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Abstract

In this project we explore ways to dynamically load
balance actors in a streaming framework. This is used
to address input data skew that might lead to stragglers.
We continuously monitor actors’ input queue lengths
for load, and redistribute inputs among reducers using
consistent hashing if we detect stragglers. To ensure
consistent processing post-redistribution, we adopt an
approach that uses input forwarding combined with a
state merge step at the end of the processing. We show
that this approach can greatly alleviate stragglers for
skewed data.

1. Introduction and Background

A lot of distributed databases today follow the
push-based architecture, where stateful actors push
batches of data to each other in a streaming fashion
[Chen et al., 2016; Dageville et al., 2016]. For
example let’s consider an aggregation query where we
want to tally up the appearances of each key. In this
case there would be “mapper” actors that read chunks
of the input table and feed the results to “reducer”
actors who perform the aggregation on the incoming
chunks. The reducers could be hash partitioned on
the key. Mappers and reducers execute simultaneously
on the same cluster. Mappers push their outputs to
queues on the reducers, and reducers dequeue these
inputs asynchronously. This pipelined parallelism
overlaps the IO-intensive mapper execution with the
compute-intensive reducer computation.

This execution scheme is great when the keyspace
can be evenly partitioned amongst reducers. However in
real workloads the key space can be severely skewed.
For example, if we are counting English words and
partitioning based on the first letter, some letters (e.g. h)

are a lot more common than other letters (e.g. z). This
could result in some reducers having more work than
other reducers, causing load imbalance in the system.
We could try to sample the input ahead of time to
figure out the ideal partitioning strategy, or we could
try to dynamically readjust the partitioning strategy at
runtime. In this work we explore the latter approach.

Runtime load balancing can be preferable in practice
if there is a high cost in obtaining accurate samples or if
samples are not readily available (e.g. the input is the
result of another pipeline). The latter case is especially
problematic as it nullifies adaptive approaches that
assume fully materialized inputs such as Hurricane
and Spark’s adaptive query execution [Bindschaedler
et al., 2018; Zaharia et al., 2010]. The state of
the art in streaming load balancing today involves a
coordinated global rollback to a consistent snapshot, key
redistribution, and subsequent input replay [Carbone
et al., 2015]. This can be prohibitively expensive in
systems involving potentially thousands of streaming
operators, who all need to be rolled back.

In this work, we develop a runtime load balancing
approach without the need for coordinated global
rollback. We dynamically adjust the partitioning scheme
amongst the reducers leveraging consistent hashing. Our
implementation handles cases where the skew can be
handled by repartitioning the keyspace.

To determine when we should repartition the
keyspace, we keep track of how many outstanding keys
each reducer has to process as a rough proxy on the
workload distribution. If we see one reducer has a
lot more keys to process than the rest, we repartition
the keyspace with consistent hashing to reduce its load.
However, when this redistribution event occurs, there
could still be inputs associated with the old partition
scheme in the reducer’s queue. Therefore, when a



reducer sees a key it is no longer assigned to, it
simply forwards it to the correct reducer. This removes
the need to synchronously redistribute queue contents
among reducers as effectively done in coordinated
global rollback schemes.

Key redistribution could result in inputs associated
with the same key being processed by different reducers
throughout the program’s execution. We implement
a final “state merge” step where the state of all the
reducers are merged. For example, in word count, the
reducer’s state would be the total count of each word it
has seen. If the word “foo” is first processed by reducer
A but then processed by reducer B, both A and B would
have a count of foo in their state. The state merge step
would simply add those counts. Other more complicated
reduction functions (such as sort) might admit other
custom merge functions. We discuss the implications
of this design choice and explore alternatives.

2. System Overview

At a high level, our system can be described as a
map-reduce runtime that takes in input data, and map
and reduce functions that are applied onto the input
data elements. To use our system, a user provides map
and reduce executors that are user-defined functions or
class objects that contain arbitrary code along with input
data which are passed to a coordinator responsible for
orchestrating the entire execution pipeline. The overall
architecture is shown in Figure 1.

