
Lightweight Fault Isolation: Practical, Efficient, and Secure

Software Sandboxing

Zachary Yedidia

Stanford University

1/17

Untrusted Code

Today’s systems increasingly run untrusted code.

• Cloud machines and serverless (VMs, containers, WebAssembly).

• Kernels (eBPF).

• Web browsers (JavaScript, WebAssembly).

• Smart contracts (WebAssembly, EVM).

Applications need lightweight solutions with fast context switch times (single process).

Goal: enforce that untrusted programs

• cannot read/write outside sandbox.

• cannot directly perform system calls.

proc

runtime

kernel

application

proc proc

2/17

Software Sandboxing: Language-based Security (LBS)

Native

source language

compile

run (unsafe)

.c

.elf

3/17

Software Sandboxing: Language-based Security (LBS)

Native WebAssembly-LLVM

source language

compile

verify (~2K LoC)

compile (~2M LoC)

~20% overhead
~43,000 sandboxes

run (safe??)

.c

.wasm

.wasm

.elf

source language

compile

run (unsafe)

.c

.elf

3/17

Software Sandboxing: Language-based Security (LBS)

Native WebAssembly-LLVM

source language

compile

verify (~2K LoC)

compile (~2M LoC)

~20% overhead
~43,000 sandboxes

run (safe??)

.c

.wasm

.wasm

.elf

source language

compile

run (unsafe)

.c

.elf

Problem: trusting a language verifier and compiler can be dangerous.

3/17

Software Sandboxing: Language-based Security (LBS)

Native WebAssembly-LLVM

source language

compile

verify (~2K LoC)

compile (~2M LoC)

~20% overhead
~43,000 sandboxes

run (safe??)

.c

.wasm

.wasm

.elf

source language

compile

run (unsafe)

.c

.elf

WebAssembly-Cranelift

source language

compile

verify (~2K LoC)

compile (~200K LoC)

~70% overhead
~43,000 sandboxes

run (safe?)

.c

.wasm

.wasm

.elf

Problem: tradeoff between performance and security.

3/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

4/17

Are Secure Compilers Secure?

Conclusion: we need better security!

→ and we can get better performance too.

4/17

Software Sandboxing: Software Fault Isolation (SFI)

SFI (Wahbe et al., SOSP ’93): Verify machine code.

source language

verify

compile

instrument

run

Classic SFI

.c

.s

.elf

.elf

5/17

Software Sandboxing: Software Fault Isolation (SFI)

5/17

Software Sandboxing: Software Fault Isolation (SFI)

5/17

Software Sandboxing: Software Fault Isolation (SFI)

Presenting Lightweight Fault Isolation: low overhead, secure, scalable, simple.

5/17

Software Sandboxing: Software Fault Isolation (SFI)

Presenting Lightweight Fault Isolation: low overhead, secure, scalable, simple.

5/17

Software Sandboxing: Software Fault Isolation (SFI)

Already using WebAssembly? You can run WebAssembly inside LFI!

5/17

LFI Principles

128MiB

code data

4GiB

48KiB

......

Principles:

• Use 4GiB sandboxes combined with instructions to operate on 32-bit values.

• Works without modification to existing compilers.

→ just reserve a few registers (x18 and x21) when compiling.

→ can work with any compiler that produces GNU assembly.

• Every address in the sandbox is a valid branch target (no aligned bundles).

→ helps simplicity, code size, running time, and Spectre-safety.

6/17

Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding: misalignment traps.

→ Consistent disassembly without aligned bundles.

• 32 64-bit registers (x0-x30, sp).

• Stack pointer register (sp).

• Dedicated return address register (x30).

→ Easy to reserve registers.

• 32-bit register subsets (w0-w30, wsp).

• A 32-bit addressing mode.

→ Fast operations for 4GiB sandboxes.

7/17

Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding: misalignment traps.

→ Consistent disassembly without aligned bundles.

• 32 64-bit registers (x0-x30, sp).

• Stack pointer register (sp).

• Dedicated return address register (x30).

→ Easy to reserve registers.

• 32-bit register subsets (w0-w30, wsp).

• A 32-bit addressing mode.

→ Fast operations for 4GiB sandboxes.

7/17

Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding: misalignment traps.

→ Consistent disassembly without aligned bundles.

• 32 64-bit registers (x0-x30, sp).

• Stack pointer register (sp).

• Dedicated return address register (x30).

→ Easy to reserve registers.

• 32-bit register subsets (w0-w30, wsp).

• A 32-bit addressing mode.

→ Fast operations for 4GiB sandboxes.

7/17

Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding: misalignment traps.

→ Consistent disassembly without aligned bundles.

• 32 64-bit registers (x0-x30, sp).

• Stack pointer register (sp).

• Dedicated return address register (x30).

→ Easy to reserve registers.

• 32-bit register subsets (w0-w30, wsp).

• A 32-bit addressing mode.

→ Fast operations for 4GiB sandboxes.

