
Lightweight Fault Isolation: Practical, Efficient, and Secure

Software Sandboxing

Zachary Yedidia

Stanford University

1/37



Outline

Part 1: Overview of sandboxing techniques.

Part 2: Lightweight Fault Isolation (LFI).

Part 3: Evaluation and discussion.

2/37



Usermode Sandboxing

Applications:

• Serverless computing, FaaS, cloud

computing.

• Web browsers.

• Software compartmentalization.

proc

runtime

kernel

application

proc proc

3/37



Usermode Sandboxing

Applications:

• Serverless computing, FaaS, cloud

computing.

• Web browsers.

• Software compartmentalization.

Techniques:

• Hardware: multiple address spaces.

• Software: single address space.

proc

runtime

kernel

application

proc proc

3/37



Usermode Sandboxing

Applications:

• Serverless computing, FaaS, cloud

computing.

• Web browsers.

• Software compartmentalization.

Techniques:

• Virtualization (Dune).

• Containerization (gVisor).

• Software sandboxing (WebAssembly).

proc

runtime

kernel

application

proc proc

3/37



Usermode Sandboxing: Performance

Two primary performance metrics:

CPU overhead

Approach CPU overhead1

Wasm+LLVM ˜25%

Wasm+Cranelift ˜60-90%

Virtualization ˜5%

gVisor ˜0%

Context switch time

Approach Ctxsw (cyc) Syscall (cyc)

Software switch ˜70 ˜70

Hardware switch ˜500 ˜300

Linux ˜3,000 ˜300

gVisor ˜20,000 ˜10,000

Hardware protection incurs some additional switch overhead when

virtualized.

1Measured on a subset of SPEC 2017.

4/37



Usermode Sandboxing: Performance

Two primary performance metrics:

CPU overhead

Approach CPU overhead1

Wasm+LLVM ˜25%

Wasm+Cranelift ˜60-90%

Virtualization ˜5%

gVisor ˜0%

Context switch time

Approach Ctxsw (cyc) Syscall (cyc)

Software switch ˜70 ˜70

Hardware switch ˜500 ˜300

Linux ˜3,000 ˜300

gVisor ˜20,000 ˜10,000

Hardware protection incurs some additional switch overhead when

virtualized.

LFI (this work): 6% CPU overhead, with software switching.

1Measured on a subset of SPEC 2017.

4/37



Software Sandboxing

Goal: isolate without the need to change hardware structures when context switching.

Approaches:

Language-based security (LBS)

Use a safe source/intermediate language

that is then compiled to machine code.

Examples: WebAssembly, eBPF, JVM.

Classic software fault isolation2 (SFI)

Use a machine code verifier to ensure a

binary is safe before running it.

Examples: PittSFIeld, Native Client, LFI.

Note: Native Client is single-sandbox SFI.

2Wahbe et al., SOSP 1993.

5/37



LBS vs. SFI: Approach

source language

verify

compile

safe machine code

LBS

source language

verify

compile

safe machine code

Classic SFI

6/37



LBS vs. SFI: Approach

source language

verify

compile

safe machine code

LBS

source language

verify

compile

safe machine code

Classic SFI

The verifier, and every step afterwards, is trusted.

6/37



LBS vs. SFI: Approach

source language

verify

compile

safe machine code

LBS

source language

verify

compile

safe machine code

Classic SFI

Problem: trusting a language verifier and compiler can be dangerous.

6/37



LBS Danger #1: the language verifier

Many “safe” languages are not designed with isolation in mind.

7/37



LBS Danger #1: the language verifier

Many “safe” languages are not designed with isolation in mind.

