
CS140 – Operating Systems
Instructor: David Mazières

CAs: David Goldblatt and Ali Yahya

Stanford University

1/33



Administrivia

• Class web page: http://cs140.scs.stanford.edu/

- All assignments, handouts, lecture notes on-line

• Textbook: Operating System Concepts, 8th Edition,
by Silberschatz, Galvin, and Gagne

- This is the official textbook, but mostly for background

- Class will not rely heavily on textbook

- Old versions okay, might not need textbook

• Goal is to make lecture slides the primary reference

- Almost everything I talk about will be on slides

- PDF slides contain links to further reading about topics

- Please download slides from class web page

2/33

http://cs140.scs.stanford.edu/
http://www.scs.stanford.edu/12au-cs140/
http://www.scs.stanford.edu/12au-cs140/notes/


Administrivia 2

• Staff mailing list: cs140-staff@scs.stanford.edu

- Please mail staff list rather than individuals for help

• Google group 12au-cs140 is main discussion forum

• Key dates:

- Lectures: MW 2:15–3:30pm, Gates B01

- Section: Some Fridays, time/location TBD

- Midterm: Monday, Oct 29, 2:15–3:30pm

- Final: Wednesday, December 12, 12:15pm–3:15pm

• Exams open book, can bring notes & copies of slides

- No electronic devices permitted

3/33

http://groups.google.com/group/12au-cs140


Lecture videos

• Lectures will be televised for SCPD students

- Can also watch if you miss a lecture, or to review

- But resist temptation to miss a bunch of lectures and watch

them all at once

• SCPD students welcome to attend lecture in person

• Other notes for SCPD students:

- Please attend exams in person if possible

- Feel free to use google group to find project partners

4/33



Course topics
• Threads & Processes

• Concurrency & Synchronization

• Scheduling

• Virtual Memory

• I/O

• Disks, File systems, Network file systems

• Protection & Security

• Virtual machines, Cutting edge topics

• Note: Lectures will often take Unix as an example

- Most current and future OSes heavily influenced by Unix

- Windows is exception; this quarter we will mostly ignore

5/33



Course goals

• Introduce you to operating system concepts

- Hard to use a computer without interacting with OS

- Understanding the OS makes you a more effective programmer

• Cover important systems concepts in general

- Caching, concurrency, memory management, I/O, protection

• Teach you to deal with larger software systems

- Programming assignments much larger than many courses

- Warning: Many people will consider course very hard

- In past, majority of people report ≥15 hours/week

• Prepare you to take graduate OS classes (CS240,

240[a-z])

6/33



Programming Assignments
• Implement parts of Pintos operating system

- Built for x86 hardware, you will use hardware emulator

• One setup homework (lab 0) due Wednesday

• Four implementation projects:

- Threads

- Multiprogramming

- Virtual memory

- File system

• Lab 1 distributed at end of this week

- Attend section this Friday for project 1 overview

• Implement projects in groups of up to 3 people

- Pick your partners today

- Lecture will end early so that you can do this

7/33



Grading
• No incompletes

- Talk to me ASAP if you run into real problems

• 50% of grade based on exams using this quantity:

max (midterm > 0 ? final : 0, (midterm + final) /2)

• 50% of grade from projects

- For each project, 50% of score based on passing test cases

- Remaining 50% based on design and style

• Most people’s projects pass most test cases

- Please, please, please turn in working code, or no credit here

• Means design and style matter a lot

- Large software systems not just about producing working code

- Need to produce code other people can understand

- That’s why we have group projects

8/33



Style

• Must turn in a design document along with code

- We supply you with templates for each project’s design doc

• CAs will manually inspect code for correctness

- E.g., must actually implement the design

- Must handle corner cases (e.g., handle malloc failure)

• Will deduct points for error-prone code w/o errors

- Don’t use global variables if automatic ones suffice

- Don’t use deceptive names for variables

• Code must be easy to read

- Indent code, keep lines and (when possible) functions short

- Use a uniform coding style (try to match existing code)

- Put comments on structure members, globals, functions

- Don’t leave in reams of commented-out garbage code
9/33



Assignment requirements

• Do not look at other people’s solutions to projects

• Can read but don’t copy other OSes

- E.g., Linux, OpenBSD/FreeBSD, etc.

• Cite any code that inspired your code

- As long as you cite what you used, it’s not cheating

- Worst case we deduct points if it undermines the assignments

• Projects due Fridays at noon

• Ask cs140-staff for extension if you run into trouble

- Be sure to tell us: How much have you done? How much is

left? When can you finish by?

