
GoBadger: Honeybadger Implementation in Go
CS 244B Spring 2022

Zhiling Huang
zhiling@stanford.edu

Keller Blackwell
kellerb@stanford.edu

Ana Selvaraj
aselvara@stanford.edu

Vishal Mohanty
vmohanty@stanford.edu

Abstract

Blockchain-based systems such as Bitcoin cannot make
timing assumptions due to the nature of the underly-
ing network. They are also prone to adversarial attacks
which are also referred to as Byzantine attacks. Achiev-
ing consensus in such a system requires the protocol to
be asynchronous and Byzantine fault-tolerant. Honey-
badger is a principal example of such protocols, most
notably due to the performance it provides. We have
implemented Honeybadger in a memory and type-safe
language: Go. In this report, we discuss the implemen-
tation details and various challenges we faced along
the way and the design decisions we chose. We also
discuss bandwidth improvements by optimizing verifi-
cation structures in Reliable Broadcast, a foundational
mechanism in Honeybadger.

1 Introduction

Honeybadger is a Byzantine fault-tolerant consensus pro-
tocol for asynchronous environments [6]. For commu-
nication between asynchronous nodes, it uses Reliable
Broadcast. It utilizes threshold encryption to prevent
the censoring of a transaction. To sync and have nodes
agree on cipher texts, it requires an implementation of bi-
nary agreement and a threshold signature scheme whose
threshold of minimum signatures to verify a cipher text
of a transaction matches the number of healthy nodes in
a Honeybadger system. We implemented each of these
components in Golang before connecting them through
type-safe Golang style channels and goroutines in our
top-level component, honeybadger.go itself.

During our development and testing process, we
used the implementation of Honeybadger in Python by

the authors of the Honeybadger paper as a reference
HoneyBadgerBFT-Python1. To the best of our knowl-
edge, our implementation is the first publicly available
Golang implementation of Honeybadger.

We first describe our design decisions in abstracting
nodes and communication between nodes in Golang. We
then describe each of the components of Honeybadger
specific to our implementation. For Reliable Broadcast,
we discuss improvements over the original implementa-
tion in [7]. We also describe the Thrift implementation
for using the Threshold Encryption library in Python, in
Golang. We evaluate our implementation and compare it
with the original Python implementation. We conclude
by discussing the future scope of this work.

2 Communication mechanisms

In this section, we describe how communication happens
between nodes and between components in a node.

2.1 Inter-node communication

Our nodes are different processes on the same machine.
We implemented two mechanisms for two processes to
talk to each other.

✈ ZeroMQ 2 This is a useful Golang library for
processes to talk to each other as server and
client by binding on ports and connecting to ports
respectively. We create sockets in a ZeroMQ

1https://github.com/initc3/HoneyBadgerBFT-Python/
2https://zeromq.org/get-started/?language=go&

library=zmq4#

1

https://github.com/initc3/HoneyBadgerBFT-Python/
https://zeromq.org/get-started/?language=go&library=zmq4#
https://zeromq.org/get-started/?language=go&library=zmq4#

context-Response type socket for server and Re-
quest type socket for client. The sockets are then
bound/connected on a certain port.

In our implementation of 4 nodes, we made one
server on each of them to listen on TCP port 5000,
5010, 5020 and 5030 respectively. The server in
each of the nodes will listen on the respective port
for messages from other nodes and handle it ap-
propriately. On each node, we create a client for
each of the other nodes, so that they can connect to
the required port to send messages. For example,
if process 0 (bound on port 5000) wants to send a
message to process 1, the client on process 0 for
process 1 will send the message to port 5010. This
will then be received by process 1’s server listening
on port 5010 and handled appropriately.

While this may appear to be a good way of emu-
lating real-world communications between nodes,
we found the mechanism slightly unstable. Some
messages sent were not received by other processes,
which made it hard for us to communicate reliably.
One point worth mentioning here is that since we
are using actual sockets to communicate, this mech-
anism is slightly slow.

✈ Files We use simple text files-one for each node for
communication. So process 0 supposed to listen on
port 5000 now has 5000.txt, process 1 has 5010.txt
and so on. Anytime a node has to send a message
to another node, it simply writes to the recipient’s
text file. Each process tails (we used a nice Golang
library hpcloud-tail3) on its log file and handles
individual messages.

