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Part 1: Overview of software sandboxing.
Part 2: Lightweight Fault Isolation (LFI).
Part 3: WebAssembly and LFI.
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Isolation and Sandboxing

Isolation is central to multi-tenant systems.

App| App | APPp oo

Monitor
Hardware-based Challenges
e Memory protection and privilege levels. e Slow to start/stop.
e Hardware-assisted virtualization. e Slow to context switch.

e Requires hardware/OS support.
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Isolation and Sandboxing

Isolation is central to multi-tenant systems.

App| App | APPp oo

Monitor
Software-based Challenges
e Language-based security. e Overhead.
e Classic Software Fault Isolation (SFI). e Trusted software.
e ...
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Software Sandboxing: Desires

Efficiency Security Simplicity
e Low overhead. e Small trusted code base e Simple to
e Low context switch (TCB). design/implement.
time. e Spectre-hardened.
Scalability Flexibility Portability
e Thousands of tenants. e Configurable sandbox e Multi-architecture.
size. e Self-contained.

e Unrestricted source
language support.
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Language-based Security

Approach: enforce security properties in a source/intermediate language that is then
compiled into a binary.

source language

untrusted compiler

safe IR

trusted compiler

machine code

run program
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Language-based Security

Approach: enforce security properties in a source/intermediate language that is then

compiled into a binary.

Pros Cons
e Portable: source language can e Large trusted code base (TCB):
target multiple architectures. compiler is generally fully trusted.
e Powerful: many types of safety e Complex to design/implement.
properties can be enforced. e Source language may be
restricted.

Examples: WebAssembly, JVM, eBPF, Singularity OS (C#).
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Classic Software-based Fault Isolation (SFI)

Approach: before running a compiled binary, verify it to make sure it will not violate
security properties.

source language

untrusted compiler

assembly language

guard insertion

machine code

|trusted verifier

}

lrun programl
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Classic Software-based Fault Isolation (SFI)

Approach: before running a compiled binary, verify it to make sure it will not violate
security properties.

Two components: an untrusted compiler that can generate binaries that pass
verification, and a verifier to validate the generated binaries.

Small TCB.

Unrestricted source language.

Very low overhead, while still supporting many tenants (claim).

Simple to implement (claim).

Examples: NaCl, LFI.
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Key points:

e Position-independent code is ubiquitous (2017+).
e ARMG64 is starting to see widespread deployment (2020-+).
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Key points:

e Position-independent code is ubiquitous (2017+).
e ARMG64 is starting to see widespread deployment (2020-+).

Claim: ARM®64 is very amenable to efficient SFI.
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Lightweight Fault Isolation (LFI)

A new SFI system that is simple and low overhead.

Supports 32K or 64K! sandboxes per address space.

Low overhead: 7% runtime and 14% code size overhead on SPEC 2017.
No modifications to existing compiler source code.

Fast and simple static binary verifier (small TCB).

No alignment constraints.

Spectre-resistant to some extent.

Targets ARM64.

LARM has two pagetables: size of virtual address space depends on whether both are accessible.
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Overview of ARM64

Important ARM64 features for SFI:

<fib>:
. . . a9be53f3 stp x19, x20, [sp, #-32]!
e Fixed-width encoding. 22000383 mov  wle . w0
. . 52800014 mov w20, #0x0
e 31 64-bit registers (x0-x30). £9000bfe str  x30, [sp, #16]
34000113 cbz w19, 30 <fib+0x30>
e Stack pointer register (sp). 7100067£ cmp w19, #0x1
540000c0 b.eq 30 <fib+0x30>
. . 51000660 sub w0, wi9, #0x1
e Dedicated return address register (x30). 21000873 oub Wi, wie. #ox2
. . 94000000 bl 0 <fib>
e 32-bit register subsets (w0-w30). 06000204 add w20, ¥20, wO
17f£f£f£ff9 b 10 <fib+0x10>
e A 32-bit addressing mode. 0b140260  add w0, wl9, w20

£9400bfe 1ldr x30, [sp, #16]
a8c253f3 1ldp x19, x20, [spl, #32
d65f03c0 ret
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Overview of ARM64

Important ARM64 features for SFI:
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e Dedicated return address register (x30). 21000873 oub Wi, wie. #ox2
. . 94000000 bl 0 <fib>
e 32-bit register subsets (WO—W30). 0b000294 add w20, w20, wO
17f£f£f£ff9 b 10 <fib+0x10>
e A 32-bit addressing mode. 0140260 add w0, wld, w20

£9400bfe 1ldr x30, [sp, #16]
a8c253f3 1ldp x19, x20, [spl, #32
d65f03c0 ret
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LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.
App 1 App 2

| Code I Data Guard | Code I Data Guard

8 GB 12 GB 16 GB 20 GB 24 GB

Note: code is statically linked and position-independent.
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LFI Sandbox Environment

Each sandbox is given 4GB of virtual memory, with 4GB guard pages on both sides.

The MMU prevents writing code and executing data.
App 1 App 2

| Code I Data Guard | Code I Data Guard

8 GB 12 GB 16 GB 20 GB 24 GB

How many sandboxes can we fit in the virtual address space?