2.1. Mappers & Reducers

Mappers and reducers in this streaming framework
are stateful actors which get data from a source and push
data to other actors. In our implementation, mappers get
data from the coordinator and push data to downstream
reducers. Mappers are stateless, while reducers can
be stateful. For example, for word count, the reducer
maintains the count of words in dictionary and updates
this dictionary upon receiving new input. Reducers also
periodically send state to the load balancer. The load
balancer uses this state to determine whether a reducer
is overloaded and consequently re-partition the keyspace
and redistribute tasks to less overwhelmed reducers.

2.2. Per-Reducer Queues

Our system leverages dynamic scheduling using
per-reducer queues and therefore each reducer reads
input from a specifically assigned queue. Mappers
stream their outputs to reducer queues and reducers
continuously consume and perform computations on
these data items. The decision to use per-reducer

queues stems from the fact that the interactions between
our queuing subsystem and the mappers and reducers
is synchronous and this leads to contention. Using
per-reducer queues serves to eliminate this contention.

2.3. Coordinator

The Coordinator is responsible for creating and
launching the mappers and reducers, initializing the load
balancer, and orchestrating the entire pipeline. It also
assigns tasks to mappers and tracks the lifetimes of
reducers. It determines when a reducer should shutdown
after it’s done processing all input data in its queue. A
reducer can never stop on its own because it can still be
forwarded data in the event that the other reducers are
still running and one of them triggers load balancing on
the load balancer. The coordinator tracks all the reducers
and ensures that they shutdown once all of them are done
processing the data.

2.4. Load Balancer (Scheduler)

The load balancer is the heart of the system. It is
responsible for balancing load amongst the reducers. It
achieves this through a consistent hashing object which
partitions the keyspace and distributes data items among
reducers. It also maintains the current load state of
every reducer. This state is periodically updated by
each reducer. Additionally, it exposes a method that
mappers and reducers call to determine which reducer
is responsible for handling a particular data item. When
it detects load imbalance from the reducer states, it
appropriately updates the consistent hashing object to
repartition the keyspace.

3. System Interactions

The coordinator is responsible for instantiating and
launching all system components.

When the system starts, mapper actors fetch tasks
or data items from the coordinator by means of a
remote method call. The mappers apply their stateless
executors to the input elements and output the result to a
specific reducer queue. The specific queue is determined
through our global consistent hashing object hosted in
the load balancer actor. A mapper makes a remote
method call to the load balancer with key of a data item
and receives the index of reducer queue to output the
processed data to.

In parallel to the mapping phase, reducer actors
execute in an infinite loop and continuously poll their
input queues for new data. Before it processes a piece
of data, it checks the load balancer to see if it is indeed
assigned to this key. If it’s not then the key is forwarded



Figure 1. High level system architecture

to the appropriate reducer. Reducers also periodically
call a remote method on the load balancer to update their
current load state which in our case is just the queue size.
The load state can be made more fine-grained, but queue
size seemed to work as a sufficient metric.

In the event that the load balancer receives a load
state from a reducer that signifies that it’s overloaded,
it appropriately updates the global consistent hashing
object. Consequently mappers will send the skewed
keys to other less overwhelmed reducers. Keys already
pushed to the reducer queues according to the old
partition scheme will be forwarded by the reducers.

We recognize that our design involves actors
frequently checking the load balancer. This could
potentially cause a centralized bottleneck in a distributed
system. We believe this is acceptable as the actors are
only reading, never writing. Alternatively we could use
distributed consensus to ensure that all the actors agree
of a certain partition scheme with the load balancer as
the leader, which we discuss in the Discussion section.

4. Load Balancing (LB)

In this section, we describe our load balancing policy
and mechanisms. We leverage consistent hashing for our
key space partitioning and distribution.