We found this process very consistent and runs fast.
Furthermore, writing to files does not require lock-
ing the file as the writes are atomic. This saves
us quite a bit of latency which would have been
otherwise introduced by the locks.

2.2 Intra-process communication

The honeybadger protocol uses several components that
need to run asynchronously - Reliable Broadcast, binary
agreement, common coin and common subset. In every
round, we have several instances of the same component
running, like N instances of reliable broadcast, one for

3https://github.com/hpcloud/tail

each leader. All these separate components are run as
separate goroutines. We use channels for communica-
tion between the components(goroutines). This trans-
lates well from HoneyBadgerBFT-Python which uses
gevent Queues4 for communication between compo-
nents. Each of the components in Python is also a Green-
let instance 5 which is realized well with a goroutine.

3 Reliable Broadcast

Reliable Broadcast (RB), arguably the heart of Honey-
badger, addresses the following questions ubiquitous
to distributed applications: how can data m be sharded
across n servers such that the servers reach an agreement
on m? Can clients subsequently recover m by querying
these servers? And can this be accomplished in a man-
ner that is both conserving of bandwidth and resilient to
some fraction of servers falling under adversarial con-
trol? Bracha’s [3] classical O(n2) communication ap-
proach uses linear error correcting codes under the worst
case error assumption; O(n2) communication is optimal
in this regime because the server does not know, a pri-
ori, which codeword symbols are valid. If the server can
somehow ascertain this information, RB can be reduced
to erasure coding. Cachin and Tessaro [4] reduce to the
erasure case is by introducing a verification structure.

3.1 RB with Verification Structures

Roughly, a verification structure allows each codeword
symbol to be independently verified. We make this no-
tion concrete by recalling the simplest case of Cachin
and Tessaro’s RB algorithm.

c = (c1,c2, . . . ,cn)← m Gk×n

H⃗c← (H(c1),H(c2), . . . ,H(cn))

where Gk×n is a generator of C and H is some collision-
resistant hash function.

✈ Dispersal: Each server i receives c[i] and H⃗c.
Upon verifying H(c[i]) = H⃗c[i], the server echoes
(c[i], H⃗c) to all other servers.

4https://www.gevent.org/api/gevent.queue.html
5https://www.gevent.org/api/gevent.html

2

https://github.com/hpcloud/tail
https://www.gevent.org/api/gevent.queue.html
https://www.gevent.org/api/gevent.html

✈ Retrieval: As before, the client queries all servers,
but as in the case of the servers, the client need
not wait for all servers to reply before successfully
decoding m. The argument is similar to that above.

Suppose that a server i receives from some possibly
adversarial server j an echo (ĉ j, Ĥ j). The validation of
this echo occurs in two steps. Server i checks that Ĥ j =
H⃗c and that H(c j) = H⃗c[j]. The collision resistance of
H then guarantees that ĉ j = c[j] with all but negligible
probability. However, the messages are now larger than
before - in addition to a codeword symbol, an O(n) size
list of hashes is appended. We conceptualize this as
optimizing along two measures:

✈ Erasure Decoding Threshold: This parameter de-
termines the number of messages a server must
receive before being able to successfully decode.

✈ Verification Structure Size: This parameter deter-
mines the size of the additional information that
allows us to verify a codeword symbol. This verifi-
cation mechanism, we recall, allows us to reduce
adversarial coding to erasure coding.

We show that the erasure decoding threshold achieved
by Cachin and Tessaro with Reed-Solomon codes is
optimal, and that the log(n) size of Cachin and Tessaro’s
verification structure may be reduced to constant size,
independent of n.

3.2 Optimality of Erasure Decoding Threshold

[4] uses a code isomorphic to a standard Reed-Solomon
code. We assume that files are m ∈ Fk

q. The key ob-
servation here is that the data space has dimension k
and we further assume without loss of generality that
m corresponds to a file with size k log2 q bits. It is clear,
info-theoretically, that no dispersal algorithm can suc-
ceed wherein a server is communicated fewer than this
number of bits. In algebraic terms, this implies that each
server must be communicated at least k symbols in Fq.

To show that Reed-Solomon codes are optimal in this
regard, we need only note that Reed-Solomon codes
have optimal erasure-decoding radius that is equal to
precisely their dimension k. Formally, the property of
Reed-Solomon codes known as maximum distance sep-
arability (MDS) is equivalent to any k codeword sym-
bols being sufficient to recover the original message.

Therefore we need at most k symbols to reconstruct m,
concluding the arguments for optimality.

