
Lightweight Fault Isolation: Practical, Efficient, and Secure

Software Sandboxing

Zachary Yedidia

Stanford University

1/26



Outline

This work presents Lightweight Fault Isolation (LFI), a new SFI system for ARM64.

• Simple implementation made possible by “peephole sandboxing.”

• Low runtime overhead (6-7%) and secure.

• Many sandboxes in a single address space (around 65,000).

Part 1: Overview of sandboxing techniques (what is SFI?).

Part 2: LFI design details.

Part 3: Evaluation.
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Usermode Sandboxing

Goal: isolate untrusted code without direct access to hardware facilities.

Applications:

• Serverless computing, FaaS, cloud

computing.

• Web browsers.

• Software compartmentalization.
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Goal: isolate untrusted code without direct access to hardware facilities.

Applications:

• Serverless computing, FaaS, cloud

computing.

• Web browsers.

• Software compartmentalization.

Techniques:

• Hardware: multiple address spaces.

• Software: single address space.
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Examples:

• Virtualization (Dune).

• Containerization (gVisor).

• Software sandboxing (WebAssembly).
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Usermode Sandboxing: Performance

Two primary performance metrics:

CPU overhead

Approach CPU overhead1

Wasm+LLVM ˜25%

Wasm+Cranelift ˜60-90%

Virtualization ˜5%

gVisor ˜0%

Context switch time

Approach Ctxsw (cyc) Syscall (cyc)

Software switch ˜70 ˜70

Hardware switch ˜500 ˜300

Linux ˜3,000 ˜300

gVisor ˜20,000 ˜10,000

Hardware protection incurs some additional switch overhead when

virtualized.

1Measured on a subset of SPEC 2017.
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Two primary performance metrics:

CPU overhead

Approach CPU overhead1

Wasm+LLVM ˜25%

Wasm+Cranelift ˜60-90%

Virtualization ˜5%

gVisor ˜0%

Context switch time

Approach Ctxsw (cyc) Syscall (cyc)

Software switch ˜70 ˜70

Hardware switch ˜500 ˜300

Linux ˜3,000 ˜300

gVisor ˜20,000 ˜10,000

Hardware protection incurs some additional switch overhead when

virtualized.

LFI (this work): 6-7% CPU overhead, with software switching.

1Measured on a subset of SPEC 2017.

4/26



Software Sandboxing

Goal: isolate without the need to change hardware structures when context switching.

Approaches:

Language-based security (LBS)

Use a safe source/intermediate language

that is then compiled to machine code.

Examples: WebAssembly, eBPF, JVM.

Classic software fault isolation2 (SFI)

Use a machine code verifier to ensure a

binary is safe before running it.

Examples: PittSFIeld, Native Client, LFI.

Note: Native Client is single-sandbox SFI.

2Wahbe et al., SOSP 1993.
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LBS vs. SFI: Approach

source language

verify

compile

safe machine code
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source language
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source language

verify

compile

safe machine code
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source language

verify

compile
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Classic SFI

The verifier, and every step afterwards, is trusted.
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LBS vs. SFI: Approach

source language

verify

compile

safe machine code

LBS

source language

verify

compile

safe machine code

Classic SFI

Problem: trusting a language verifier and compiler can be dangerous.
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LBS Danger #1: the language verifier

Many “safe” languages are not designed with isolation in mind.
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LBS Danger #1: the language verifier

Many “safe” languages are not designed with isolation in mind.

Picking on Rust: is Safe Rust actually safe?

trait Object <U> { type Output; }
impl <T: ?Sized , U> Object <U> for T { type Output = U; }
fn transmute_obj <T: ?Sized , U>(x: <T as Object <U>>:: Output) -> U { x }
fn transmute <T, U>(x: T) -> U { transmute_obj ::<dyn Object <U, Output = T>, U>(x) }

fn main() {
// make a null pointer
let p = core::ptr:: null_mut ();
// "safely" transmute it into a reference
let x = transmute ::<*mut i64 , &’static i64 >(p);
// access the reference
println!("x: {}", *x);

}

% cargo run
Segmentation fault (core dumped)

github.com/rust-lang/rust#57893 has been open since 2019 with no resolution in sight.
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LBS Danger #1: the language verifier

Rust is not designed for adversarial isolation.

Simpler languages like WebAssembly or eBPF are easier to validate.

Note: these languages are still not necessarily easier to validate than machine code.

→ Validation logic is still thousands of lines of code.

• eBPF verifier: 19,000 LoC.

• WebAssembly verifier: 2,000 LoC.
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LBS Danger #2: the compiler

Compilers are not necessarily designed with isolation in mind.

LLVM (not designed for isolation):

• 2 million lines of code.

• 242 open miscompilation bugs.

• not hardened vs. malicious input.

Cranelift (designed for isolation):

• “only” 200,000 lines of code.

• only 2 sandbox-escape CVEs due

to miscompilation so far.