4.1. Load Balancing Policy

Let R be the number of reducers, Qi be the queue
size for reducer i (i.e. Ri), Qmax = maxRi=1 Qi be
the maximum queue length across all reducers, x =
argmaxRi=1 Qi so that Qx = Qmax, and Qs =
maxi∈{j}R

j=1−{x} Qi be the second largest queue size.

The consistent hashing object is updated if the
following predicate is true:

Qmax > Qs(1 + τ) (1)

where τ ≥ 0 is a configurable threshold.
The intuition behind this policy is that we want to

catch cases where a single reducer has high relative load.
The parameter τ allows us to control the sensitivity to
skew. τ = 0 would result in a very sensitive setup where
no skew is tolerated, whereas a larger value would allow
for tolerating more skew.

The load balancer checks this condition on a regular
basis and triggers keyspace redistribution (details in the
next section) if it is satisfied.

4.2. Keyspace Redistribution

Our keyspace redistribution strategy leverages
consistent hashing [Karger et al., 1997]. Each node i
(i.e. a reducer) gets a number of tokens Ti. Initially all
nodes receive an equal number of tokens. These tokens



are placed on a conceptual ring that represents the output
space of some hash function h. We used Murmurhash3
[Appleby, 2014]. Token t(i,j) is the j-th token of the i-th
node.

We represent a token using the string formatted as
r(i,j) = ”token-{i}-{j}”, so h(r(i,j)) is the position of
the token on the ring. Once all tokens are placed on
the ring, we determine which node ID (integer) a key
(string) maps to, using the following interface.

key_lookup(key: str) -> int

We compute h(key) and walk the ring clockwise
starting at the hash value until we hit the first token
t(x,y). We then return node ID x. Our implementation
sorts all tokens by their hash values as a preprocessing
step, then we can do this lookup in O(log T ) using
binary search, where T is the total number of tokens.
Figure 2 illustrate how key lookup works in an example
with 3 nodes, Ti = 2, and T = 6.

Figure 2. Key lookup in consistent hashing.

Once we detect that a particular node is under high
relative load, we trigger a redistribution of the keyspace.
Ideally, we want to only target the affected node by
redistributing some of the keys allocated to that node
to the rest of the nodes in the system. In practice,
its unclear whether this strategy would not create a
bottleneck for other nodes without prior knowledge of
the distribution of keys. Therefore, we introduced an
interface for providing relief to the overburdened node
identified with node id.

redistribute(node_id: int) -> None

We devised two strategies for keyspace
redistribution.

1- Token halving In this strategy we start all tokens
with N initial tokens where N is a power of 2. When
redistribute is called for node i, we remove half of
the tokens owned by that node. This approach ensures

that there’s not a lot of disruption, other than some of
the keys previously belonging to i now being allocated
to other nodes.

This method has a major downside: at some point a
node will only have one token left and we ”run out of
halving”.

2- Token doubling We start each node with a single
token. Once the method is called for node i, we double
the number of tokens for all nodes except for i. The
intuition is that other nodes are likely to overtake some
of the keys from i. However, this will also result in a
reshuffling of keys for the non-problematic nodes.

Neither one of these methods is guaranteed to
address the load issue for node i. In the worst case
scenario the skew is related to a single key. Even if we
happen to allocate the key to another node, we would’ve
just created a bottleneck in a new node that needs to be
rebalanced later.

5. Implementation

Our system is implemented on top of Ray [Moritz
et al., 2018], a Python framework for distributed
computing. However, it can be implemented using
any language (e.g. Erlang) or runtime such as Akka
[Akka, 2009] that support actors. An actor in Ray is
a Python object with persistent state that defines and
exposes methods for interacting with that state. Actors
can interact with each other by making functions calls
akin to RPCs.

Each of our system components–coordinator,
queues, reducers, mappers and the load balancer–are
implemented as individual actors and communicate via
method calls.

6. Experiments

In this section we describe our experimental setup.
In all experiments, we fix the number of mappers and
reducers to four. We use τ = 0.2 in all experiments.