Picking on Rust: is Safe Rust actually safe?

trait Object <U> { type Output; }
impl <T: ?Sized , U> Object <U> for T { type Output = U; }
fn transmute_obj <T: ?Sized , U>(x: <T as Object <U>>:: Output) -> U { x }
fn transmute <T, U>(x: T) -> U { transmute_obj ::<dyn Object <U, Output = T>, U>(x) }

fn main() {
// make a null pointer
let p = core::ptr:: null_mut ();
// "safely" transmute it into a reference
let x = transmute ::<*mut i64 , &’static i64 >(p);
// access the reference
println!("x: {}", *x);

}

% cargo run
Segmentation fault (core dumped)

github.com/rust-lang/rust#57893 has been open since 2019 with no resolution in sight.

7/37

https://github.com/rust-lang/rust/issues/57893


LBS Danger #1: the language verifier

From the Rust issue tracker:

• 81 open unsoundness bugs.

• 20/81 are LLVM-related.

• 32/81 are marked high priority.

Conclusion: simpler languages like WebAssembly or eBPF are easier to validate.

Note: these languages are still not necessarily easier to validate than machine code.

→ Validation logic is still thousands of lines of code.

8/37



LBS Danger #2: the compiler

Compilers are not necessarily designed with isolation in mind.

LLVM (not designed for isolation):

• 2 million lines of code.

• 242 open miscompilation bugs.

• not hardened vs. malicious input.

Cranelift (designed for isolation):

• “only” 200,000 lines of code.

• only 2 sandbox-escape CVEs due

to miscompilation so far.

• avoids quadratic-time algorithms.

Tradeoff: performance vs. security.

Even “secure” JIT compilers are complicated and have bugs3.

3https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html

9/37



Classic Software-based Fault Isolation (SFI)

Solves the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the source language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.

10/37



Classic Software-based Fault Isolation (SFI)

Solves the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the source language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.

Key: A verifier is much simpler than a compiler.

→ Also easier to formally verify.

10/37



Classic Software-based Fault Isolation (SFI)

Solves the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the source language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.

Overhead and complexity are still problems:

• Prior multi-sandboxing SFI systems have overheads of > 20%.

• No actively developed SFI systems currently exist.

10/37



Lightweight Fault Isolation

This work presents Lightweight Fault Isolation (LFI), an SFI system that:

• Has low runtime overhead (< 10%).

• Supports 10,000+ sandboxes.

• Is available on commodity hardware.

Performance and security!

Not just equivalent performance: significantly better than WebAssembly+LLVM.

→ High-performance and secure software-based multi-sandboxing system.

11/37



Lightweight Fault Isolation

More details:

• Scalable: supports 32K or 64K sandboxes per address space4.

• Low overhead: 6% runtime and 14% code size overhead on SPEC 2017 subset.

• Simple: no modifications to existing compiler source code.

• Secure: fast and simple static binary verifier.

• Compatible with Spectre mitigations.

• Targets ARM64.

Key insight: the design of the ARM64 ISA makes it amenable to efficient SFI.

4ARM has two pagetables: size of virtual address space depends on whether both are accessible.

12/37



Why now?

1995 2000 2005 2010 2015 2020

SF
I i
nv
en
te
d
(W
ah
be
et
al
.)

Fi
rs
t x
86
-6
4
pr
oc
es
so
r

Pi
tt
SF
Ie
ld

Na
tiv
e
Cl
ien
t

AR
M
v8

W
eb
As
se
m
bl
y

gV
iso
r

Ap
pl
e
M
1

AR
M
on
GC
P/
AW

S/
Az
ur
e

Key points:

• Cloud and serverless computing increasingly demand lightweight isolation.

• ARM64 is starting to see widespread deployment (2020+).

13/37



Why now?

1995 2000 2005 2010 2015 2020

SF
I i
nv
en
te
d
(W
ah
be
et
al
.)

Fi
rs
t x
86
-6
4
pr
oc
es
so
r

Pi
tt
SF
Ie
ld

Na
tiv
e
Cl
ien
t

AR
M
v8

W
eb
As
se
m
bl
y

gV
iso
r

Ap
pl
e
M
1

AR
M
on
GC
P/
AW

S/
Az
ur
e

Key points:

• Cloud and serverless computing increasingly demand lightweight isolation.

