
Classic Software Fault Isolation and WebAssembly

Zachary Yedidia

Stanford University

1/26



Outline

Part 1: Overview of software sandboxing.

Part 2: Lightweight Fault Isolation (LFI).

Part 3: WebAssembly and LFI.

2/26



Isolation and Sandboxing

Isolation is central to multi-tenant systems.

Hardware-based

• Memory protection and privilege levels.

• Hardware-assisted virtualization.

Challenges

• Slow to start/stop.

• Slow to context switch.

• Requires hardware/OS support.

3/26



Isolation and Sandboxing

Isolation is central to multi-tenant systems.

Software-based

• Language-based security.

• Classic Software Fault Isolation (SFI).

Challenges

• Overhead.

• Trusted software.

• . . .
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Software Sandboxing: Desires

Efficiency

• Low overhead.

• Low context switch

time.

Security

• Small trusted code base

(TCB).

• Spectre-hardened.

Simplicity

• Simple to

design/implement.

Scalability

• Thousands of tenants.

Flexibility

• Configurable sandbox

size.

• Unrestricted source

language support.

Portability

• Multi-architecture.

• Self-contained.
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Language-based Security

Approach: enforce security properties in a source/intermediate language that is then

compiled into a binary.

source language

safe IR

machine code

run program

untrusted compiler

trusted compiler
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Language-based Security

Approach: enforce security properties in a source/intermediate language that is then

compiled into a binary.

Pros

• Portable: source language can

target multiple architectures.

• Powerful: many types of safety

properties can be enforced.

Cons

• Large trusted code base (TCB):

compiler is generally fully trusted.

• Complex to design/implement.

• Source language may be

restricted.

Examples: WebAssembly, JVM, eBPF, Singularity OS (C#).
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Classic Software-based Fault Isolation (SFI)

Approach: before running a compiled binary, verify it to make sure it will not violate

security properties.

source language

assembly language

machine code

trusted verifier

run program

untrusted compiler

guard insertion
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Classic Software-based Fault Isolation (SFI)

Approach: before running a compiled binary, verify it to make sure it will not violate

security properties.

Two components: an untrusted compiler that can generate binaries that pass

verification, and a verifier to validate the generated binaries.

• Small TCB.

• Unrestricted source language.

• Very low overhead, while still supporting many tenants (claim).

• Simple to implement (claim).

Examples: NaCl, LFI.
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What has changed?
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Key points:

• Position-independent code is ubiquitous (2017+).

• ARM64 is starting to see widespread deployment (2020+).

Claim: ARM64 is very amenable to efficient SFI.
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Lightweight Fault Isolation (LFI)

A new SFI system that is simple and low overhead.

• Supports 32K or 64K1 sandboxes per address space.

• Low overhead: 7% runtime and 14% code size overhead on SPEC 2017.

• No modifications to existing compiler source code.

• Fast and simple static binary verifier (small TCB).

• No alignment constraints.

• Spectre-resistant to some extent.

• Targets ARM64.

1ARM has two pagetables: size of virtual address space depends on whether both are accessible.
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Overview of ARM64

Important ARM64 features for SFI:

• Fixed-width encoding.

• 31 64-bit registers (x0-x30).

• Stack pointer register (sp).

• Dedicated return address register (x30).

• 32-bit register subsets (w0-w30).

• A 32-bit addressing mode.

<fib >:
a9be53f3 stp x19 , x20 , [sp , #-32]!
2a0003f3 mov w19 , w0
52800014 mov w20 , #0x0
f9000bfe str x30 , [sp, #16]
34000113 cbz w19 , 30 <fib+0x30 >
7100067f cmp w19 , #0x1
540000 c0 b.eq 30 <fib+0x30 >
51000660 sub w0 , w19 , #0x1
51000 a73 sub w19 , w19 , #0x2
94000000 bl 0 <fib >
0b000294 add w20 , w20 , w0
17 fffff9 b 10 <fib+0x10 >
0b140260 add w0, w19 , w20
f9400bfe ldr x30 , [sp, #16]
a8c253f3 ldp x19 , x20 , [sp], #32
d65f03c0 ret
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LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.