• avoids quadratic-time algorithms.

Tradeoff: performance vs. security.

Even “secure” JIT compilers are complicated and have bugs3.

3https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
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Classic Software-based Fault Isolation (SFI)

Avoids the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the verified language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.
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Avoids the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the verified language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.

Key: A verifier is much simpler than a compiler.

→ Also easier to formally verify.
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Classic Software-based Fault Isolation (SFI)

Avoids the trusted compiler problem with an arch-specific verifier (Wahbe, 1993).

→ Make machine code the verified language — trusted compiler no longer necessary.

Two components:

1. An untrusted compiler that can generate binaries that pass verification.

2. A static verifier to validate the generated binaries.

Overhead and complexity are still problems:

• Prior multi-sandbox SFI systems have overheads of > 20%.

• No actively developed SFI systems currently exist.
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Lightweight Fault Isolation

This work presents Lightweight Fault Isolation (LFI), a new SFI system.

• Scalable: supports 64K sandboxes per user address space.

• Low overhead: 6-7% runtime and 14% code size overhead on SPEC 2017 subset.

• Simple: no modifications to existing compiler source code.

• Secure: fast and simple static binary verifier.

• Targets ARM64.

Performance and security!

Not just equivalent performance: significantly better than WebAssembly+LLVM.

→ High-performance and secure software-based multi-sandboxing system.
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This work presents Lightweight Fault Isolation (LFI), a new SFI system.

• Scalable: supports 64K sandboxes per user address space.

• Low overhead: 6-7% runtime and 14% code size overhead on SPEC 2017 subset.

• Simple: no modifications to existing compiler source code.

• Secure: fast and simple static binary verifier.

• Targets ARM64.

Performance and security!

Not just equivalent performance: significantly better than WebAssembly+LLVM.

→ High-performance and secure software-based multi-sandboxing system.

Key: ARM64 assembly code can be “peephole sandboxed” by a simple program.
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Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding4.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret

4ARM32’s thumb mode was removed in ARM64.
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LFI Sandbox Environment

Each sandbox is given 4GiB of virtual memory, with 48KiB guard pages.

The MMU prevents writing code and executing data.

128MiB

code data

4GiB 

48KiB

......
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LFI Sandbox Environment

Each sandbox is given 4GiB of virtual memory, with 48KiB guard pages.

The MMU prevents writing code and executing data.

128MiB

code data

4GiB 

48KiB

......

How many sandboxes can we fit in the virtual address space?

VA size User pagetable User+kernel pagetable

48 bits 64K 128K
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Basic Implementation: Overview

Compiler “plugin” (compiler-independent):

→ Inserts new instructions (needed to demonstrate program safety).

→ Runs after optimization, but before linking.

→ Untrusted.

Static verifier (reads ELF files):

→ Checks machine code for program safety.

→ Trusted, but simple.
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Basic Implementation: Overview

Compiler “plugin” (compiler-independent):

as

Static verifier (reads ELF files):

→ 300 lines of Rust.

→ Verifies binaries at 30 MB/s
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Basic Implementation: Registers

Special/reserved registers (prevent register allocation with -ffixed-xN):

• x21: sandbox base address (aligned to 4GB).

• x18: always contains a valid sandbox address.

• x30: always contains a valid sandbox address.

• sp: always contains a valid sandbox address.

Reserved registers may only be modified in ways that maintain these invariants.

Only reserved registers may be used to access memory.

→ Enforced by the verifier.
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Basic Implementation: Registers

Special/reserved registers (prevent register allocation with -ffixed-xN):

• x21: sandbox base address (aligned to 4GB).

• x18: always contains a valid sandbox address.

• x30: always contains a valid sandbox address.

• sp: always contains a valid sandbox address.

ldr rt, [x18] // safe
str rt, [sp, #8] // safe
blr x18 // safe
blr x30 // safe

15/26



Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe
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Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe

add x18 , x21 , w0, uxtw // safe

Note: this instruction executes with 2-cycle latency.
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Sandboxing Memory Accesses

Original code Sandboxed equivalent

br xN
add x18, x21, wN, uxtw

br x18

ldr rt, [xN]
add x18, x21, wN, uxtw

ldr rt, [x18]

ldr x30, [x18]
ldr x30, [x18]

add x30, x21, w30, uxtw
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Zero-instruction Guard

Addressing mode Generated address

[xN] addr = xN

[xN, wM, uxtw] addr = xN + zx(wM)
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Zero-instruction Guard

Addressing mode Generated address

[xN] addr = xN

[xN, wM, uxtw] addr = xN + zx(wM)

Optimization: we can perform the guard inside a load/store addressing mode.

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0
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Zero-instruction Guard

Addressing mode Generated address

[xN] addr = xN

[xN, wM, uxtw] addr = xN + zx(wM)

Optimization: we can perform the guard inside a load/store addressing mode.