• ARM64 is starting to see widespread deployment (2020+).

13/37



Why now?

1995 2000 2005 2010 2015 2020

SF
I i
nv
en
te
d
(W
ah
be
et
al
.)

Fi
rs
t x
86
-6
4
pr
oc
es
so
r

Pi
tt
SF
Ie
ld

Na
tiv
e
Cl
ien
t

AR
M
v8

W
eb
As
se
m
bl
y

gV
iso
r

Ap
pl
e
M
1

AR
M
on
GC
P/
AW

S/
Az
ur
e

Key points:

• Cloud and serverless computing increasingly demand lightweight isolation.

• ARM64 is starting to see widespread deployment (2020+).

13/37



Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding5.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret

5ARM32’s thumb mode was removed in ARM64.

14/37



Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding5.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret

5ARM32’s thumb mode was removed in ARM64.

14/37



Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding5.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret

5ARM32’s thumb mode was removed in ARM64.

14/37



Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding5.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret

5ARM32’s thumb mode was removed in ARM64.

14/37



LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.

DataCodeDataCode GuardGuard

App 1 App 2

...

24 GB8 GB 12 GB 16 GB 20 GB

Note: code is statically linked and position-independent.

15/37



LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.

DataCodeDataCode GuardGuard

App 1 App 2

...

24 GB8 GB 12 GB 16 GB 20 GB

How many sandboxes can we fit in the virtual address space?

Page size User pagetable User+kernel pagetable

4KB 32K 64K

64KB 512K 1024K

Note: extended address spaces for 64KB pages require FEAT LVA from ARMv8.2.

15/37



Basic Implementation: Overview

Compiler “plugin” (compiler-independent):

→ Inserts new instructions (needed to demonstrate program safety).

→ Runs after optimization, but before linking.

→ Untrusted.

Static verifier (described afterward):

→ Checks machine code for program safety.

→ Trusted, but simple.

16/37



Basic Implementation: Registers

Special/reserved registers (prevent register allocation with -ffixed-xN):

• x21: sandbox base address (aligned to 4GB).

• x18: always contains a valid sandbox address.

• x30: always contains a valid sandbox address.

• sp: always contains a valid sandbox address.

Reserved registers may only be modified in ways that maintain these invariants.

Only reserved registers may be used to access memory.

→ Enforced by the verifier.

17/37



Basic Implementation: Registers

Special/reserved registers (prevent register allocation with -ffixed-xN):

• x21: sandbox base address (aligned to 4GB).

• x18: always contains a valid sandbox address.

• x30: always contains a valid sandbox address.

• sp: always contains a valid sandbox address.

ldr rt, [x18] // safe
str rt, [sp, #8] // safe
blr x18 // safe
blr x30 // safe

17/37



Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe

18/37



Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe

18/37



Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe

add x18 , x21 , w0, uxtw // safe

Note: this instruction executes with 2-cycle latency.

18/37



Sandboxing Memory Accesses

Original code Sandboxed equivalent

br xN
add x18, x21, wN, uxtw

br x18

ldr rt, [xN]
add x18, x21, wN, uxtw

ldr rt, [x18]

ldr x30, [x18]
ldr x30, [x18]

add x30, x21, w30, uxtw

Note: skipping guards is legal (same trick from the original ’93 SFI paper).

→ No bundle alignment or control-flow integrity requirements.

19/37



ARM64 Addressing Modes

Addressing mode Generated address

[xN] addr = xN

[xN, #i] addr = xN + i

[xN, #i]! addr = xN + i; xN += i

[xN], #i addr = xN; xN += i

[xN, xM, lsl #i] addr = xN + xM << #i

[xN, wM, uxtw #i]

*

addr = xN + zx(wM) << #i

[xN, wM, sxtw #i] addr = xN + sx(wM) << #i

Guard pages ensure [x18, #i] never accesses another sandbox.

Register-register modes must be re-written to multi-instruction sequences.