3.3 Improvements to Verification Structure
Size

In section 3.1, the verification structure is an n-tuple
of hashes. [4] later optimizes this to a log(n)-tuple of
hashes using Merkle trees. We ask two questions:

✈ Can the verification structure be made smaller -
ideally constant size?

✈ How can we expend the minimal amount of com-
putation on producing and verifying the structure?

A naive solution might be for the client disbursing
the shards to sign each codeword symbol. This would
incur a constant verification structure size but expensive
verification. In addition, there are application flexibility
constraints with using digital signatures that do not allow
for verification structures to be dynamically augmented
or aggregated. We can accomplish (1) constant verifica-
tion structure size, (2) fast production and verification,
and (3) dynamic verification aggregation via either of
two cryptographic tools, accumulators and Verkle Trees.

3.4 Using Accumulators as a Verification
Structure

We present a very simple accumulator based on two
cryptographic assumptions: groups of unknown order
and the strong RSA assumption.

Definition 1 (Accumulator). An accumulator is a com-
mitment scheme for unordered sets that supports both
membership and non-membership proofs. We say that
an accumulator is dynamic if it supports the efficient
addition of elements. We say that an accumulator is ag-
gregable if (non-)memberships proofs can be aggregated
by non-privileged users.

Definition 2 (Groups of Unknown Order). A GUO is
a pair (G,g ∈G) where G is the description of a finite
Abelian group and g is some element thereof.

Assumption 1 (GUO Security Condition). Loosely:
there exist GUO’s such that, given (G,g ∈G), the group
order |G| cannot be efficiently computed by any compu-
tationally bounded adversary.

3

Assumption 2 (Strong RSA Assumption in GUO).
Loosely: given a GUO (G,g), a computationally
bounded adversary cannot efficiently find any (x,e ̸=
±1) ∈G×Z satisfying xe = g.

We now have all the tools necessary to build a small,
fast accumulator. Assume that we have a GUO in which
the strong RSA assumption holds and that, additionally,
we have a collision-resistant hash function H :N×Fq→
Primes(L), where Primes(L) denotes the first L primes.

✈ Dispersal: Suppose the client whose role it is to
shard a file m ∈ Fm

q across n servers encodes m as a
codeword c∈Fn

q in any MDS linear error correcting
code. The client adopts the following view of a
codeword as an “unordered set”.

S :=
{
(i,c[i]) ∈ N×Fq | i ∈ [n]

}
The client now computes a systemic commitment
by

C(S) :=


ei← H(xi) ∀i

E←
n

∏
1

ei ∈ Z

return c = gE


which is published. The client now issues to each
server the shard

((i,c[i]) , pi) , pi := c1/H(i,c[i]).

Upon receiving a shard, the client verifies that
pH(i,c[i])

i = c matches the published systemic com-
mitment.

✈ Retrieval: Similar to dispersal.

We note that pi is some element of G and that its size
is independent of n; computations are all O(n). We refer
the interested reader to [2] for a detailed discussion of
the aggregability and non-forgeability of these proofs.

3.5 Future work in leveraging dynamic aggre-
gability

Each Honeybadger node echoes its received value to all
other nodes and does not issue any subsequent traffic in

the dispersal phase. We also do not consider optimizing
in a scenario where clients are sharding or retrieving
multiple files at once, perhaps as on-the-fly updates to
systematically encoded files. In all the above cases, we
see that proofs need to be dynamic (allowing for file
updates) and aggregable (allowing for amortizing the
proof bandwidth when multiple shards are enclosed in
one VAL, ECHO, or READY message).

4 Threshold Encryption

The Honeybadger protocol also protects against targeted
censorship attacks. It does so by using Threshold Public
Key Encryption [5]. The idea in the targeted censorship
attacks is that since the adversary may have control over
the transactions proposed in a round, they can selectively
prevent certain transactions from making their way into
the block. Each of the transactions being proposed by
a node is encrypted using a public key and split into
N shares where N is the number of nodes. The private
key is also divided into N parts. In order to decrypt the
encrypted transactions, one needs at least N− f shares
of the encrypted transaction where f is the number of
adversarial nodes.

Python has a generous collection of crypto libraries
to do Threshold Encryption which can be used out of
the box. Golang has limited sources of reliable crypto
libraries, and even fewer for Threshold Encryption. As
is the commonly accepted norm of not implementing
your own crypto libraries, we decided to use Thrift to
use the python Threshold Encryption crypto libraries in
our Golang implementation.