DataCodeDataCode GuardGuard

App 1 App 2

...

24 GB8 GB 12 GB 16 GB 20 GB

Note: code is statically linked and position-independent.
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LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.

DataCodeDataCode GuardGuard

App 1 App 2

...

24 GB8 GB 12 GB 16 GB 20 GB

How many sandboxes can we fit in the virtual address space?

Page size User pagetable User+kernel pagetable

4KB 32K 64K

64KB 512K 1024K

Note: extended address spaces for 64KB pages require FEAT LVA from ARMv8.2.
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Basic Implementation: Registers

Special/reserved registers:

• x21: sandbox base address (aligned to 4GB).

• x18: always contains a valid sandbox address.

• x30: always contains a valid branch target (sandbox or runtime call address).

• sp: always contains a valid sandbox address.

Reserved registers may only be modified in ways that maintain these invariants.

ldr rt, [x18] // safe
str rt, [sp, #8] // safe
br x18 // safe
br x30 // safe
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Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18 , x0 // unsafe

add x18 , x21 , w0, uxtw // safe

Note: this instruction executes with 2-cycle latency.
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Sandboxing Memory Accesses

Original code Sandboxed equivalent

br xN
add x18, x21, wN, uxtw

br x18

ldr x30, [x18]
ldr x30, [x18]

add x30, x21, w30, uxtw

ldr rt, [xN]
add x18, x21, wN, uxtw

ldr rt, [x18]

Note: skipping guards is legal (same trick from the original ’93 SFI paper).

→ No bundle alignment or CFI requirements.
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ARM64 Addressing Modes

Addressing mode Generated address

[xN] addr = xN

[xN, #i] addr = xN + i

[xN, #i]! addr = xN + i; xN += i

[xN], #i addr = xN; xN += i

[xN, xM, lsl #i] addr = xN + xM << #i

[xN, wM, uxtw #i]

*

addr = xN + zx(wM) << #i

[xN, wM, sxtw #i] addr = xN + sx(wM) << #i

Guard pages ensure [x18, #i] never accesses another sandbox.

Register-register modes must be re-written.

Note: some loads/stores (ldp, atomics, . . . ) cannot use the complex modes.
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Guard pages ensure [x18, #i] never accesses another sandbox.

Register-register modes must be re-written.

Note: some loads/stores (ldp, atomics, . . . ) cannot use the complex modes.
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Optimization: 32-bit Addressing Modes

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0
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Optimization: 32-bit Addressing Modes

Original code Sandboxed equivalent Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0

ldr rt, [xN, #i]
add w24, wN, #i

ldr rt, [x21, w24, uxtw]
1

ldr rt, [xN, #i]!
add xN, xN, #i

ldr rt, [x21, wN, uxtw]
1

ldr rt, [xN], #i
ldr rt, [x21, wN, uxtw]

add xN, xN, #i
1

ldr rt, [xN, xM, lsl #i]
add w24, wN, wM, lsl #i

ldr rt, [x21, w24, uxtw]
2

ldr rt, [xN, wM, uxtw #i]
add w24, wN, wM, uxtw #i

ldr rt, [x21, w24, uxtw]
2

ldr rt, [xN, wM, sxtw #i]
add w24, wN, wM, sxtw #i

ldr rt, [x21, w24, uxtw]
2

15/26



Optimization: Guard Hoisting

Introduce two more reserved registers:

• x22: always valid.

• x23: always valid.

ldr x2, [x1, #8]
str x2, [x0, #8]
ldr x2, [x1, #16]
str x2, [x0, #16]
ldr x2, [x1, #24]
str x2, [x0, #24]

add x22 , x21 , w0, uxtw
add x23 , x21 , w1, uxtw
ldr x2, [x23 , #8]
str x2, [x22 , #8]
ldr x2, [x23 , #16]
str x2, [x22 , #16]
ldr x2, [x23 , #24]
str x2, [x22 , #24]
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Optimization: Stack Pointer

The sp register is assumed to always contain a valid address.

→ No guards necessary for stack accesses.

Guards are necessary when modifying sp, but not in all cases.