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

ldr rt, [xN, #i]
add w24, wN, #i

ldr rt, [x21, w24, uxtw]
1

ldr rt, [xN, #i]!
add xN, xN, #i

ldr rt, [x21, wN, uxtw]
1

ldr rt, [xN], #i
ldr rt, [x21, wN, uxtw]

add xN, xN, #i
1

(other addressing modes omitted for brevity) 18/26



Additional Optimizations

• Guard hoisting: remove redundant guards.

• Stack pointer optimizations.

Can discuss at the end of the talk if there’s interest.
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

20/26



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 1: reserve yet another register to store the runtime entrypoint.

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

svc #0
ldr x30 , [x21 , #n]
blr x30

→ Verifier must ensure blr always follows the load.

Benefit: application can select the exact runtime call it wants statically (e.g, fast yield).

Note: additional instructions to save/restore x30 may be required.
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Evaluation: Overview

Primary metric: CPU overhead introduced by additional instructions.

Measured on SPEC 2017 benchmarks that compile with our toolchain.

→ C or C++ and compatible with Musl libc.

Three LFI optimization levels:

O0: No optimizations.

O1: Guarded addressing mode enabled.

O2: Guard hoisting enabled.

O2, no loads: loads are not sandboxed (allows inter-sandbox reads).
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Evaluation: LFI Overhead
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Evaluation: LFI vs. WebAssembly

WebAssembly engines tested:

• Wasmtime: WebAssembly compiler using Cranelift (AOT compilation enabled).

• Wasm2c: WebAssembly-to-C convertor; C code compiled with Clang.

→ Modified with additional optimizations.

• WAMR: WebAssembly AOT compiler using LLVM.

Note: restricted to benchmarks that compile with WebAssembly (no exceptions,

longjmp, linux-specific headers).

23/26



Evaluation: LFI vs. WebAssembly
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Evaluation: Context Switch Microbenchmarks

Table 1: GCP T2A VM, 2.8 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 23 19

Linux 162 2,227

gVisor 11,937 30,218

Table 2: Apple M1, 3.2 GHz

Platform Syscall (ns) Ctxsw (ns)

LFI 20 17

Linux 128 1,214

• Linux does not provide an optimized context switch implementation5.

• gVisor incurs high overhead from the suboptimal Linux switch.

• Software protection can go beyond the limits of current hardware protection.

5seL4 does much better with a ˜400 cycle switch.
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Thank you!

Current work:

• Improving verifier performance, size, and correctness.

• Enforcing determinism and metering to enable bare-metal smart contracts.

• Extensible operating system design.

You can follow further development at:

https://github.com/zyedidia/lfi

For details, see the ASPLOS ’24 paper.
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Optimization: Guard Hoisting

Introduce two more reserved registers:

• x22: always valid.

• x23: always valid.

ldr x2, [x1, #8]
str x2, [x0, #8]
ldr x2, [x1, #16]
str x2, [x0, #16]
ldr x2, [x1, #24]
str x2, [x0, #24]

add x22 , x21 , w0, uxtw
add x23 , x21 , w1, uxtw
ldr x2, [x23 , #8]
str x2, [x22 , #8]
ldr x2, [x23 , #16]
str x2, [x22 , #16]
ldr x2, [x23 , #24]
str x2, [x22 , #24]



Optimization: Stack Pointer

The sp register is assumed to always contain a valid address.

→ No guards necessary for stack accesses.

Guards are necessary when modifying sp, but not in all cases.

Original code Sandboxed equivalent

add sp, sp, #n
add w24, wsp, #n

add sp, x21, w24, uxtw

add sp, sp, #n

. . . (no branches) . . .

ldr rt, [sp, #m]

No change necessary

str rt, [sp, #n]! No change necessary



Application to other architectures: x86-64

An efficient implementation is probably possible with Intel CET and segment registers.

CET: shadow call stacks and indirect branch tracking6.

→ Ensures all indirect branches target instruction boundaries.

→ Verifier will have to check direct branches (slower verification).

Store sandbox base in %gs, reserve %r15, rewrite loads/stores:

Original code Sandboxed equivalent

mov %rxx, (...)
lea (...), %r15d

mov %rxx, %gs:r15

6Usermode IBT is not currently provided by Linux: showstopper for avoiding alignment constraints.



Application to other architectures: RISC-V

Problem 1: Compressed instructions, and no hardware control-flow protection (yet).

→ Require that compressed instructions only exist as pairs (otherwise decompress).

→ Require that branches target a 4-byte aligned block, possibly via an enforced and.

Problem 2: More difficult to operate on 32-bit subsets.

→ Zba provides add.uw rd, rs1, rs2 (zero-extends bottom 32 bits of rs2).

Store sandbox base in x21, reserve x18,

Original code Sandboxed equivalent

ld xN, n(xM)
add.uw x18, x21, xM

ld xN, n(x18)



Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.
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