6.1. Metric

We use a measure of skew (defined below) as our
primary metric. Our experiments suggest that wall time
is highly (inversely) correlated with this metric, so we
omit it to save space.

Additionally, we ran each experiment three times
and computed the variance, which turned out to be very
small, so we are omitting that as well.

6.1.1. Skew Let Mi be the number of messages
processed by reducer i and R be the number of reducers.



Also, let M =
∑R

i=1 Mi be the total number of
messages processed by all reducers.

We define U = ⌈M/R⌉, which captures the
ideal scenario where messages are uniformed distributed
across the reducers. We also define W = maxi Mi. We
define S to be the normalized deviation of W from ideal:

S =
W − U

M − U
(2)

This quantity ranges between 0 and 1. S = 0 means
that there’s no skew, and S = 1 means maximum skew
(i.e. all messages are processed by a single reducer).

6.2. Workloads

In this section we describe the workloads that
we have contrived for the purpose of studying the
boundaries of our system. Workloads consist of a
sequence of letters, and the goal is to produce the count
of each unique letter. To ensure consistency and to speed
up our experimentation, all workloads have 100 items.

Workload 1 (WL1) is designed so that it’s skewless
(i.e. S = 0) for the halving method, but is perfectly
skewed (i.e. S = 1) for the doubling method. In other
words, the initial token allocation for the halving method
is such that the letters in this workload are uniformly
distribution across the four nodes. For the doubling
method, all items are mapped to a single reducer.

Workload 2 (WL2) is designed such that S = 0 for
both methods.

Workload 3 (WL3) is a degenerate case where the
same letter is repeated 100 times (i.e. [’a’, ’a’,
...]), so S = 1 by design.

Workload 4 (WL4) is heavily skewed with S = 0.8
for the halving method and has S = 0.49 for the
doubling method.

Workload 5 (WL5) is mildly skewed with S = 0.2
for the halving method and has S = 0.55 for the
doubling method.

6.3. Experiment 1

We compare the two load balancing (LB) methods
against the baseline (no LB) and report S in Table 1. ∆
is defined as the SNo LB − SWith LB, so a positive value
signifies a reduction in S when LB is applied (larger
values of ∆ are desirable).

We see that in cases with low skew (WL1, WL2,
and WL5) these methods either don’t help (i.e. ∆ =
0) or lead to a small increase in S. This is due to
the indeterminate nature of our distributed systems, it
is possible that we trigger the LB at a point where
certain reducers are behind and we don’t yet have an

Workload Method No LB With LB ∆
WL1 Halving 0.00 0.08 -0.08

Doubling 1.00 0.20 0.80
WL2 Halving 0.00 0.00 0.00

Doubling 0.00 0.08 -0.08
WL3 Halving 1.00 1.00 0.00

Doubling 1.00 0.75 0.25
WL4 Halving 0.80 0.52 0.28

Doubling 0.49 0.11 0.38
WL5 Halving 0.20 0.20 0.00

Doubling 0.55 0.12 0.43
Table 1. Experiment 1 results.

accurate view of the load. This issue can be alleviated by
choosing a larger LB threshold. However, the trade-off
is that a larger threshold could lead to triggering LB past
the point of it being effective.

Also, note that when initial skew is high (WL1,
WL3, WL4, and WL5), we can sometimes achieve a
substantial decrease in skew. In particular, the doubling
method appears to be more successful in all such
cases. This method is redistributing the keys more
aggressively, which is more effective at distributing
the load uniformly relative to surgically allocating keys
from a single reducer to the other nodes (i.e. the halving
method).

6.4. Experiment 2

In this experiment we study the effects of allowing
multiple rounds of LB, whereas we only allowed up to
and including one round in the previous experiment.

This may be useful for two reasons: 1- as we
alluded to in the previous section, sometimes LB is
done prematurely and subsequent rounds can help to
remedy such situations, and 2- there’s no guarantee that
modifying tokens will lead to the desired effects upon
the first LB. It is possible that keys are remapped to the
same overloaded reducer after an initial round of LB,
and a subsequent round could lead to a remapping of
those keys to other reducers.