7/17

Basic Implementation: Overview

LFI (ARM64)

source language

verify (~400 LoC)

compile (~2M LoC)

instrument (~2K LoC)

~7% overhead

~65,000 sandboxes

run (safe)

.c

.s

.elf

.elf

8/17

Sandbox Instrumentation and Verification

add x0, x1 , x2 // safe
b foo // safe
svc #0 (syscall) // unsafe
ldr x1, [x0] // unsafe
mov x18 , x0 // unsafe

Unsafe instruction → rejected by verifier.

ldr x1, [x18] // safe

9/17

Sandbox Instrumentation and Verification

add x0, x1 , x2 // safe
b foo // safe
svc #0 (syscall) // unsafe
ldr x1, [x0] // unsafe
mov x18 , x0 // unsafe

Unsafe instruction → rejected by verifier.

Special/reserved register (same idea from the ’93 SFI project):

• x18: always contains a valid sandbox address.

ldr x1, [x18] // safe

9/17

Sandbox Instrumentation and Verification

add x0, x1 , x2 // safe
b foo // safe
svc #0 (syscall) // unsafe
ldr x1, [x0] // unsafe
mov x18 , x0 // unsafe

Unsafe instruction → rejected by verifier.

Special/reserved register (same idea from the ’93 SFI project):

• x18: always contains a valid sandbox address.

ldr x1, [x18] // safe

9/17

Basic Implementation: Guard Instruction

mov x18 , x0 // unsafe

How to safely modify x18?

• x21: sandbox base address (aligned to 4GiB).

add x18 , x21 , w0, uxtw // safe
ldr x1, [x18] // safe

If x0 contained a valid address, the add is a mov.

Otherwise, sandbox has non-escaping undefined behavior (pointer overflow).

10/17

Basic Implementation: Guard Instruction

mov x18 , x0 // unsafe

How to safely modify x18?

• x21: sandbox base address (aligned to 4GiB).

add x18 , x21 , w0, uxtw // safe
ldr x1, [x18] // safe

If x0 contained a valid address, the add is a mov.

Otherwise, sandbox has non-escaping undefined behavior (pointer overflow).

10/17

Basic Implementation: Guard Instruction

mov x18 , x0 // unsafe

How to safely modify x18?

• x21: sandbox base address (aligned to 4GiB).

add x18 , x21 , w0, uxtw // safe

ldr x1, [x18] // safe

If x0 contained a valid address, the add is a mov.

Otherwise, sandbox has non-escaping undefined behavior (pointer overflow).

10/17

Basic Implementation: Guard Instruction

mov x18 , x0 // unsafe

How to safely modify x18?

• x21: sandbox base address (aligned to 4GiB).

add x18 , x21 , w0, uxtw // safe
ldr x1, [x18] // safe

If x0 contained a valid address, the add is a mov.

Otherwise, sandbox has non-escaping undefined behavior (pointer overflow).
10/17

Sandbox Instrumentation

Original Sandboxed

ldr x1, [x0]
add x18, x21, w0, uxtw

ldr x1, [x18]

br x0
add x18, x21, w0, uxtw

br x18

Instrumenter performs transformations; verifier is convinced of their safety.

Same invariant for sp and x30.

ret x30 // safe
ldr x1, [sp, #8] // safe

ldr x30, [sp]
ldr x30, [sp]

add x30, x21, w30, uxtw

11/17

Sandbox Instrumentation

Original Sandboxed

ldr x1, [x0]
add x18, x21, w0, uxtw

ldr x1, [x18]

br x0
add x18, x21, w0, uxtw

br x18

Instrumenter performs transformations; verifier is convinced of their safety.

Same invariant for sp and x30.

ret x30 // safe
ldr x1, [sp, #8] // safe

ldr x30, [sp]
ldr x30, [sp]

add x30, x21, w30, uxtw
11/17

Zero-instruction Guard

Key Optimization: we can perform the guard inside a load/store addressing mode.

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

12/17

Zero-instruction Guard

Key Optimization: we can perform the guard inside a load/store addressing mode.

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

ldr rt, [xN, #i]
add w22, wN, #i

ldr rt, [x21, w22, uxtw]
1

ldr rt, [xN, #i]!
add xN, xN, #i

ldr rt, [x21, wN, uxtw]
1

ldr rt, [xN], #i
ldr rt, [x21, wN, uxtw]

add xN, xN, #i
1

(other addressing modes omitted for brevity)

12/17

Evaluation: Overview

Primary metric: CPU overhead introduced by additional instructions.

Measured on SPEC 2017 benchmarks that compile with our toolchain.

→ C or C++ and compatible with Musl libc.

→ Apple M1 running Asahi Linux.

1. Comparing the effects of LFI optimizations.

2. Comparing LFI vs. AOT WebAssembly compilers that use LLVM and Cranelift.

→ WAMR: LLVM.

→ Wasm2c: LLVM.

→ Wasmtime: Cranelift.