10/33



What is an operating system?
• Layer between applications and hardware

• Makes hardware useful to the programmer

• [Usually] Provides abstractions for applications

- Manages and hides details of hardware

- Accesses hardware through low/level interfaces unavailable to

applications

• [Often] Provides protection

- Prevents one process/user from clobbering another

11/33



Why study operating systems?

• Operating systems are a maturing field

- Most people use a handful of mature OSes

- Hard to get people to switch operating systems

- Hard to have impact with a new OS

• High-performance servers are an OS issue

- Face many of the same issues as OSes

• Resource consumption is an OS issue

- Battery life, radio spectrum, etc.

• Security is an OS issue

- Hard to achieve security without a solid foundation

• New “smart” devices need new OSes

• Web browsers increasingly face OS issues

12/33



Primitive Operating Systems

• Just a library of standard services [no protection]

- Standard interface above hardware-specific drivers, etc.

• Simplifying assumptions

- System runs one program at a time

- No bad users or programs (often bad assumption)

• Problem: Poor utilization

- . . . of hardware (e.g., CPU idle while waiting for disk)

- . . . of human user (must wait for each program to finish)

13/33



Multitasking

• Idea: Run more than one process at once

- When one process blocks (waiting for disk, network, user

input, etc.) run another process

• Problem: What can ill-behaved process do?

- Go into infinite loop and never relinquish CPU

- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems

- Preemption – take CPU away from looping process

- Memory protection – protect process’s memory from one another

14/33



Multitasking

• Idea: Run more than one process at once

- When one process blocks (waiting for disk, network, user

input, etc.) run another process

• Problem: What can ill-behaved process do?

- Go into infinite loop and never relinquish CPU

- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems

- Preemption – take CPU away from looping process

- Memory protection – protect process’s memory from one another

14/33



Multi-user OSes

• Many OSes use protection to serve distrustful users

• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty

- Win by giving resources to users who actually need them

• What can go wrong?

- Users are gluttons, use too much CPU, etc. (need policies)

- Total memory usage greater than in machine (must virtualize)

- Super-linear slowdown with increasing demand (thrashing)

15/33



Multi-user OSes

• Many OSes use protection to serve distrustful users

• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty

- Win by giving resources to users who actually need them

• What can go wrong?

- Users are gluttons, use too much CPU, etc. (need policies)

- Total memory usage greater than in machine (must virtualize)

- Super-linear slowdown with increasing demand (thrashing)

15/33



Protection

• Mechanisms that isolate bad programs and people

• Pre-emption:

- Give application a resource, take it away if needed elsewhere

• Interposition/mediation:

- Place OS between application and “stuff”

- Track all pieces that application allowed to use (e.g., in table)

- On every access, look in table to check that access legal

• Privileged & unprivileged modes in CPUs :

- Applications unprivileged (user/unprivileged mode)

- OS privileged (privileged/supervisor mode)

- Protection operations can only be done in privileged mode

16/33



Typical OS structure

user
kernel

driver
device

P1 P2 P3 P4

sockets
TCP/IP

system
file

console disk

device
driver driver

device

network

VM
scheduler

IPC

• Most software runs as user-level processes (P[1-4])

• OS kernel runs in privileged mode [shaded]

- Creates/deletes processes

- Provides access to hardware

17/33



System calls

• Applications can invoke kernel through system calls

- Special instruction transfers control to kernel

- . . . which dispatches to one of few hundred syscall handlers

18/33



System calls (continued)

• Goal: Do things app. can’t do in unprivileged mode

- Like a library call, but into more privileged kernel code

• Kernel supplies well-defined system call interface

- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

• Example: POSIX/UNIX interface

- open, close, read, write, ...

19/33



System call example

• Standard library implemented in terms of syscalls

- printf – in libc, has same privileges as application

- calls write – in kernel, which can send bits out serial port

20/33



UNIX file system calls

• Applications “open” files (or devices) by name

- I/O happens through open files

• int open(char *path, int flags, /*mode*/...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file

21/33



Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure

- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values

- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror function prints human-readable message

- perror ("initfile");

→ “initfile: No such file or directory”

22/33



Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end

⊲ Returns previous file offset, or -1 on error

• int close (int fd);

23/33



File descriptor numbers

• File descriptors are inherited by processes

- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning

- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal

• Example: type.c

- Prints the contents of a file to stdout

24/33



type.c

void
typefile (char *filename)
{

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

25/33



Different system contexts

• A system can typically be in one of several contexts

• User-level – running an application

• Kernel process context

- Running kernel code on behalf of a particular process

- E.g., performing system call

- Also exception (mem. fault, numeric exception, etc.)