Note: some loads/stores (ldp, atomics, . . . ) cannot use the complex modes.
20/37



ARM64 Addressing Modes

Addressing mode Generated address

[xN] addr = xN

[xN, #i] addr = xN + i

[xN, #i]! addr = xN + i; xN += i

[xN], #i addr = xN; xN += i

[xN, xM, lsl #i] addr = xN + xM << #i

[xN, wM, uxtw #i]* addr = xN + zx(wM) << #i

[xN, wM, sxtw #i] addr = xN + sx(wM) << #i

Guard pages ensure [x18, #i] never accesses another sandbox.

Register-register modes must be re-written to multi-instruction sequences.

Note: some loads/stores (ldp, atomics, . . . ) cannot use the complex modes.
20/37



Optimization: 32-bit Addressing Modes

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

21/37



Optimization: 32-bit Addressing Modes

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

ldr rt, [xN, #i]
add w24, wN, #i

ldr rt, [x21, w24, uxtw]
1

ldr rt, [xN, #i]!
add xN, xN, #i

ldr rt, [x21, wN, uxtw]
1

ldr rt, [xN], #i
ldr rt, [x21, wN, uxtw]

add xN, xN, #i
1

ldr rt, [xN, xM, lsl #i]
add w24, wN, wM, lsl #i

ldr rt, [x21, w24, uxtw]
2

ldr rt, [xN, wM, uxtw #i]
add w24, wN, wM, uxtw #i

ldr rt, [x21, w24, uxtw]
2

ldr rt, [xN, wM, sxtw #i]
add w24, wN, wM, sxtw #i

ldr rt, [x21, w24, uxtw]
2

21/37



Additional Optimizations

• Guard hoisting: remove redundant guards.

• Stack pointer optimizations.

Can discuss at the end of the talk if there’s interest.

22/37



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

23/37



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 1: reserve yet another register to store the runtime entrypoint.

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

23/37



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

23/37



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

23/37



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

svc #0
ldr x30 , [x21 , #n]
blr x30

→ Verifier must ensure blr always follows the load.

Benefit: application can select the exact runtime call it wants statically (e.g, fast yield).

Note: additional instructions to save/restore x30 may be required.

23/37



Implementation Part 1: Assembly Transformation

Problem: How to implement without modifying/maintaining a compiler toolchain?

Solution: Text processing pass on GNU assembly files (.s).

Use llvm-mc to normalize the assembly (externally maintained by LLVM).

lfi-gen is a 2,000 line Go program.

24/37



Implementation Part 1: Assembly Transformation

Problem: How to implement without modifying/maintaining a compiler toolchain?

Solution: Text processing pass on GNU assembly files (.s).

Use llvm-mc to normalize the assembly (externally maintained by LLVM).

lfi-gen is a 2,000 line Go program.

24/37



Implementation Part 2: Static Verifier

For each instruction, we check the following:

1: Must be a legal instruction (no system calls, no unknown/ARMv8.1+ instructions).

2: If indirect branch: must target reserved register.

3: If memory operation: must target reserved register or use guarded addressing mode.

4: If modification to reserved register: must ensure modification maintains invariants:

• x21 may not be modified.

• x18, may only be modified via a guard.

• x30 may only be modified if immediately followed by a guard, or blr xN.

• sp may only be modified if immediately followed by a guard, or a stack access (if

modification was constant).

25/37



Implementation Part 2: Static Verifier

Lines of code:

• 290 lines of core logic (manually written).

• 1,600 lines of instruction tables (semi-automatically generated).

• 80,000 lines of disassembler6 (mostly automatically generated).

Uses the ARM Machine Readable Specification to:

• Find all instructions that can branch or

read/write memory.

• Find all instructions that can modify a register.

• Generate the disassembler.

6Provided by Binary Ninja; covers the entire ARMv8.7 ISA. 26/37



Implementation Part 2: Static Verifier

Lines of code:

• 290 lines of core logic (manually written).

• 1,600 lines of instruction tables (semi-automatically generated).