13/17

Evaluation: LFI Overhead

0

10

20

30

40

50

502.gcc

505.m
cf

508.nam
d

510.parest

511.povray

519.lbm

520.om
netpp

523.xalancbm
k

525.x264

531.deepsjeng

538.im
agick

541.leela

544.nab

557.xz

geom
ean

LFI O0
LFI O1
LFI O2

LFI O2, no loads

P
er
ce
nt

in
cr
ea
se

ov
er

na
ti
ve

ru
nt
im

e
(L
T
O
)

Overhead on SPEC 2017 benchmarks - Apple M1

System Geomean

LFI O0 20.3%

LFI O1 7.2%

LFI O2 6.4%

LFI, no loads 1.3%

0

10

20

30

40

50

502.gcc

505.m
cf

508.nam
d

510.parest

511.povray

519.lbm

520.om
netpp

523.xalancbm
k

525.x264

531.deepsjeng

538.im
agick

541.leela

544.nab

557.xz

geom
ean

LFI O0
LFI O1
LFI O2

LFI O2, no loads

P
er
ce
nt

in
cr
ea
se

ov
er

na
ti
ve

ru
nt
im

e
(L
T
O
)

Overhead on SPEC 2017 benchmarks - Apple M1

14/17

Evaluation: LFI vs. WebAssembly

0

20

40

60

80

100

120

140

160

180

505.m
cf

508.nam
d

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz

geom
ean

Wasmtime
Wasm2c

Wasm2c (modified)
WAMR

LFI

P
er
ce
nt

in
cr
ea
se

ov
er

na
ti
ve

ru
nt
im

e
(L
T
O
)

LFI vs. Wasm on SPEC 2017 benchmarks - Apple M1

System Geomean

Wasmtime 67.1%

Wasm2ca 37.5%

Wasm2c*b 15.7%

WAMR* 18.2%

LFI 6.4%

*May optimize out loads.

aunmodified
bwith my modifications

15/17

Evaluation: Context Switch Microbenchmarks

Table 1: GCP T2A VM, 2.8 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 26 46

Linux 162 2,494

gVisor 12,019 22,899

Table 2: Apple M1, 3.2 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 22 48

Linux 129 1,504

gVisor not supported

• Linux does not provide an optimized context switch implementation1.

• gVisor incurs high overhead from the suboptimal Linux switch.

• Software protection can go beyond the limits of current hardware protection.

1seL4 does much better with a ˜400 cycle switch.

16/17

Thank you!

You can follow further development at:

https://github.com/zyedidia/lfi

See the paper for more details about optimizations, the verifier, the runtime, Spectre,

proposed designs for other architectures (x86-64 and RISC-V), and more!

Questions?

17/17

https://github.com/zyedidia/lfi

Optimization: Guard Hoisting

Introduce two more reserved registers:

• x22: always valid.

• x23: always valid.

ldr x2, [x1, #8]
str x2, [x0, #8]
ldr x2, [x1, #16]
str x2, [x0, #16]
ldr x2, [x1, #24]
str x2, [x0, #24]

add x22 , x21 , w0, uxtw
add x23 , x21 , w1, uxtw
ldr x2, [x23 , #8]
str x2, [x22 , #8]
ldr x2, [x23 , #16]
str x2, [x22 , #16]
ldr x2, [x23 , #24]
str x2, [x22 , #24]

Optimization: Stack Pointer

The sp register is assumed to always contain a valid address.

→ No guards necessary for stack accesses.

Guards are necessary when modifying sp, but not in all cases.

Original code Sandboxed equivalent

add sp, sp, #n
add w22, wsp, #n

add sp, x21, w22, uxtw

add sp, sp, #n

. . . (no branches) . . .

ldr rt, [sp, #m]

No change necessary

str rt, [sp, #n]! No change necessary

Application to other architectures: x86-64

An efficient implementation is probably possible with Intel CET and segment registers.

CET: shadow call stacks and indirect branch tracking2.

→ Ensures all indirect branches target instruction boundaries.

→ Verifier will have to check direct branches (slower verification).

Store sandbox base in %gs, reserve %r15, rewrite loads/stores:

Original code Sandboxed equivalent

mov %rxx, (...)
lea (...), %r15d

mov %rxx, %gs:r15

2Usermode IBT is not currently provided by Linux: showstopper for avoiding alignment constraints.

Application to other architectures: RISC-V

Problem 1: Compressed instructions, and no hardware control-flow protection (yet).

→ Require that compressed instructions only exist as pairs (otherwise decompress).

→ Require that branches target a 4-byte aligned block, possibly via an enforced and.

Problem 2: More difficult to operate on 32-bit subsets.

→ Zba provides add.uw rd, rs1, rs2 (zero-extends bottom 32 bits of rs2).

Store sandbox base in x21, reserve x18,

Original code Sandboxed equivalent

ld xN, n(xM)
add.uw x18, x21, xM

ld xN, n(x18)

Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

svc #0
ldr x30 , [x21 , #n]
blr x30

→ Verifier must ensure blr always follows the load.

	Appendix