Original code Sandboxed equivalent

add sp, sp, #n
add w24, wsp, #n

add sp, x21, x24

add sp, sp, #n

. . . (no branches) . . .

ldr rt, [sp, #m]

No change necessary

str rt, [sp, #n]! No change necessary
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

• Use x30, a special register used only for valid branch targets.
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 1: reserve yet another register to store the runtime entrypoint.

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

• Use x30, a special register used only for valid branch targets.
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

• The address of the runtime call table is already stored in x21!

• Use x30, a special register used only for valid branch targets.

svc #0

str x30 , [sp, -16]!
ldr x30 , [x21 , #n]
blr x30
ldr x30 , [sp], 16
add x30 , x21 , w30 , uxtw

Benefit: application can select the exact runtime call it wants statically.
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Implementation: Assembly Transformation

Problem: How to implement without modifying/maintaining a compiler toolchain?

Solution: Text processing pass on GNU assembly files (.s).

Use llvm-mc to normalize the assembly (externally maintained by LLVM).

lfi-gen is a 2,000 line Go program.
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Implementation: Compiler Toolchain

A full C/C++ LLVM compiler toolchain can be built using the following libraries:

• compiler-rt.

• musl-libc.

• libc++.

• libc++abi.

• libunwind.

Installation process: download LFI-instrumented sysroot and LFI wrapper tools. Use

your system’s default Clang/LLVM package.

Why no GCC? The GCC build system is less modular, so building LFI-instrumented

libgcc is more gnarly (but should be possible).

20/26



Implementation: Compiler Toolchain

A full C/C++ LLVM compiler toolchain can be built using the following libraries:

• compiler-rt.

• musl-libc.

• libc++.

• libc++abi.

• libunwind.

Installation process: download LFI-instrumented sysroot and LFI wrapper tools. Use

your system’s default Clang/LLVM package.

Why no GCC? The GCC build system is less modular, so building LFI-instrumented

libgcc is more gnarly (but should be possible).

20/26



Static Verifier

• Core logic is 290 lines of Rust (not counting disassembler).

• No alignment requirements.

• Verifies executable ELF segments (link with --rosegment to separate code/data).

• Verifies 30 MB/s on a Macbook Air.

Uses the ARM Machine Readable Specification:

• Find all instructions that can branch or

read/write memory.

• Find all instructions that can modify a register.

• Generate the disassembler.
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LFI Overhead
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WebAssembly and LFI

Portability

WebAssembly as a portable IR.

• Wasm binaries encode all

necessary dependencies.

• Wasm binaries can target

multiple architectures.

Isolation

Ensure program cannot escape

sandbox.

• Bounds checks/32-bit

enforcement.

• Dynamic indirect branch checks.

Goal: decouple portability and isolation.

WebAssembly for portability, LFI for isolation.
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WebAssembly and LFI: Overhead

The contestants:

• Wasmtime: widely-used Wasm compiler built on Cranelift.

• WAMR: ahead-of-time Wasm compiler using LLVM.

• Wasm2c: Wasm to C convertor, then compiled with Clang (barrier removed).

• W2C2: Wasm to C convertor, then compiled with Clang (not full sandboxing).

• W2C2-LFI: W2C2 running within an LFI sandbox.

• LFI.
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WebAssembly and LFI: Overhead
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WebAssembly and LFI: Overhead

Result: LFI overhead is 7% by default.

Result: LFI causes an additional 20% overhead when used with WebAssembly.

→ tradeoff for security (TCB size), and ability to safely precompile.
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Optimizing WebAssembly Performance on SPEC 2017

1. Enable the SIMD 128 proposal.

2. Reserve a register for the heap base (not supported for all architectures).

0

20

40

60

80

100

120

505.m
cf

508.nam
d

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz

geom
ean

P
er
ce
n
t
in
cr
ea
se

o
ve
r
n
a
ti
ve

(L
T
O
)
ru
n
ti
m
e

Wasm2c
Wasm2c SIMD

Wasm2c SIMD resreg
LFI

Overhead on SPEC 2017 benchmarks - GCP T2A instance

25/26



Thank you!

You can follow further development at:

https://github.com/zyedidia/lfi
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Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

→ Speculative sandbox breakout attacks are mitigated.

Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.
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