Page size | User pagetable | User+kernel pagetable
4KB 32K 64K
64KB 512K 1024K

Note: extended address spaces for 64KB pages require FEAT_LVA from ARMv8.2.
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Basic Implementation: Registers

Special /reserved registers:

e x21: sandbox base address (aligned to 4GB).

e x18: always contains a valid sandbox address.

e x30: always contains a valid branch target (sandbox or runtime call address).
e sp: always contains a valid sandbox address.

Reserved registers may only be modified in ways that maintain these invariants.

ldr rt, [x18] // safe
str rt, [sp, #8] // safe
br x18 // safe
br x30 // safe
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Basic Implementation: Guard Instruction

How to safely modify a reserved register?

mov x18, x0 // unsafe

x21 ’ %21[63:32] ’ 0x00000000 | xO’ x0[63:32] ’ x0[31:0]

x18 ’ x21[63:32] ’ %0[31:0] |

add x18, x21, w0, uxtw // safe

Note: this instruction executes with 2-cycle latency.
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Sandboxing Memory Accesses

Original code Sandboxed equivalent

add x18, x21, wN, uxtw
br xN

br x18

ldr x30, [x18]
add x30, x21, w30, uxtw
add x18, x21, wN, uxtw
1ldr rt, [x18]

ldr x30, [x18]

1dr rt, [xN]

Note: skipping guards is legal (same trick from the original '93 SFI paper).

— No bundle alignment or CFl requirements.
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ARMG64 Addressing Modes

Addressing mode Generated address

[xN] addr = xN

[xN, #i] addr = xN + i

[xN, #i]! addr = xN + i; xN += i
[xN], #i addr = xN; xN += i

[xN, xM, 1sl #i] addr = xN + xM << #i
[xN, wM, uxtw #i] addr = xN + zx(wM) << #i
[xN, wM, sxtw #i] addr = xN + sx(wM) << #i

Guard pages ensure [x18, #i] never accesses another sandbox.
Register-register modes must be re-written.

Note: some loads/stores (1dp, atomics, ...) cannot use the complex modes.
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Optimization: 32-bit Addressing Modes

Original code Sandboxed equivalent Cycles of overhead
1dr rt, [xN] 1dr rt, [x21, wN, uxtw] | O
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Optimization: 32-bit Addressing Modes

Original code

Sandboxed equivalent

Cycles of overhead

ldr rt, [xN] ldr rt, [x21, wN, uxtw] 0
. add w24, wN, #i
ldr rt, [xN, #i] 1
ldr rt, [x21, w24, uxtw]
, add xN, xN, #i
ldr rt, [xN, #i]! 1
ldr rt, [x21, wN, uxtw]
1dr rt, [x21, wN, uxtw
1dr rt, [xN], #i [ ] 1
add xN, xN, #i
X add w24, wN, wM, 1sl #i
ldr rt, [xN, xM, 1sl #i] 2
ldr rt, [x21, w24, uxtw]
. add w24, wN, wM, uxtw #i
1dr rt, [xN, wM, uxtw #i] 2
ldr rt, [x21, w24, uxtw]
. add w24, wN, wM, sxtw #i
1dr rt, [xN, wM, sxtw #i] 2
ldr rt, [x21, w24, uxtw]
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Optimization: Guard Hoisting

Introduce two more reserved registers:

e x22: always valid.
e x23: always valid.

ldr x2, [x1, #8] add x22, x21, w0, uxtw
str x2, [x0, #8] add x23, x21, wl, uxtw
ldr x2, [x1, #16] ldr x2, [x23, #8]
str x2, [x0, #16] str x2, [x22, #8]
ldr x2, [x1, #24] ldr x2, [x23, #16]
str x2, [x0, #24] str x2, [x22, #16]

ldr x2, [x23, #24]
str x2, [x22, #24]
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Optimization: Stack Pointer

The sp register is assumed to always contain a valid address.
— No guards necessary for stack accesses.

Guards are necessary when modifying sp, but not in all cases.

Original code Sandboxed equivalent
add w24, wsp, #n
add sp, x21, x24

add sp, sp, #n

add sp, sp, #n
... (no branches) ... | No change necessary
ldr rt, [sp, #m]

str rt, [sp, #n]! | No change necessary
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Runtime Calls

How to safely call a runtime routine outside the sandbox?

18/26



Runtime Calls

How to safely call a runtime routine outside the sandbox?

Idea 1: reserve yet another register to store the runtime entrypoint.
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Runtime Calls

How to safely call a runtime routine outside the sandbox?
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Runtime Calls

How to safely call a runtime routine outside the sandbox?
Idea 2: use the first page of the sandbox to store the runtime call table (read-only).

e The address of the runtime call table is already stored in x21!
e Use x30, a special register used only for valid branch targets.

str x30, [sp, -16]!
ldr x30, [x21, #n]
svc #0 blr x30
ldr x30, [spl, 16
add x30, x21, w30, uxtw

Benefit: application can select the exact runtime call it wants statically.
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Implementation: Assembly Transformation

Problem: How to implement without modifying/maintaining a compiler toolchain?
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Implementation: Assembly Transformation

Problem: How to implement without modifying/maintaining a compiler toolchain?
Solution: Text processing pass on GNU assembly files (.s).