- Or executing a kernel-only process (e.g., network file server)

• Kernel code not associated w. a process

- Timer interrupt (hardclock)

- Device interrupt

- “Softirqs”, “Tasklets” (Linux-specific terms)

• Context switch code – changing address spaces

26/33



Transitions between contexts

• User → kernel process context: syscall, page fault

• User/process context → interrupt handler: hardware

• Process context → user/context switch: return

• Process context → context switch: sleep

• Context switch → user/process context

27/33



CPU preemption

• Protection mechanism to prevent monopolizing CPU

• E.g., kernel programs timer to interrupt every 10 ms

- Must be in supervisor mode to write appropriate I/O registers

- User code cannot re-program interval timer

• Kernel sets interrupt to vector back to kernel

- Regains control whenever interval timer fires

- Gives CPU to another process if someone else needs it

- Note: must be in supervisor mode to set interrupt entry points

- No way for user code to hijack interrupt handler

• Result: Cannot monopolize CPU with infinite loop

- At worst get 1/N of CPU with N CPU-hungry processes

28/33



Protection is not security

• How can you monopolize CPU?

29/33



Protection is not security

• How can you monopolize CPU?

• Use multiple processes

• For many years, could wedge most OSes with

int main() { while(1) fork(); }

- Keeps creating more processes until system out of proc. slots

• Other techniques: use all memory (chill program)

• Typically solved with technical/social combination

- Technical solution: Limit processes per user

- Social: Reboot and yell at annoying users

- Social: Pass laws (often debatable whether a good idea)

29/33



Address translation

• Protect mem. of one program from actions of another

• Definitions

- Address space: all memory locations a program can name

- Virtual address: addresses in process’ address space

- Physical address: address of real memory

- Translation: map virtual to physical addresses

• Translation done on every load and store

- Modern CPUs do this in hardware for speed

• Idea: If you can’t name it, you can’t touch it

- Ensure one process’s translations don’t include any other

process’s memory

30/33



More memory protection

• CPU allows kernel-only virtual addresses

- Kernel typically part of all address spaces,

e.g., to handle system call in same address space

- But must ensure apps can’t touch kernel memory

• CPU lets OS disable virtual addresses

- Catch and halt buggy program that makes wild accesses

- Make virtual memory seem bigger than physical

(e.g., bring a page in from disk only when accessed)

• CPU enforced read-only virtual addresses useful

- E.g., allows sharing of code pages between processes

- Plus many other optimizations

• CPU enforced execute disable of VAs

- Makes certain code injection attacks harder

31/33



Resource allocation & performance

• Multitasking permits higher resource utilization

• Simple example:

- Process downloading large file mostly waits for network

- You play a game while downloading the file

- Higher CPU utilization than if just downloading

• Complexity arises with cost of switching

• Example: Say disk 1,000 times slower than memory

- 1 GB memory in machine

- 2 Processes want to run, each use 1 GB

- Can switch processes by swapping them out to disk

- Faster to run one at a time than keep context switching

32/33



Useful properties to exploit

• Skew

- 80% of time taken by 20% of code

- 10% of memory absorbs 90% of references

- Basis behind cache: place 10% in fast memory, 90% in slow,

usually looks like one big fast memory

• Past predicts future (a.k.a. temporal locality)

- What’s the best cache entry to replace?

- If past = future, then least-recently-used entry

• Note conflict between fairness & throughput

- Higher throughput (fewer cache misses, etc.) to keep running

same process

- But fairness says should periodically preempt CPU and give it

to next process

33/33


	Administrivia
	Administrivia 2
	Lecture videos
	Course topics
	Course goals
	Programming Assignments
	Grading
	Style
	Assignment requirements
	What is an operating system?
	Why study operating systems?
	Primitive Operating Systems
	Multitasking
	Multitasking

	Multi-user OSes
	Multi-user OSes

	Protection
	Typical OS structure
	System calls
	System calls (continued)
	System call example
	UNIX file system calls
	Error returns
	Operations on file descriptors
	File descriptor numbers
		exttt {type.c}
	Different system contexts
	Transitions between contexts
	CPU preemption
	Protection is not security
	Protection is not security

	Address translation
	More memory protection
	Resource allocation & performance
	Useful properties to exploit