• 80,000 lines of disassembler6 (mostly automatically generated).

Performance: verifies at 30 MB/s on a Macbook Air.

6Provided by Binary Ninja; covers the entire ARMv8.7 ISA.

26/37



Implementation Part 3: Runtime

The runtime is a kernel-like layer between the OS and an LFI process.

→ Enforces safe access to the underlying machine (e.g., file system ops).

LFI proc

LFI runtime

kernel

kernel proc

LFI proc LFI proc

Fast switch: switches to a specific sandbox; separate from normal system calls.

→ Clears caller-saved registers instead of saving them.

27/37



Evaluation: Overview

Primary metric: CPU overhead introduced by additional instructions.

Measured on SPEC 2017 benchmarks that compile with our toolchain.

→ C or C++ and compatible with Musl libc.

Three LFI optimization levels:

O0: No optimizations.

O1: Guarded addressing mode enabled.

O2: Guard hoisting enabled.

28/37



Evaluation: LFI Overhead

0

10

20

30

40

50

502.gcc

505.m
cf

508.nam
d

510.parest

511.povray

519.lbm

520.om
netpp

523.xalancbm
k

525.x264

531.deepsjeng

538.im
agick

541.leela

544.nab

557.xz

geom
ean

P
er
ce
n
t
in
cr
ea
se

o
ve
r
n
a
ti
ve

ru
n
ti
m
e
(L
T
O
)

LFI O0
LFI O1
LFI O2

Overhead on SPEC 2017 benchmarks - M1 Macbook Air

29/37



Evaluation: LFI vs. WebAssembly

WebAssembly engines tested:

• Wasmtime: WebAssembly JIT compiler using Cranelift.

• Wasm2c: WebAssembly-to-C convertor; C code compiled with Clang.

• WAMR: WebAssembly AOT compiler using LLVM.

Note: restricted to benchmarks that compile with WebAssembly (no exceptions,

longjmp, linux-specific headers).

30/37



Evaluation: LFI vs. WebAssembly

0

50

100

150

200

250

505.m
cf

508.nam
d

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz

corem
ark

geom
ean

P
er
ce
n
t
in
cr
ea
se

o
ve
r
n
a
ti
ve

ru
n
ti
m
e
(L
T
O
)

Wasmtime
Wasm2c (no barrier)

Wasm2c (reserved register)
WAMR

LFI

Overhead vs. Wasm on SPEC 2017 benchmarks - M1 Macbook Air

31/37



Evaluation: LFI vs. WebAssembly

0

20

40

60

80

100

120

140

160

180

505.m
cf

508.nam
d

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz

geom
ean

P
er
ce
n
t
in
cr
ea
se

o
ve
r
n
a
ti
ve

ru
n
ti
m
e
(L
T
O
)

Wasmtime
Wasm2c (no barrier)

WAMR
LFI

Overhead on SPEC 2017 benchmarks - GCP T2A instance

31/37



Evaluation: Context Switch Microbenchmarks

Table 1: GCP T2A VM, 2.8 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 23 19

Linux 162 2,227

gVisor 11,937 30,218

Table 2: Apple M1, 3.2 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 20 17

Linux 128 1,214

• Linux does not provide an optimized context switch implementation7.

• gVisor incurs high overhead from the suboptimal Linux switch.

• Software protection can go beyond the limits of current hardware protection.

7seL4 does much better with a ˜400 cycle switch.

32/37



Discussion: Virtualization

Virtualization could be used as an alternative hardware-based method.

Benefits of virtualization:

• Can run unmodified binaries, including with self-modifying code.

• Provides a large address space for each untrusted program.

• No static verifier.

33/37



Discussion: Virtualization

Hardware virtualization overheads, measured on SPEC 2017 subset:

• Intel VT-x (Core i7 11700k): 3%.

• AMD-V (Ryzen 9 7950X): 15%.

• ARM Virtualization (Cortex-A76): 6%.

Additional problems:

• Nested virtualization incurs higher overheads, or may be entirely unavailable.