4.1 Thrift for python crypto libraries

We defined a thrift file that contains the interface that
Golang will use to talk to Python to call crypto libraries.
We discuss the structure of the important files used for
Thrift in our repo.

• threshenc/

– tpke.py: This is the Threshold Public Key
Encryption library that is developed by the
authors of the Honeybadger paper.

– thrift/

* encryption.thrift: This is the main
thrift file that defines the interfaces and

4

services (functions) that will be used for
inter-language communication.

* gen-py/: This contains the auto-
generated files when we do thri f t −
genpyencryption.thri f t. This defines
the python objects and function inter-
faces that we need to implement in our
py/ library for others to use.

* gen-go/: This contains the auto-
generated files when we do thri f t −
gengoencryption.thri f t. This defines
the Golang objects and function inter-
faces that we need to implement in our
go/ library which can be called by the
core honeybadger files.

– py/

* python_encryption_handler.py:
We implement the functions defined
in the thrift interface. This uses the
tpke.py library.

* python_encryption_helper.py:
This is used to convert python objects
to and from thrift objects. Meth-
ods in this file will be called by
python_encryption_handler.py.

* python_encryption_server.py:
This runs the python service that serves
the thrift interface. Here we take the port
on which the server should run as an
argument and spin up the server.

– go/

* go_threshenc/

· client.go: This defines the func-
tions that are defined in the thrift file.
This is the place where we make con-
nection to the thrift as a service by
defining the transports to use. Essen-
tially in this file, we call the func-
tions that the thrift interface exposes
and convert Golang objects to and
from Thrift. The functions in this
file will be called by the core hon-
eybadger files for performing thresh-
old encryption.

· main.go: We use this to test the
functions in client.go.

We treat the Thrift interface as a first class citizen in
our report because designing such an interface required
careful structuring and we feel it serves as a worthwhile
reference for anyone looking to use Thrift for leveraging
the existing functionality of one language in another.

5 Binary Agreement

In the binary agreement function, nodes communicate
with each other to reach a consensus on whether or not
to include a specific transaction. The binary agreement
function takes in as arguments:

✈ a receiver channel that receives messages from
other nodes

✈ a common coin generating function

✈ a broadcast function to send messages to all nodes

and it returns a boolean on whether to commit the
transaction. All honest nodes will reach the same
decision on whether or not to include the transaction.
The binary agreement function needs to run once
for each proposed transaction. So there are multiple
instances of binary agreement goroutines running
asynchronously in our program. In the program, we
created a unique identifier to identify which transaction
a specific binary agreement goroutine is processing.
When the Honeybadger program receives a new binary
agreement message, it will check the unique identifier
to figure out which transaction is related to this message
and put it in the appropriate receiving channel.

To reach consensus, binary agreement sends mul-
tiple rounds of messages to other nodes. And in each
round, binary agreement function broadcasts two
different types of messages, bval and aux. On a high
level, the algorithm starts sending bval messages;
and then only sends aux after receiving enough bval
messages; after at least N − f valid aux messages,
the algorithm calls common coin to decide whether
to wrap up and draw a conclusion now, or proceed
to the next round. All the information about any
message is contained in a message struct, including
message_type, sender, round number, proposed
value. Before broadcasting any message, binary
agreement function will stringify the message struct;
and after receiving a new message from the receiver

5

channel, binary agreement function parses the received
string to construct a message struct.

6 Common Coin and Threshold Signature

In each round of the binary agreement function, a com-
mon coin is used as the last step. After 2 f +1 threshold
signatures are received, common coin will combine them
and compute a boolean bit that is unknown if less than
2 f +1 signatures are received. Therefore an evil actor
does not know the result of common coin and is not able
to manipulate the result. Common coin also serves as a
sync between multiple nodes so that they will proceed
to the next round or return.

For the threshold signature scheme, we use an open-
source implementation of Victor Shoup’s Practical
Threshold Signatures [8]. We chose this library tcrsa6

because we could not find an open-source Golang im-
plementation of Boldyreva’s Paring-based threshold sig-
nature scheme [1] mentioned in the Honeybadger paper.
Generating the public and secret keys using this library
for four nodes takes approximately a minute so we ab-
stracted away the generation of keys using a separate
process that finishes before starting each individual node
of Honeybadger.

