI_PMU_CFG_FLAG_SKIP_MATCH is setin config_flags, the SBI
implementation will unconditionally select the first counter from the set of counters specified by the
counter_idx_base and counter_idx_mask.

NOTE: The SBI_PMU_CFG_FLAG_AUTO_START flagin config_flags has noimpact on the

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.8. Function: Start a set of counters (FID #3) | Page 37
counter value.

NOTE: The config_flags[3:7] bits are event filtering hints so these can be ignored or overridden by
the SBI implementation for security concerns or due to lack of event filtering support in the
underlying RISC-V platform.

Returns the counter_idx in sbiret.value upon success.
In case of failure, the possible error codes returned in sbiret.error are shown in the Table 37 below.

Table 37. PMU Counter Config Match Errors

Error code Description
SBI_SUCCESS counter found and configured successfully.
SBI _ERR_INVALID PARAM set of counters has an invalid counter.

SBI _ERR_NOT_ SUPPORTED none of the counters can monitor specified event.

11.8. Function: Start a set of counters (FID #3)

struct sbiret sbi_pmu_counter_start(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long start_flags,
uint64_t initial_value)

Start or enable a set of counters on the calling HART with the specified initial value. The
counter_idx_base and counter_idx_mask parameters represent the set of counters whereas the
initial_value parameter specifies the initial value of the counter.

The bit definitions of the start_flags parameter are shown in the Table 38 below.

Table 38. PMU Counter Start Flags

Flag Name Bits Description

SBI_PMU_START_SET_INIT_ VALUE 0:0 Set the value of counters
based on the initial_value
parameter

RESERVED L:(XLEN-1) All non-zero values are

reserved for future use

NOTE: When SBI_PMU_START_SET_INIT_VALUE is not set in start_flags, the counter value
will not be modified and event counting will start from current counter value.

The possible error codes returned in sbiret.error are shown in the Table 39 below.

Table 39. PMU Counter Start Errors
Error code Description

SBI_SUCCESS counter started successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.9. Function: Stop a set of counters (FID #4) | Page 38

Error code Description

SBI _ERR_INVALID PARAM some of the counters specified in parameters are
invalid.

SBI_ERR_ALREADY_STARTED some of the counters specified in parameters are
already started.

11.9. Function: Stop a set of counters (FID #4)

struct sbiret sbi_pmu_counter_stop(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long stop_flags)

Stop or disable a set of counters on the calling HART. The counter_idx_base and

counter_idx_mask parameters represent the set of counters. The bit definitions of the stop_flags
parameter are shown in the Table 40 below.

Table 40. PMU Counter Stop Flags

Flag Name Bits Description

SBI_PMU_STOP_FLAG_RESET 0:0 Reset the counter to event
mapping.

RESERVED L(XLEN-1) All non-zero values are

reserved for future use

The possible error codes returned in sbiret. error are shown in the Table 41 below.

Table 41. PMU Counter Stop Errors

Error code Description

SBI_SUCCESS counter stopped successfully.

SBI _ERR_INVALID PARAM some of the counters specified in parameters are
invalid.

SBI_ERR_ALREADY_STOPPED some of the counters specified in parameters are
already stopped.

11.10. Function: Read a firmware counter (FID #5)

struct sbiret sbi_pmu_counter_fw_read(unsigned long counter_idx)

Provide the current value of a firmware counter in sbiret.value.
The possible error codes returned in sbiret . error are shown in the Table 42 below.

Table 42. PMU Counter Firmware Read Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.11. Function Listing | Page 39

Error code Description
SBI_SUCCESS firmware counter read successfully.
SBI _ERR_INVALID PARAM counter_idx points to a hardware counter or an

invalid counter.

11.11. Function Listing

Table 43. PMU Function List

Function Name SBI Version FID EID

sbi_pmu_num_ counters 0.3 0 0x504D55
sbi_pmu_counter_get_info 0.3 1 0x504D55
sbi_pmu_counter_config_matching 0.3 2 0x504D55
sbi_pmu_counter_start 0.3 3 0x504D55
sbi_pmu_counter_stop 0.3 4 0x504D55
sbi_pmu_counter_fw_read 0.3 5 0x504D55

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 12. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF) | Page 40

Chapter 12. Experimental SBI Extension
Space (EIDs #0x08000000 -
HOXO8FFFFFF)

No management.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 13. Vendor-Specific SBI Extension Space (EIDs #0x09000000 - #0xO9FFFFFF) | Page 41

Chapter 13. Vendor-Specific SBI Extension
Space (EIDs #0x09000000 -
HOXO9OFFFFFF)

Low bits from mvendorid.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 14. Firmware Specific SBI Extension Space (EIDs #0xOA000000 - #0xOAFFFFFF) | Page 42

Chapter 14. Firmware Specific SB
Extension Space (EIDs #Ox0OA000000 -
HOXOAFFFFFF)

Low bits is SBI implementation ID. The firmware specific SBI extensions are for SBI implementations.
It provides firmware specific SBI functions which are defined in the external firmware specification.