• Incurs higher hardware protection switching costs.

• No minimal virtualization-based sandboxing tool currently exists8 (future work?).

8Closest equivalent is the Dune sandbox, as far as I know.

33/37



Spectre Safety

Types of attacks (see Swivel9 for details):

1. Sandbox breakout: the attacker abuses mispredictions within the sandbox to

speculatively access code or data outside the sandbox.

2. Host poisoning: the attacker trains the branch predictor to cause the runtime to

execute a Spectre gadget.

3. Cross-sandbox poisoning: the attacker trains the branch predictor to cause

another sandbox to execute a Spectre gadget.

9Narayan et al., Swivel: Hardening WebAssembly against Spectre. In USENIX Security ’21.

34/37



Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

35/37



Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

35/37



Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

35/37



Side-channel Attacks

An impossible problem to solve in practice?

One aid: remove sources non-determinism — explicit timers and multi-threading

(implicit timers).

→ Very few timerless remote side-channel attacks have been published.

Software protection allows greater prevention of issues such as:

1. Hypervisor-based side-channel caused by self-modying code [1].

2. LL/SC timerless side-channel [2].

More investigation needed.

36/37

https://ieeexplore.ieee.org/document/7546494
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jiyong


Thank you!

You can follow further development at:

https://github.com/zyedidia/lfi

Many potential directions:

• Application to other architectures, like x86-64 and RISC-V (extra slides).

• Flexible sandbox sizes: any power of 2, instead of 4GB.

• Determinism: position-oblivious code.

• Portability via dynamic recompilation.

• Lazy verification and hybrid protection techniques.

• Increasing verifier robustness.

• Hardware-based sandboxing using virtualization.

• And more. . .

37/37

https://github.com/zyedidia/lfi


Optimization: Guard Hoisting

Introduce two more reserved registers:

• x22: always valid.

• x23: always valid.

ldr x2, [x1, #8]
str x2, [x0, #8]
ldr x2, [x1, #16]
str x2, [x0, #16]
ldr x2, [x1, #24]
str x2, [x0, #24]

add x22 , x21 , w0, uxtw
add x23 , x21 , w1, uxtw
ldr x2, [x23 , #8]
str x2, [x22 , #8]
ldr x2, [x23 , #16]
str x2, [x22 , #16]
ldr x2, [x23 , #24]
str x2, [x22 , #24]



Optimization: Stack Pointer

The sp register is assumed to always contain a valid address.

→ No guards necessary for stack accesses.

Guards are necessary when modifying sp, but not in all cases.

Original code Sandboxed equivalent

add sp, sp, #n
add w24, wsp, #n

add sp, x21, w24, uxtw

add sp, sp, #n

. . . (no branches) . . .

ldr rt, [sp, #m]

No change necessary

str rt, [sp, #n]! No change necessary



Application to other architectures: x86-64

An efficient implementation is probably possible with Intel CET and segment registers.

CET: shadow call stacks and indirect branch tracking10.

→ Ensures all indirect branches target instruction boundaries.

→ Verifier will have to check direct branches (slower verification).

Store sandbox base in %gs, reserve %r15, rewrite loads/stores:

Original code Sandboxed equivalent

mov %rxx, (...)
lea (...), %r15d

mov %rxx, %gs:r15

10Usermode IBT is not currently provided by Linux: showstopper for avoiding alignment constraints.



Application to other architectures: RISC-V

Problem 1: Compressed instructions, and no hardware control-flow protection (yet).

→ Require that compressed instructions only exist as pairs (otherwise decompress).

→ Require that branches target a 4-byte aligned block, possibly via an enforced and.

Problem 2: More difficult to operate on 32-bit subsets.

→ Zba provides add.uw rd, rs1, rs2 (zero-extends bottom 32 bits of rs2).

Store sandbox base in x21, reserve x18,

Original code Sandboxed equivalent

ld xN, n(xM)
add.uw x18, x21, xM

ld xN, n(x18)


	Appendix