7 Evaluation

Our implementation is available at fabric-honey-badger7.
We evaluate our implementation in a setting of 4 nodes
where at most one node is unreliable. We let the protocol
run for several rounds and clock the time it takes for
each round to complete. We compare the time it takes
for the Python implementation of the authors against our
Golang implementation. Note that in our case, nodes are
different processes which are contending for resources
and time-sharing, whereas their Python implementation
emulates the nodes are separate threads which can run
fully in parallel.

In our test case with four nodes, where each node
proposes one transaction in a round, on average it took
36 seconds to commit a single block to the chain. Note
that each block contains upto 3 transactions as that is
the threshold size we need to move forward with the

6https://github.com/niclabs/tcrsa
7https://github.com/ana13S/fabric-honey-badger/

tree/main/orderer/consensus/honeybadger

protocol. A block can contain less than 3 transactions
in case multiple nodes propose the same transaction in
the same round. The bulk of the latency in our imple-
mentation comes from the message passing mechanism
using files because after sending each message, we sleep
for a second before sending the next message. We use
the sleep for writes to be reliable. Replicating this test
using their pytest setup in HoneyBadgerBFT-Python, it
took approximately 92 seconds to complete one round.
One note is that we generate the public and private keys
for Threshold Signature and Encryption before starting
the consensus protocol, and each node reads them from
a file. So the initial Dealer part is not included in the
time measurements. Each individual time measurement
represents an average of ten runs on a 2 GHz Quad-Core
Intel Core i5 Macbook Pro having 16 GB RAM.

We tested the reliability of the protocol in case one
node fails as well. Even in the case where one node is
stalled or behaves erratically, we do see that the other
nodes make progress and commit blocks to their chain.

8 Future Work

Our implementation can be restructured to fit into hyper-
ledger fabric 8, a foundation for developing blockchain
systems using different consensus protocols in Golang.
This would allow us to compare its performance to other
consensus protocols that the Fabric currently uses like
Raft and Kafka.

Other ideas for improving our implementation are us-
ing a more efficient IPC communication method (rather
than using files) and implementing a Boldyreva pairing-
based threshold signature scheme in Golang for better
performance [1].

9 Conclusion

Honeybadger in Golang is an implementation of a byzan-
tine fault-tolerant protocol that would be useful in asyn-
chronous situations. Providing an extra layer of security
through type safety, it could be used to build blockchains
in remote environments where nodes could be faulty or
unable to sync. The security and reliability of the proto-
col come from its foundational features and interaction
of its individual subcomponents.

8https://github.com/hyperledger/fabric

6

https://github.com/niclabs/tcrsa
https://github.com/ana13S/fabric-honey-badger/tree/main/orderer/consensus/honeybadger
https://github.com/ana13S/fabric-honey-badger/tree/main/orderer/consensus/honeybadger
https://github.com/hyperledger/fabric

References

[1] Alexandra Boldyreva. Threshold signatures, mul-
tisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Interna-
tional Workshop on Public Key Cryptography, pages
31–46. Springer, 2003.

[2] Dan Boneh and Victor Shoup. Public key cryptog-
raphy - a fun application. In A Graduate Course in
Applied Cryptography, volume 0.6. Web textbook,
2022.

[3] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Information and Computation, 75(2):130–
143, 1987.

[4] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In 24th IEEE Symposium
on Reliable Distributed Systems (SRDS’05), pages
191–201, 2005.

[5] Ran Canetti and Shafi Goldwasser. An efficient
threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In Advances in
Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Crypto-
graphic Techniques, volume 1592 of Lecture Notes
in Computer Science, pages 90–106. Springer, 1999.

[6] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft proto-
cols. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications secu-
rity, pages 31–42, 2016.

[7] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’16, page 31–42, New York, NY, USA, 2016.
Association for Computing Machinery.

[8] Victor Shoup. Practical threshold signatures. In In-
ternational Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 207–220.
Springer, 2000.

7

	Introduction
	Communication mechanisms
	Inter-node communication
	Intra-process communication

	Reliable Broadcast
	RB with Verification Structures
	Optimality of Erasure Decoding Threshold
	Improvements to Verification Structure Size
	Using Accumulators as a Verification Structure
	Future work in leveraging dynamic aggregability

	Threshold Encryption
	Thrift for python crypto libraries

	Binary Agreement
	Common Coin and Threshold Signature
	Evaluation
	Future Work
	Conclusion