Use 11lvm-mc to normalize the assembly (externally maintained by LLVM).

1fi-cc

C|———> .8 ——» .8 > .S

cc llvm—mc 1fi-gen cc

v
(o)

1fi-gen is a 2,000 line Go program.
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Implementation: Compiler Toolchain

A full C/C4++ LLVM compiler toolchain can be built using the following libraries:

e compiler-rt.
e musl-libc.
e libc++.

libc++abi.

e libunwind.

Installation process: download LFl-instrumented sysroot and LFI wrapper tools. Use
your system'’s default Clang/LLVM package.
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Implementation: Compiler Toolchain

A full C/C4++ LLVM compiler toolchain can be built using the following libraries:

e compiler-rt.

e musl-libc.

e libc++.

e libc++abi.

e libunwind.
Installation process: download LFl-instrumented sysroot and LFI wrapper tools. Use
your system'’s default Clang/LLVM package.

Why no GCC? The GCC build system is less modular, so building LFI-instrumented
libgcc is more gnarly (but should be possible).
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e Core logic is 290 lines of Rust (not counting disassembler).

e No alignment requirements.

o Verifies executable ELF segments (link with ——rosegment to separate code/data).
e Verifies 30 MB/s on a Macbook Air.
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Static Verifier

No alignment requirements.

Verifies 30 MB/s on a Macbook Air.

Uses the ARM Machine Readable Specification:

e Find all instructions that can branch or

read /write memory.

e Find all instructions that can modify a register.

e Generate the disassembler.

Core logic is 290 lines of Rust (not counting disassembler).

Verifies executable ELF segments (link with —-rosegment to separate code/data).

BLR

Branch with Link to Register calls a subroutine at an address in a register, setting

Tegister X30 to PC+4.

3130292627 26 2524 232221 20191817 1615141312 1110 9 8 7 6.5 4 3 2 1 0

[1101 01 1[0fofo1]1 111 1[0 00o0Jo[o] R _Jo 00 00]
Z o AM Rm

BLR <xn>

integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the
address to be branched to, encoded in the "Rn" field.
operation
bits(64) target = X[n, 64];
if HaveGCS() && GCSPCREnabled (PSTATE.EL) then

AddGesRecord (BC[] + 4);
X[30, 64] = EC[] + 4;

// value in ETypeNext will be used to set PSTATE.BTYPE
BTypeNext — '10
BranchTo(target, BranchType INDCALL, FALSE);
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LFI Overhead

Overhead on SPEC 2017 benchmarks - M1 Macbook Air
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WebAssembly and LFI

Portability Isolation
WebAssembly as a portable IR. Ensure program cannot escape
e Wasm binaries encode all sandbox.
necessary dependencies. e Bounds checks/32-bit
e Wasm binaries can target enforcement.
multiple architectures. e Dynamic indirect branch checks.

Goal: decouple portability and isolation.

WebAssembly for portability, LFI for isolation.
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WebAssembly and LFI: Overhead

The contestants:

e Wasmtime: widely-used Wasm compiler built on Cranelift.

e WAMR: ahead-of-time Wasm compiler using LLVM.

e Wasm2c: Wasm to C convertor, then compiled with Clang (barrier removed)
e W2C2: Wasm to C convertor, then compiled with Clang (not full sandboxing).
W2C2-LFI: W2C2 running within an LFI sandbox.

e LFI
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WebAssembly and LFI: Overhead

Percent increase over native (LTO) runtime
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WebAssembly and LFI: Overhead

Result: LFI overhead is 7% by default.
Result: LF| causes an additional 20% overhead when used with WebAssembly.

— tradeoff for security (TCB size), and ability to safely precompile.
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Optimizing WebAssembly Performance on SPEC 2017

1. Enable the SIMD 128 proposal.
2. Reserve a register for the heap base (not supported for all architectures).

Overhead on SPEC 2017 benchmarks - GCP T2A instance
120

Wasm2c

Wasm2c SIMD
Wasm2c SIMD resreg
LFI

[

o

S
T

gnnn

N
o

N
o

Percent increase over native (LTO) runtime
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Thank you!

You can follow further development at:

https://github.com/zyedidia/Ifi
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https://github.com/zyedidia/lfi

Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.

— Speculative sandbox breakout attacks are mitigated.
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Spectre Safety

LFI does not rely on any fine-grained control-flow integrity for sandbox correctness.
— Speculative sandbox breakout attacks are mitigated.
Problem: Speculative cross-sandbox and host poisoning attacks.

Solution: ARM software context numbers.

D13.2.121 SCXTNUM_ELO, ELO Read/Write Software Context Number
The SCXTNUM_ELO characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL0 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations
This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_ELO are UNDEFINED.

Attributes

SCXTNUM_ELO is a 64-bit register.
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