Figure 3 depicts the change in skew as a function
of the maximum rounds. Note that this is the maximum
allowable number of rounds per reducer, so each reducer
can trigger LB up to and including this many times.

We see that the additional rounds help for at least
one of the methods in all workloads. WL1 and WL2 are
examples of cases where both methods introduce some
skew skew after the first round, which they can recover
from in round 2.

Also, note that the additional rounds never hurt the
halving method, but can be detrimental to doubling.



Figure 3. Experiment 2 results.

This is due to the fact that reshuffling the keys many
times is more likely to result in introducing skew
(since many new tokens are introduced) in the doubling
method vs. halving.

7. Discussion and Future Work

In this project, we showed that our load balancing
scheme can effectively alleviate straggler effects for
compute-heavy workloads by reducing the amount of
items the straggler has to process. In the current
implementation we simply redistributed keys among
the existing reducers. However in principle our
scheme can easily be extended to add new reducers
on new machines. They can simply claim tokens
in the consistent hashing scheme, and our forwarding
mechanism will forward inputs to these new reducers
appropriately. Their state has to be merged with the state
of all the existing reducers at the end.

In our implementation, inputs associated with the
same key could potentially be processed by multiple
reducers. Thus the “state” associated with this
key can also be distributed on multiple reducers
and might have to be merged at the end. This
merge step might be expensive, and might not always
be possible for non-commutative or non-associative
reduction functions.

An alternative design could involve state forwarding.
If at time t in the program’s execution, the load balancer
decides to assign key k from reducer A to reducer
B, before reducer A forwards any input in its queue
associated with key k to reducer B, it could forward to
reducer B all its state associated with the key k. In this
state forwarding scheme, logically, the state associated
with a particular key is always resident on a single
reducer and therefore no state merging is needed at the
end. In addition, this state forwarding could ideally be
done asynchronously and impose no latency penalty.

A key challenge with this state forwarding approach
is that the mappers can be aware of the key redistribution
instantly at time t and decide to forward inputs
associated with key k immediately to reducer B, before
reducer A has had a chance to forward B the state.

Reducer B then would be faced with inputs in its queue
with no corresponding state. Depending on reducer B’s
execution semantics it might decide to throw away such
inputs (e.g. hash join not matching on build table),
leading to incorrect execution behavior.

One solution would be to never update where the
mappers send their outputs. Thus all future inputs
associated with k will still arrive at reducer A, and
reducer A can simply enforce the rule that it forwards
the state associated with any key k before forwarding
any inputs associated with key k. However, this leads to
unnecessary network traffic and redundant forwarding.

A better solution would be this algorithm: the load
balancer keeps a read-only version of the ideal keyspace
partitioning which it can update at its leisure. The
updates are assumed to be very infrequent and atomic.
All reducers agree to this partitioning scheme through
consensus. Importantly, every reducer can only exist
in two states: synchronizing (undefined behavior) or
synchronized (must agree on one partitioning scheme).
The reducer cannot perform any other actions while it
is synchronizing. It’s free to process data only in the
synchronized state.

The processing is thus broken down into stages
where all reducers are synchronized (i.e. agree on the
partitioning scheme). The stage is broken down into two
substages. In the first substage all reducers exchange
state as specified by the partitioning scheme. In this
substage, reducers cannot forward any data because
they are not certain that the forward destination has the
state to handle said data. Any data that need to be
forwarded gets put back into the queue. After all state
reshuffling is complete, the reducers enter the second
substage where they are free to forward data as they
wish. Note the data they forward might have arrived
several stages back from an old partition scheme long
forgotten. But the first substage guarantees that if the
reducer follows the current partitioning to forward this
data, the state to process that data is resident on the
forwarding destination.

We plan to implement this algorithm in a research
streaming system called Quokka in the coming months:
https://github.com/marsupialtail/quokka.
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