RISC-V Supervisor Binary Interface Specification | © RISC-V

	RISC-V Supervisor Binary Interface Specification
	Table of Contents
	Preamble
	Copyright and license information
	Change Log
	Version 1.0.0
	Version 1.0-rc3
	Version 1.0-rc2
	Version 1.0-rc1
	Version 0.3.0
	Version 0.3-rc1
	Version 0.2

	Chapter 1. Introduction
	Chapter 2. Terms and Abbreviations
	Chapter 3. Binary Encoding
	Chapter 4. Base Extension (EID #0x10)
	4.1. Function: Get SBI specification version (FID #0)
	4.2. Function: Get SBI implementation ID (FID #1)
	4.3. Function: Get SBI implementation version (FID #2)
	4.4. Function: Probe SBI extension (FID #3)
	4.5. Function: Get machine vendor ID (FID #4)
	4.6. Function: Get machine architecture ID (FID #5)
	4.7. Function: Get machine implementation ID (FID #6)
	4.8. Function Listing
	4.9. SBI Implementation IDs

	Chapter 5. Legacy Extensions (EIDs #0x00 - #0x0F)
	5.1. Extension: Set Timer (EID #0x00)
	5.2. Extension: Console Putchar (EID #0x01)
	5.3. Extension: Console Getchar (EID #0x02)
	5.4. Extension: Clear IPI (EID #0x03)
	5.5. Extension: Send IPI (EID #0x04)
	5.6. Extension: Remote FENCE.I (EID #0x05)
	5.7. Extension: Remote SFENCE.VMA (EID #0x06)
	5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
	5.9. Extension: System Shutdown (EID #0x08)
	5.10. Function Listing

	Chapter 6. Timer Extension (EID #0x54494D45 "TIME")
	6.1. Function: Set Timer (FID #0)
	6.2. Function Listing

	Chapter 7. IPI Extension (EID #0x735049 "sPI: s-mode IPI")
	7.1. Function: Send IPI (FID #0)
	7.2. Function Listing

	Chapter 8. RFENCE Extension (EID #0x52464E43 "RFNC")
	8.1. Function: Remote FENCE.I (FID #0)
	8.2. Function: Remote SFENCE.VMA (FID #1)
	8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
	8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
	8.5. Function: Remote HFENCE.GVMA (FID #4)
	8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
	8.7. Function: Remote HFENCE.VVMA (FID #6)
	8.8. Function Listing

	Chapter 9. Hart State Management Extension (EID #0x48534D "HSM")
	9.1. Function: HART start (FID #0)
	9.2. Function: HART stop (FID #1)
	9.3. Function: HART get status (FID #2)
	9.4. Function: HART suspend (FID #3)
	9.5. Function Listing

	Chapter 10. System Reset Extension (EID #0x53525354 "SRST")
	10.1. Function: System reset (FID #0)
	10.2. Function Listing

	Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")
	11.1. Event: Hardware general events (Type #0)
	11.2. Event: Hardware cache events (Type #1)
	11.3. Event: Hardware raw events (Type #2)
	11.4. Event: Firmware events (Type #15)
	11.5. Function: Get number of counters (FID #0)
	11.6. Function: Get details of a counter (FID #1)
	11.7. Function: Find and configure a matching counter (FID #2)
	11.8. Function: Start a set of counters (FID #3)
	11.9. Function: Stop a set of counters (FID #4)
	11.10. Function: Read a firmware counter (FID #5)
	11.11. Function Listing

	Chapter 12. Experimental SBI Extension Space (EIDs #0x08000000 - #0x08FFFFFF)
	Chapter 13. Vendor-Specific SBI Extension Space (EIDs #0x09000000 - #0x09FFFFFF)
	Chapter 14. Firmware Specific SBI Extension Space (EIDs #0x0A000000 - #0x0AFFFFFF)

